

Searches for Physics beyond the Standard Model at the LHC

Christian Autermann

"Astroparticle Physics in Germany - Status and Perspectives" 17.9.-19.9.18, Mainz University

SPONSORED BY THE

Federal Ministry of Education and Research

Overview

- Status ATLAS, CMS, LHCb
- Recent Highlights
- Higgs sector
- Supersymmetry
- Dark matter

Christian Autermann

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Simultaneous number of interactions

Overview

- Status ATLAS, CMS, LHCb
- Recent Highlights
- Higgs sector
- Supersymmetry
- Dark matter

Observation of H→bb

- ATLAS μ=1.06
 5.5σ (obs) with 7,8,13 TeV data arXiv:1808.08238 accept. by PLB
 - CMS μ =1.04±0.20 5.6 σ (obs) with 7,8,13 TeV data, VH+other processes

- improved sensitivity in 2017 data by up to 10%
 - new pixel detector
 - DNN b-tagger, kinematic fits
 - DNN signal/background discrimination

8

Observation of ttH production

→ measurement of top-Higgs coupling

- ATLAS: $\mu = 1.32^{+0.28}_{-0.26}$ 6.3 σ (obs) with 7, 8, 13 TeV data
- CMS: μ = 1.26^{+0.31}-0.26
 - 5.2 σ (obs) with 7, 8, 13 TeV data

Selected Higgs summary plots

10

Invisible Higgs decays

- CMS 36 fb⁻¹, 13 TeV data
 BF(H→invis.) < 0.26 (observed) @ 95%C.L.
- shape-fit analysis in mjj
- combination of several channels
- interpretation in Higgs-portal models of DM

 m_7 [GeV]

Higgs in association with dark matter

Z'-two Higgs doublet model

Overview

- Status ATLAS, CMS, LHCb
- Recent Highlights
- Higgs sector
- Supersymmetry
- Dark matter

13

Strong production of gluinos and 3rd generation squarks

- 79.9 fb⁻¹ of 13 TeV data: m(g̃) < 2.2 TeV excl.
- large p_T^{miss} , ≥ 3 b-tagged jets
- 0 or 1 lepton, large radius jets
 - $m_{\rm eff} = \sum p_{\rm T}^{\rm jet_i} + \sum p_{\rm T}^{\ell_j} + E_{\rm T}^{\rm miss}$
- tuned MC; cut&count and multi-bin analyses

W

p

14

Electroweak production of Charginos

- 80.5 fb⁻¹ of 13 TeV data: m($\widetilde{\chi}^{\pm}$) < 410 GeV
- Two leptons, 0 or 1 light jet
- Irreducible SM WW background: MC normalized to data

15

SUSY experimental status

selected results

- Competitive sensitivity compared to gravity-mediation
- CMS Combination paper in preparation
- GGM scans in cooperation with theory

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe up to the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

mass scale [GeV]

JHEP 07 (2018) 020

Evidence for $B_s^{0} \rightarrow \overline{K}^{*0} \mu^+ \mu^-$

- extremely rare SM FCNC via loop diagram involving off-diagonal V_{td}
- Global analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ measurements by BaBar, Belle, CDF, LHC suggest 4-5 σ deviation from the SM
- 1fb⁻¹ of 7 TeV, 2fb⁻¹ of 8 TeV, 1.6fb⁻¹ of 13 TeV data
- Signal yield of 38 \pm 12 events observed at 3.4 σ
- BF = 2.9±1.0(stat)±0.2(sys)±0.3(norm)×10⁻⁸ in agreement with SM
- Detailed analysis of the q² spectrum similar to $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ with more data

18

10³

m(Z')[GeV

Resonance searches: low mass

- Light Z' associated with L_μ-L_τ U(1) gauge symmetry could explain B⁰→ K^{*0}μ⁺μ⁻ and g-2 deviations
- LHCb 1 fb⁻¹ at 7 TeV and 2 fb⁻¹ at 8 TeV
- CMS 77.3 fb⁻¹ at 13 TeV

Z \rightarrow 4 μ analysis with first limits on L_{μ}-L_{τ} models

 10^{2}

 \mathcal{O}

 10^{-1}

 10^{-2}

10

1. CMS_PAS_EXO_18_006 2. arXiv:1803.06292, accept. JHEP

Resonance searches: high mass

- dielectron and dimuon final states
- 36.3 77.3 fb⁻¹ of 13 TeV data

Combined mass lower limits

- Z'_{SSM} (sequential SM) : 4.7 TeV
- Z'_{ψ} (GUT based theories) : 4.1 TeV

 g_{q}

 ϕ

leeeee

ففففقو

Eur. Phys. J. C 78 (2018) 291

 $g_{\rm DM}$

20

X

Dark matter search: DM+Z→II

- 35.9 fb⁻¹ of 13 TeV data
- Simplified models for DM production via spin-0 or spin-1 mediators
- Two analysis strategies:
 - Fit of p_T^{miss} spectrum
 - Roosted decision tree classification targeting $H_{SM} \rightarrow DM DM$

1. EXOT_2016_23 arXiv:1807.11471 2. PLB 776 (2017), 318

Dark matter searches

- Very similar DM+Z→II from Atlas
- Combination with several channels
 - hadronically decaying W/Z bosons
 - two resolved jets or one large radius jet
 - dijet resonance bump-hunting

	95% C.L. exclusion limit	
Model	Observed	Expected
Quantum black hole	8.9 TeV	8.9 TeV
W'	3.6 TeV	3.7 TeV
W^*	3.4 TeV	3.6 TeV
	3.77 TeV-3.85 TeV	
Excited quark	6.0 TeV	5.8 TeV
$Z'(g_q = 0.1)$	2.1 TeV	2.1 TeV
$Z' (g_q = 0.2)$	2.9 TeV	3.3 TeV
Contact interaction ($\eta_{LL} = -1$)	21.8 TeV	28.3 TeV.
Contact interaction $(\eta_{LL} = +1)$	13.1 TeV	15.0 TeV
	17.4 TeV-29.5 TeV	

Phys. Rev. Lett. 116, 161302 (2016)

DM Mass [TeV]

Astroparticle Physics Mainz Christian Autermann

RWTH

Resonant 2nd generation slepton production

- 35.9 fb⁻¹ of 13 TeV data
- RPV SUSY, LQD coupling
- like-sign dimuon final state
- non-prompt muon background from tight-to-loose method

Conclusion

- No signs of physics beyond the standard model so far
- Age of "easy discoveries" at the LHC has gone; sensitivity will grow with integrated luminosity, i.e. time!
- Only 1-2% of high-luminosity LHC dataset analyzed so far
- Change in analysis strategy:
 - Combinations
 - More specific final states
 - Sophisticated background suppression & signal identification
 - Difficult accessible signal phasespace
 - Unconventional signal models

Additional Material

<u>References</u>

Atlas public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> CMS public results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>