Cosmic ray anomalies: recent progress

Philipp Mertsch

Astroparticle Physics in Germany, Mainz 19 September 2018

Image: A math a math

= 990

Cosmic ray theory aims at ...

1 Explaining the locally observed flux

2 Modelling of diffuse backgrounds and application for dark matter searches

3 Defining their environmental effect

- Providing pressure support
- Driving Galactic winds
- Ionising interstellar medium

= nac

< □ > < 同 > < 回 > < Ξ > < Ξ

Cosmic ray theory aims at ...

1 Explaining the locally observed flux

AC®RWTH
B 🖁 DESY
BO®RUB
HD® MPIK

Mertsch & Vittino

Pohl *et al.*

Tjus et al.

Kirk & Giacinti

Ø Modelling of diffuse backgrounds and application for dark matter searches

Kraemer et al., Mertsch & Vittino

Pohl *et al.*

Kappl, Reinert & Winkler

Sigl et al.

3 Defining their environmental effect

- Providing pressure support
- Driving Galactic winds
- Ionising interstellar medium

Tjus et al.

Pfrommer et al.

• KA•KIT • M • TUM • M • MPE • Wü•UNI

de Boer & Gebauer et al., Unger et al.

Ibarra *et al.*

Strong et al.

Mannheim *et al.*

Image: A math a math

Locally observed fluxes

Philipp Mertsch (RWTH Aachen)

The transport equation

Ginzburg & Syrovatskii (1964)

JOC ELE

イロン イヨン イヨン イヨン

The transport equation

Ginzburg & Syrovatskii (1964)

$$\frac{\partial \psi_j}{\partial t} - \nabla \cdot \left(D_{xx} \cdot \nabla \psi_j - \mathbf{u} \psi_j \right) - \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_j - \frac{\partial}{\partial p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \psi_j - \frac{p}{3} \left(\nabla \cdot \mathbf{u} \right) \psi_j \right)$$
$$= q_j + \sum_{k \to i} \left(c\beta n_{\mathsf{gas}} \sigma_{k \to j} + \gamma \tau_{j \to i}^{-1} \right) \psi_k - \left(c\beta n_{\mathsf{gas}} \sigma_i + \gamma \tau_i^{-1} \right) \psi_j$$

Philipp Mertsch (RWTH Aachen)

Ways forward

Precision

- Secondary-to-primary ratios depend on:
- astrophysical parameters •
- useful for calibration
- cross-sections •
- \rightarrow need to (re-)measure

Anomalies

- Additional sources
- New dynamics
- Complete overhaul?

・ロト ・回ト ・ ヨト

Unger et al. (2018)

Outline

Positron excess

- **2** Gamma-ray anomalies
- 3 Break in the electron spectrum
- Oiscrepant hardening
- Spectral coincidences
- 6 Conclusion

三日 のへで

メロト メポト メヨト メヨ

Outline

Positron excess

- Ø Gamma-ray anomalies
- 3 Break in the electron spectrum
- Ø Discrepant hardening
- Spectral coincidences
- 6 Conclusion

The positron excess - recap

- Cosmic ray nuclei produce soft flux of e^{\pm} by spallation
- $\rightarrow\,$ Falling positron fraction

ъ

Image: A mathematical states and a mathem

The positron excess - recap

- Cosmic ray nuclei produce soft flux of e^\pm by spallation
- $\rightarrow\,$ Falling positron fraction
 - Rise above $\sim 7\,\text{GeV}$
- → Exotic contributions?

Interpretations:

Dark matter

- Leptophilic, strong boosts needed
- · Constraints from CMB and gamma-rays
- Can look for spectral structure?

Pulsars/pulsar wind nebulae

many free parameters:

- sources
- efficiency
- spectral index
- cut-off energies

Old supernova remnants

different species strongly correlated

< ロ > < 同 > < 三 > < 三

The positron excess - news

Abeysekara et al. (2017)

Testing the e^+ excess *in situ*

see also Hooper et al. (2017)

- HAWC has observed gamma-ray halo around Geminga
- $\rightarrow\,$ from $\mathrm{e}^{\pm}\,$ responsible for local $\mathrm{e}^{+}\,$ excess?
 - Can only fit angular profile if diffusion significantly suppressed

Image: A math a math

 \rightarrow Geminga cannot contribute locally

The positron excess - news

Abeysekara et al. (2017)

Testing the e⁺ excess *in situ*

see also Hooper et al. (2017)

- HAWC has observed gamma-ray halo around Geminga
- ightarrow from e^{\pm} responsible for local e^{+} excess?
- Can only fit angular profile if diffusion significantly suppressed
- \rightarrow Geminga cannot contribute locally

Dissent

Fang et al. (2018), Profumo et al. (2018), Hooper & Linden (2018)

- $\mathcal{O}(100)$ smaller than D_{xx} from B/C!
- Implies that no TeV e^\pm could be observed!

• • • • • • • • • • • •

• Significant contribution with usual D_{xx}

The Galactic centre excess

- removal of astrophysical emission: spatial and spectral template subtraction
- morphology: roughly spherical
- spectrum: log-parabola? power law?

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hooper & Goodenough (2009); Vitale & Morselli (2009); Hooper & Linden PRD (2011); Hooper & Goodenough PLB 2011; Boyarsky, Malyshev, Ruchayskiy PLB 705 (2011) 165; Abazajian & Kaplinghat PRD 2012; Macias & Gordon PRD 2014; Abazajian *et al.* PRD 2014; Daylan *et al.* 2014; Huang, Ensslin, Selig 2015; Carlson *et al.* 2015; Ajello *et al.* 2015; Casandjian Fermi Symp. 2014; de Boer *et al.* 2016; Macias *et al.* 2016; Ackermann *et al.* 2017

Dark matter interpretation?

Dark matter

- ~ thermal cross-section, $m_{\rm DM} \approx 10$ $({
 m b}{ar b})$ or 50 GeV $(\tau^+ \tau^-)$
- Fermi-LAT coll. finds excesses of similar size along Galactic plane
- ⇒ upper limits

Unresolved sources

Bartels et al. (2015, 2017, 2018), Lee et al. (2015)

- spectrum and morhpology also consistent with millisecond pulsars
- can constrain unresolved sources
 - with photon-count statistics
 - or wavelet analysis
- follow-up in radio?

Ackermann et al. 2017

Philipp Mertsch (RWTH Aachen)

Cosmic ray anomalies

Galactic centre - Fermi bubbles connection

Ackermann et al. 2017

- Need for a bubbles template closer to Galactic centre
- $\rightarrow\,$ Use uniformity of bubbles spectrum above and below $\pm 10^\circ$ latitude

- Bubbles connect to Galactic centre.
- @ Galactic centre excess significanlty suppressed.

< □ > < ^[] >

Fermi bubbles modelling PM & Petrosian (2018) .AC.RWTH

Is this a generic feature of models? \rightarrow probably not

Kinetic simulation of cosmic ray e^\pm in large-scale outflow:

Outline

Positron excess

- Ø Gamma-ray anomalies
- 3 Break in the electron spectrum
- Ø Discrepant hardening
- Spectral coincidences
- 6 Conclusion

Green's function

• Simplified transport equation for e^{\pm} spectral density ψ

$$rac{\partial \psi}{\partial t} -
abla \cdot \kappa \cdot
abla \psi + rac{\partial}{\partial p} \left(b(p) \psi
ight) = q(\mathbf{r}, E, t)$$

• Green's function $\psi(d, T, E)$, i.e. solution for

$$q(\mathbf{r}, E, t) = \delta(\mathbf{r} - \mathbf{r}_0)\delta(t - t_0)Q(p),$$

only depends on distance \boldsymbol{s} and age $\boldsymbol{\mathcal{T}}$

Green's function

• Simplified transport equation for e^{\pm} spectral density ψ

$$rac{\partial \psi}{\partial t} -
abla \cdot \kappa \cdot
abla \psi + rac{\partial}{\partial p} \left(b(p) \psi
ight) = q(\mathbf{r}, E, t)$$

• Green's function $\psi(d, T, E)$, i.e. solution for

$$q(\mathbf{r}, E, t) = \delta(\mathbf{r} - \mathbf{r}_0)\delta(t - t_0)Q(p),$$

only depends on distance \boldsymbol{s} and age $\boldsymbol{\mathcal{T}}$

Flux from a population of sources

consider ensemble of sources at distances \mathbf{r}_i and with ages t_i

Ignorance of \mathbf{r}_i and $t_i \Rightarrow$ cannot predict e^{\pm} spectrum

measure e^{\pm} spectrum \Rightarrow learn about \mathbf{r}_i and t_i

<ロ> (日) (日) (日) (日) (日)

ELE NOR

The TeV break

Kerszberg et al., ICRC 2017

Ambrosi et al. (2017)

- Is the TeV break compatible with a random ensemble of sources?
- Or is this a cooling break? Lipari (2018)
- Or due to dark matter annihilation?

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Jin, Yue, Zhang, Chen (2018)

A statistical model PM (2018) **AC RWTH**

- Contribution from source *i* to ϕ_k depends on distance s_i and age t_i
- \rightarrow Spectrum is a random vector: $\phi = \sum_{i} \phi^{i} = (\phi_{1}, \phi_{2}, \dots \phi_{N})^{T}$
 - Statistically characterised by joint distribution f(φ₁, φ₂, ... φ_N)

Applications

- **1** Likelihood of a model: evaluate $f(\hat{\phi}_1, \hat{\phi}_2, \dots \hat{\phi}_N)$ for measured $\hat{\phi}$
- **2** Extrapolate to higher energies: $f(\phi_{M+1}, \dots, \phi_N | \phi_1, \phi_2, \dots, \phi_M)$
- 3 Quickly generate samples from model, e.g. for forecasting

Image: A math a math

• Distribution of log-likelihoods in MC (source rate = $2 \times 10^4 \text{ Myr}^{-1}$):

三日 のへの

< □ > < 🗗 > < 🖹

• Distribution of log-likelihoods in MC (source rate = $2 \times 10^4 \text{ Myr}^{-1}$):

- Compare with log-likelihoods from H.E.S.S. broken power-law:
- Too little fluctuations!

Statistically disfavoured

Philipp Mertsch (RWTH Aachen)

-

• Distribution of log-likelihoods in MC (source rate = $2 \times 10^3 \text{ Myr}^{-1}$):

• Compare with log-likelihoods from H.E.S.S. broken power-law:

Statistically compatible

 $\rightarrow\,$ Spatial and temporal correlations between SN events?

I= nac

< □ > < ^[] >

Outline

Positron excess

- Ø Gamma-ray anomalies
- 3 Break in the electron spectrum
- Oiscrepant hardening
- **5** Spectral coincidences
- 6 Conclusion

Discrepant hardening I

1

- ∢ ≣ →

Discrepant hardening II

Philipp Mertsch (RWTH Aachen)

Discrepant hardening III

ELE NOR

イロト イヨト イヨト イヨ

Discrepant hardening III

・ロト ・回ト ・ ヨト

Discrepant hardening III

Source or transport?

- Can be distinguished by secondaries Vladimirov et al. (2012)
- · break in source spectrum: break in secondaries similar

Streaming instability and large-scale transport

Blasi, Amato, Serpico (2012); Aloisio and Blasi (2013); Aloisio, Blasi and Serpico (2015)

• Without CR feedback, recover $W(k) \propto k^{-5/3} \Rightarrow D_{zz}(p) \propto p^{1/3}$

< □ > < ^[] >

Streaming instability and large-scale transport

Blasi, Amato, Serpico (2012); Aloisio and Blasi (2013); Aloisio, Blasi and Serpico (2015)

- Without CR feedback, recover $W(k) \propto k^{-5/3} \Rightarrow D_{zz}(p) \propto p^{1/3}$
- self-generated turbulence on small scales, cascaded on large scales

・ロン ・四 と ・ ヨン ・ ヨン

Break in diffusion coefficient

- 2 contributions to turbulence power spectrum:
 - external turbulence (supernova remnants and winds)
 - self-generated turbulence
- \rightarrow break in D_{77}
 - can also include spatial dependences

Future

 extend to 2D Galaxy \rightarrow solve CR gradient problem?

Evoli et al. (2012)

Cerri, Vittino et al. (2017)

complicated B-field geometry

Outline

Positron excess

- Ø Gamma-ray anomalies
- 3 Break in the electron spectrum
- Ø Discrepant hardening
- Spectral coincidences
- 6 Conclusion

Spectral coincidences

- $\bullet\ p:$ accelerated in sources, diffusive losses
- e^- : (mostly) accelerated in sources, (mostly) radiative losses
- $\bar{\mathrm{p}}$: produced from p , diffusive losses
- e^+ : produced from p, mostly radiative losses

Yet, the $p,\ \bar{p}$ and e^+ spectra are markably similar!

A common source of e^+ and \bar{p} ?

Cowsik & Burch (2012); Cowsik & Madziwa-Nussinov (2016); Lipari (2016)

Nested leaky box model

Cowsik & Wilson (1973, 1975)

- 1 CRs are confined to a near source region: "cocoon"
- **2** rigidity-dependent escape from cocoon, $\tau_c \searrow \mathcal{R}$
- ${\scriptstyle ({\it S})}$ rigidity-independent escape from Galaxy $\tau_{\rm g} \sim {\rm constant}$
- \Rightarrow observed primary spectra \sim source spectra
- \Rightarrow secondary nuclei have contributions
 - from cocoon (softer than primaries)
 - from Galaxy (same as primaries)
- \Rightarrow \bar{p} and e⁺ have little contribution from cocoon

< □ > < 同 > < 回 > < Ξ > < Ξ

Nested leaky box model

Cowsik & Madziwa-Nussinov (2016)

- Iow, constant level of anisotropy
- \odot explains similar spectra of p, $ar{p}$ and e⁺
- $^{\odot}$ soft source spectra, even softer for e $^-$
- S break in B/C not observed

-

<ロト </p>

Conclusion

Cosmic ray anomalies point to ...

e.g. to explain TeV gamma-ray haloes and local positron flux

e.g. non-linear interplay between turbulence generation and transport

e.g. to explain spectral coincidences

・ロト ・回ト ・ ヨト

Backup

The data

Template fitting

- Linear combination of tracer maps: π^0 , inverse Compton, isotropic, pt sources
- Maximise likelihood \rightarrow derive spectra

三日 のへで

<ロ> (日) (日) (日) (日) (日)

Loop I

MC result, source rate = $2 \times 10^4 Myr^{-1}$

三日 のへの

・ロン ・回 と ・ ヨン・

MC result, source rate = 2×10^3 Myr⁻¹

三日 のへの

・ロト ・回ト ・ヨト ・

The problem with catalogues

Contributions from various regions for homogenous source density

→ Effect on flux? PM (2018); also Ahlers, PM, Sarkar (2010)

Philipp Mertsch (RWTH Aachen)

The problem with catalogues

Estimate error due to catalogue incompleteness with MC approach:

- Homogeneous density in disk
- Constant source rate $2 \times 10^4 \, \text{Myr}^{-1} \text{galaxy}^{-1}$

Image: A math a math

• Draw samples with and without nearby (< 1 kpc), old (> 0.1 Myr) sources

Underestimates low-energy flux by up to $\sim 25\,\%!\,$ PM (2018)

Extra source models

- Any hardening explained by superposition of $n \ge 2$ components:
- "known" sources \rightarrow any multimessenger evidence?
- statistical model: "myriad model"

Statistical ensemble of sources

- analyse distribution of fluxes at fixed energies
- stable distribution with power-law tails, non-Gaussian!
- likelihood of deviations from expectation value $\lesssim 10^{-5}$

ELE OQO

・ロト ・日下・ ・ ヨト・