Coherent elastic neutrino nucleus scattering: recent results and perspectives

Werner Maneschg

Max-Planck-Institut für Kernphysik, Heidelberg

Astroparticle Physics in Germany - Status and perspectives September 17-19, 2018, Universität Mainz

The Standard Model predicts six neutrino interactions with matter:

Five well established interactions:

The last detected interaction: Coherent elastic neutrino nucleus scattering (CEvNS)

coherent elastic neutrino nucleus scattering

- Predicted 1974 (D.Z.Freedmann, Phys. Rev. 9 (1974) 5), but eluded till 2017.
- Purely neutral current weak interaction, where a Z^0 is exchanged with nucleus; the cross section is enhanced: $\sigma_{\nu A}^{tot} \approx \frac{G_F^2}{4\pi^2} \cdot N^2 \cdot E_{\nu}^2$

 \rightarrow $\mathcal{O}(\sigma)$ ${\sim}10^2\text{--}10^3$ larger than IBD or $\nu\text{--e scattering}$

• Ideal probe to test SM and BSM predictions, but also important role in cosmology and astrophysics

CEvNS: detection challenges

Detector requirements:

- Cross section: $\sigma_{\nu A}^{tot} \propto E_{\nu}^2 \cdot N^2$
 - $\begin{array}{l} \rightarrow \text{ maximize } E_{\nu}, \text{ but coherency condition:} \\ E_{\nu} \leq \frac{1}{2R_A} \approx \frac{197}{2.5\sqrt[3]{A}} \ [\text{MeV}] \end{array}$

→ maximize N, but maximum recoil energy: $\langle E_{rec} \rangle = \frac{2}{3} \cdot \frac{E_{\nu}^2}{m_{\nu} \cdot 4}$

• Quenching of *E_{rec}* by 60-90% possible

Background mitigation:

- strong (anti-)neutrino sources located at surface
- detectors must be operated at shallow depths:
 - \rightarrow strong cosmogenic bg components
 - ightarrow neutrons correlated with source strength
- new shield design concepts ('virtual depth')

(Anti-)neutrino source requirements:

- High & variable (anti-)neutrino flux
- Ideal neutrino kinetic energy: few 1-10's MeV

B.Scholz et al., Phys. Rev. D 94, 122003 (2016)

(Anti-)neutrino sources for CEvNS detection

	1	II	111
parameter	π -DAR ν 's	reactor ν 's	natural ν 's
	(DAR=decay-at-rest)		(sol.,atm.,DSNB,SN)
ν flux, Φ_{ν}	$1{ imes}10^{15}/{ m s} ightarrow$	$2 \times 10^{20}/(s \cdot GW) \rightarrow$	$^{8}B:5 \times 10^{6}/(s \cdot cm^{2})$
	$2 \times 10^7 / (s \cdot cm^2)$	1×10 ¹³ /(s⋅cm ²)	$\text{DSNB:}\nu_e < 1.2/(\text{s}\cdot\text{cm}^2)$
	in 20 m dist.	in 15 m dist.	DSNB: $\bar{\nu}_e$ <70/(s·cm ²)
			$SN(10 kpc): 10^{12} cm^{-2}$
u variability	high, pulsed-beam	mediocre	steady-s./1 pulse (SN)
ν extension	small	small	diffuse
	1/R dep; ster. $ u$	1/R dep; ster. $ u$	no 1/R dep.
u flavor	$\nu_{\mu}, \nu_{e}, \overline{\nu_{\mu}}$	$\bar{\nu_e}$	$ar{ u}_{e}, u_{lpha}, ar{ u}_{\mu}$
ν ener., E_{ν}	<50 MeV	<8 MeV	⁸ B: <16 MeV
			DSNB: <100 MeV
			atm: <1 GeV
			$SN:\langle E \rangle \leq 25 MeV$
	cohdecoh. reg.	full coh. reg.	cohdecoh. reg.
location	access restr.	high access restr.	no restriction
background	shallow depth	shallow depth	deep undergr.
	neutrons, NIN	neutrons	few high-energy n

• π -DAR and reactor ν 's most appealing for SM and BSM physics due to high fluxes

• Natural sources: Next Gen. DM experiments will see CEvNS neutrino floor

< 1 k

CEvNS detection approaches: advantages and complementarities

Main sources: π -DAR vs. reactor

• *π*-DAR:

- \rightarrow take advantage of $\sigma \propto \textit{E}_{\nu}^2$
- \rightarrow detector threshold can be higher

• Reactor:

- \rightarrow For same distance more intense ν flux (10²-10³x higher)
- \rightarrow Full coherent regime

Coherency vs. decoherency

S. Kerman et al., Phys. Rev. D 93, 113006 (2016)

source	coh.	prob. <	$\alpha >$
	Ar	Ge	Xe
reactor $\bar{\nu}_e$	1.00	1.00	1.00
solar 8 B $ u_e$	0.99	0.99	0.98
π -DAR $ u_{\mu}$	0.91	0.86	0.80
π -DAR ν_e	0.89	0.83	0.76
$\pi ext{-}DAR\;ar{ u}_\mu$	0.85	0.79	0.71

ID	Experiment	Location	Dist.source	Mean E	Target	Mass
I	COHERENT	SNS, Oak Ridge	20-30 m	40 MeV	CsI, Ar	14.6kg/22kg
	COHERENT				Ge, Nal	10kg/2tons
П	CONUS ^{0,G}	Brokdorf:3.9GW	17 m	4 MeV	Ge	4kg
	TEXONO ^P	KuoSheng:2.9GW	25 m	4 MeV	Ge	1-2kg
	νGEN^{P}	Kalinin:3GW	10 m	4 MeV	Ge	1.6kg
	RED-100 ^P	Kalinin:3GW	25 m	4 MeV	Xe	100kg
	CONNIE	Angra:3.8GW	30 m	4 MeV	Si	$1g \rightarrow 100g$
	MINER ^P	TAMU:1 MW	2-3 m	4 MeV	Ge/Si	1kg
	Richochet A ^P	MIT R:5MW	4 m	4 MeV	Ge,Zn	5kg,5kg
	Richochet B ^P	Chooz:8.6GW	70-400 m	4 MeV	Ge,Zn	5kg,5kg
	Basket ^{<i>R</i>}	Chooz:8.6GW	70-400 m	4 MeV	Li2WO4	
	ν -CLEUS ^{P,G}	Chooz:8.6GW	70-100 m	4 MeV	$CaWO_4$,	$1g{ ightarrow}10$ kg
					AI_2O_3	$1g \rightarrow 10 kg$
111	XENONnT ^{P,G}	LNGS	15*10 ⁷ km	6 MeV	Xe	8tons
	PANDA-X ^P	CJPL	15*10 ⁷ km	6 MeV	Xe	4tons
	LUX-ZEP. ^P	SURF	15*10 ⁷ km	6 MeV	Xe	10tons
	DARWIN ^{<i>R</i>, G}	LNGS	15*10 ⁷ km	6 MeV	Xe	50tons

• Status: O=operational, P=in preparation, R=R&D phase

• Contributions from German institutes denoted with G

< A > <

э

The COHERENT experiment at SNS, Oak Ridge (USA)

π -DAR (anti-)neutrino production:

Description of COHERENT's approach:

- Multiple targets: Csl, Nal, Ar, Ge ($\rightarrow \sigma \propto N^2$)
- Distance from π-DAR: 20-30 m; overburden: 8 m w.e.
- Main bg: different types of neutron sources: →cosmic/ambient & beam-related (NIN):
- Data collection start:
 → 14.6 kg Csl(Na): Sept 2015;

- Pulsed-beam of low-energy protons (~GeV) hit heavy element target
- Multiple ν flavors, several 10's MeV
- Strong time correlation of prompt and delayed ν signals
 - \rightarrow bg suppression by 10^3-10^4 \times
- SNS: proton energy=1.0 GeV, repetition rate=60 Hz, pulse width=700 ns

COHERENT: First observation of CEvNS

Observation (published August 3, 2017):

- Dataset: 15 months of data with 14.6 kg of Csl(Na), in (16-50) MeV
- Observation: 6.7σ (above non-presence), 2D profile likelihood fit
- Number of events: (134 \pm 22) events observed, (173 \pm 48) predicted (within 1 σ)

Further COHERENT's plans (2018+):

- Explore N² dependency within 'Neutrino Alley':
 - \rightarrow 22 kg LAr: start early 2018; plans for 1 ton
 - ightarrow 10 kg PPC Ge: in prep.
 - \rightarrow 2 tons NaI(TI): in prep.
- Quenching meas.: for Ge and Nal; improve for Csl
- Neutron bg: meas. NIN in ⁵⁶Fe, ²⁰⁸Pb

The CONUS experiment at the NPP Brokdorf (GER)

Anti-neutrino production at a commercial reactor:

- Number of ν̄'s produced in β-decays of fission products from ²³⁵U, ²³⁹Pu, ²³⁸U and ²⁴¹Pu: ~6 ν's/fission
 →total flux: 2×10²⁰ s⁻¹GW⁻¹
 →available flux: 10⁵× higher than at a π-DAR source at similar distance
- Anti-neutrino energy up to 8 MeV
 - \rightarrow purely coherent regime
 - \rightarrow but: lower detector thresholds required

Parametr./Data: from P.Huber and N.Haag

Description of CONUS's approach:

- Target: PPC Ge detectors, total mass=4 kg (Reactor safety: Strong regulations to detector setup)
- Reactor: 3.9 GW (max), high duty cycle (time-resolved information available for CONUS)
- Distance from reactor core (orange): 17 m; overburden: 10-45 m w.e.
- Most troublesome bg: reactor-correlated neutrons: (neutron/γ meas. on/off site, in/outside shield)

CONUS: First results

First 'rate-only' analysis: (published June 8, 2018)

- Datasets: reactor OFF=114.4 kg·d; reactor ON= 112.3 kg·d
- Rate-only analysis: periods and number of events

period	counts
reactor ON	653
reactor OFF	582
diff: ON-OFF (exposure corr.)	84

 \rightarrow statistical significance: **2.4** σ (1st hint!)

Further CONUS's plans (2018+):

- Ongoing data collection: reactor ON tripled
- Ongoing analyses:
 - \rightarrow quantify systematics (detector + ν -flux)
 - ightarrow rate + shape analysis
 - ightarrow set up of background model
- Neutron bg: meas. with n/γ -spectrometer on-site

September 18, 2018

The ν -CLEUS project at the NPP Chooz (FRA)

Prototype detector:

- Technology: inspired by CRESST exp.
- Proof of principle:
 - AI_2O_3 cube of 0.5 g, operated at 10 mK
 - Achieved energy threshold: 20 eV
- Scalability:
 - usage large Si/Ge wafers for detectors
 - array fabrication with dicing after TES deposition

Description of *v*-CLEUS approach:

From prototype to demonstrator:

- Target: CaWO₄+Al₂O₃ (1.); Ge+Si wavers (2.)
 1.stage: demonstrator with mass~10 g
 2.stage: array with mass~1 kg
- Reactors: 2× 4.25 GW (max), high duty cycle
- 70-100 m dist. from reactor cores; overburden: <5 m w.e.
- Bg under study: muonic and neutronic bg

September 18, 2018

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

11/16

Dark matter 'neutrino floor':

- νA and νχ (WIMS's) produce similar nuclear recoils
 → CEvNS of solar (⁸B, hep), atm.
 & DSNB ν's: bg and signal
- Hypothetical disentanglement: directional detectors (solar ν's), annual modulation
- Timeline: Next Gen. LXe DM detectors will see 'CEvNS light' first.

XENONnT and DARWIN:

- Total mass: 8tons (X), 50tons (D)
- Expected shape of recoil spectrum:

source	expected rate
⁸ Β ν	X:~5/(20 ton×y)
	$D:\sim 100/(400 \text{ ton} \times y)$
CNO ν	D: 3σ in (200 ton \times y)
SN(10kpc)	X: \sim 10-100/(5 ton \times 100s)

- \rightarrow solar CEvNS rate low, but bg low
- → SN signal cmp. with large size LSc detectors; SNEWS (multi-messenger)

Physics potential from CEvNS detection and applications

W. Maneschg (MPIK)

CEvNS: recent results and perspectives

September 18, 2018

13/16

Non-standard-interactions in neutrino-quark sector:

•
$$\frac{d\sigma_{\nu A}}{d\Omega} \propto Q_W^2 \propto [N \cdot (1 + 2\epsilon_{\alpha\beta}^{uV} + 4\epsilon_{\alpha\beta}^{dV}) + Z \cdot ((4\sin^2\theta_W - 1) + 4\epsilon_{\alpha\beta}^{uV} + 2\epsilon_{\alpha\beta}^{dV})]^2$$

• Especially ϵ_{ee} and $\epsilon_{e\tau}$ not well constrained; In case of degeneracy, use of diff. isot. helps • $\epsilon \approx \frac{M_W^2}{M_{NSI}^2}$; If $\epsilon = 0.01$, than TeV scale (LHC!)

Sensitivity of CEvNS-based search for NSI:

 NSI results with π-DAR source: → 14.6 kg Csl detector at SNS

D. Akimov et al., Science 10.1126, aao0990 (2017)

NSI Parameter Limit	Source
$-1 < \epsilon_{ee}^{uL} < 0.3$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$-0.4 < \epsilon_{ee}^{uR} < 0.7$	
$-0.3 < \epsilon_{ee}^{dL} < 0.3$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$-0.6 < \epsilon_{ee}^{dR} < 0.5$	
$ \epsilon_{\mu\mu}^{uL} < 0.003$	NuTeV νN , $\bar{\nu}N$ scattering
$-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$	
$ \epsilon_{\mu\mu}^{dL} < 0.003$	NuTeV νN , $\bar{\nu}N$ scattering
$-0.008 < \varepsilon_{\mu\mu}^{dR} < 0.015$	
$ \varepsilon_{e\mu}^{uP} < 7.7 \times 10^{-4}$	$\mu \rightarrow e$ conversion on nuclei
$ \epsilon_{e\mu}^{dP} < 7.7 \times 10^{-4}$	$\mu \rightarrow e$ conversion on nuclei
$ \varepsilon_{e\tau}^{uP} < 0.5$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$ \varepsilon_{e\tau}^{dP} < 0.5$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$ \varepsilon_{\mu\tau}^{uP} < 0.05$	NuTeV νN , $\bar{\nu}N$ scattering
$ \epsilon_{\mu\tau}^{dP} < 0.05$	NuTeV νN , $\bar{\nu}N$ scattering

S. Davidson et al., JHEP 03 (2003) 011

- NSI prediction for reactor neutrinos:
 - \rightarrow Pro: form factor can be neglected

- Importance of CEvNS detection:
 - measurement of predicted rate: valuable per se
 - signal absence or any deviation: physics beyond SM
 - Many applications: DM bg & SN collapse model, EM neutrino properties, nuclear form factors, reactor safety
 - Instrumentation: dawn of kg-sized neutrino detectors
- Experimental status of CEvNS detection:
 - 1st observation at π -DAR in CsI by COHERENT coll. in 2017/08
 - 1st hint of observation at reactor site in Ge by CONUS coll. in 2018/06
 - few new results to be expected in 2018/2019
- Largest obstacles for detection of CEvNS:
 - detectors: achieve low threshold, stable operation
 - bg suppression: muonic (due to shallow depth), neutronic from source
 - systematics: quenching factor (few efforts by COHERENT ongoing);

 ν flux calculation (for both reactor and π -DAR ν sources)

- Germany's commitment in CEvNS detection:
 - reactor and DM experiments covered
 - opportunities at the European Spallation Source in Lund, SWE (2019/2023)
 - opportunities for theoretical studies (\rightarrow talk by W. Rodejohann)

A (10) < A (10) < A (10)</p>

Thank you for your attention !

э

Nuclear radius definitions and examples

from: R.Hofstädter, Ann.Rev.Nucl.Sci. 7 (1957) 231

π -DAR facilities worldwide (past, operational, near-future):

facility	location	proton energy	repetition rate	pulse width	Target
		[GeV]	[Hz]		
LAMPF ^p	USA	0.8	120	$600\mu s$	Various
ISIS ^p	U.K.	0.8	50	400 ns	Tantalum
SNS ^o	USA	1.0	60	700 ns	Mercury
MLF ^{o,nf}	Japan	3.0	25	120-200 ns	Mercury
CSNS ^{nf}	China	1.6	25	500 ns	Tungsten
ESS ^{nf}	Sweden	2.0	14	2 ms	Tungsten
2	\frown				

The **COHERENT** experiment at SNS: ← 'Neutrino alley'

CEvNS-based measurement of neutron form factors

Remarks about nuclear form factors:

- Diff. of scattering on extended/pointlike objects
- Fourier trans. of the nucleon density distributions:

$$F_{Z(N)}(Q^2) = \frac{1}{Z(N)} \int dr^3 e^{i\mathbf{q}\cdot\mathbf{r}} \rho_{Z(N)}(r)$$

$$\approx 1 - \frac{Q^2}{3!} \langle R_n^2 \rangle + \frac{Q^4}{5!} \langle R_n^4 \rangle - \dots$$

• $F_Z(Q^2)$ measurement via elastic ν -e scattering, $F_N(Q^2)$ via hadronic methods (e.g. n scattering) \rightarrow Extraction of $\rho_{Z(N)}$ requires theor. models

Model-independent ρ_N determination via CEvNS:

•
$$\frac{d\sigma_{\nu A}}{d\Omega} \propto Q_W^2 \cdot F^2(Q^2)$$
$$\propto [N \cdot F_N(Q^2) + (4sin^2\theta_W - 1) \cdot Z \cdot F_Z(Q^2)]^2$$
$$\propto N^2 \cdot F_N^2(Q^2)$$

- For reactor anti-neutrinos: $Q^2 \approx 0, \rightarrow F_N(Q^2) = 1$
- For π -DAR neutrinos: $Q^2 > 0, \rightarrow F_N(Q^2) < 1$ If syst. small, 2.& 4. momentum measurable

Example: 3.5 ton Ar, 16 m dist. at SNS, 1 yr exposure

G. McLaughlin, AIP Conf. Proc., 2015

September 18, 2018 16 / 16

Weak mixing angle:

•
$$\frac{d\sigma_{\nu A}}{d\Omega} \propto Q_W^2 \propto [N + Z \cdot ((4 \sin^2 \theta_W - 1))]^2$$

- Past measurements of $sin^2\theta_W$ and precision:
 - O (Q)=100 GeV: ±0.1% (1 σ)
 - O (Q)=0.001-10 GeV: ±1-few % (1 σ)
- Distortion at low Q due to BSM effects possible
- Q in CEvNS-based measurement at SNS/reactor: ~0.01-0.04 GeV
 → independent probe!

Sensitivity of CEvNS-based θ_W measurements at SNS/reactor:

- Stat. uncertainty: 1 kg Ge det. 20 m from 3 GW reactor with E_{rec}^{th} =0.4 keV, 50% efficiency and 1 yr exp. $\rightarrow \pm 1\%$ stat. uncer. on $sin^2\theta_W$
- Stat.+syst. uncer.: π-DAR at SNS: total uncertainty of ±10% on rate → total uncertainty of ±5% on sin²θ_W

 \rightarrow reduction of systematics crucial!

J.Erler, A.Freitas, PDG 2016, ch.10

T.S.Kosmas et al., Phys.Lett.B 750 (2015) 459-465

Sterile neutrino search:

- ν rate anomalies found by Gallium / ν -beam / short-baseline reactor exp.
- Preferred regime for sterile neutrino: $\Delta m_{14}^2 > 1 \text{ eV}^2$, $\sin^2(2\theta) \approx 0.1$
- Almost 10 new short baseline experiments start in 2016/2017: \rightarrow look for $1/(R+\epsilon)^2$ rate change; use vertex reco., segmentation, det. movement

source	distance	detector	det.channel	exp.site
$\bar{\nu}$'s/ ν 's radioact. s.	4-12 m	100 t LSc	IBD, ES ν_e -e	deep ug.
reactor $\bar{\nu}$'s	6-12 m	1t Gd-LS, Gd-PS	IBD	shallow d.
	6-12 m	1 t ⁶ Li-LS, ⁶ Li-PS	IBD	
reactor $\bar{\nu}$'s	2-10 m	100 kg Ge	CEvNS (flavor-blind)	shallow d.

Sensitivity of CEvNS-based measurement at reactor:

- Reactor: 1 MW-class TRIGA-type reactor: $\Phi_{\bar{\nu}} = 1.5 \times 10^{12} / (s \cdot cm^2)$ at 1 m distance
- Ge detectors: E_{rec}^{th} =0.01-0.1 keV
- Shield thickness around r.core: 2-3 m;
- Bg level: 100-1 cts/(kg·keV·d) below 1 keV at 2-10 m distance from r.core
- Exposure: few 100 to 1000 kg·yr

Other new physics: electromagnetic properties of neutrinos

Differential cross section at low energies in Minimal Extended SM:

•
$$(\frac{d\sigma}{dT})_{tot} = [(\frac{d\sigma}{dT})_{\nu A} + (\frac{d\sigma}{dT})_{\nu e}]_{WI} + [(\frac{d\sigma}{dT})_{\mu_{\nu}} + (\frac{d\sigma}{dT})_{q_{\nu}}]_{EM}$$

- Neutrino magnetic moment: $\left(\frac{d\sigma}{dT}\right)_{\mu_{\nu}} = \frac{\pi \alpha^2}{m_e^2} \cdot \left(\frac{\mu_{\nu}}{\mu_B}\right)^2 \cdot \left(\frac{1}{T} - \frac{1}{E_{\nu}}\right) \propto \frac{1}{T}$
- Neutrino millicharge: $\left(\frac{d\sigma}{dT}\right)_{q_{\nu}} = \frac{2\pi\alpha}{m_e^2} \cdot \frac{1}{m_eT^2} \cdot q_{\nu} \propto \frac{1}{T^2}$
- Theoretical expectation for a Dirac neutrino: $\mu_{\nu}^{D} \approx 10^{-19} \mu_{B}$

H.T.Wong et al., J. Phys. Conf. S. 39 (2006)

Direct experimental limits:

source	experiment	$\mu_{ u}$ lower limit (90% C.L.)
solar ν_e 's	Borexino	$<$ 5.4 \times 10 ⁻¹⁰ μ_B
"	Super-K	$< 1.1 \times 10^{-10} \mu_B$
reactor $\bar{\nu}_e$'s	GEMMA	$<2.9 \times 10^{-11} \mu_B$
"	Texono	$<7.4 \times 10^{-11} \mu_B$
"	MUNU	$< 9.0 \times 10^{-11} \mu_B$

 \rightarrow **BUT**: Sensitivity scales with: $\mu_{\nu} \propto \frac{1}{\sqrt{N}} \cdot [\frac{B}{M \cdot t}]^{1/4}$

W. Maneschg (MPIK)

September 18, 2018 16 / 16

Stellar core collapse supernova: $M_{star} > 9 M_{sun}$

- Evolution up to stellar collapse:
 - nuclear fusion up to iron: no net energy \rightarrow only electrons degeneracy pressure
 - for iron core mass > Chandrasekhar limit (1.3 M_{sun}), the star collapses
- Evolution during stellar collapse:

- iron core shrinks up to reaching nuclear density: strong interaction + neutron degeneracy prevents further collapse \rightarrow outgoing shock waves

- ν 's carry away 99% of gravitational binding energy (10⁵³ erg)
- CEvNS interactions of ν 's in Fe+Ni layers highly probable: opacity for ν : \mathcal{O} (λ_{ν})=1 km
- \rightarrow Influence on ν transport / ν radiation pressure \rightarrow Impact on light curve evolution

Credit: TeraScale Supernova Initiative

Neutrinos from a 10 kpc distant supernova (SN)

(Expected rate in our galaxy: 1 every 30 yr)

- SN detection via neutrino interactions excluding CEvNS:
 - Cherenkov and liquid scintillator detectors: IceCube (G2), Super-K (Hyper-K), LVD, BOREXINO, JUNO, Reno-50, KamLAND
 - Examples of expected neutrino fluence rates: Super-K: 50 kton $\rightarrow 10^3\text{--}10^4$ Borexino: 300 ton \rightarrow few 10^2's
- SN detection via CEvNS portal using DM detectors:
 - XENON: 1-5 tons \rightarrow few 10's to few 10^2 's

Reactor monitoring / non-proliferation of fissile products

Typical reactor cycle at Kuo-Sheng Nuclear Power Station in Taiwan

H.T.Wong et al. (TEXONO collaboration), Phys.Rev.D 75, 012001

Difference of neutrino spectrum from 235U and 239Pu

W. Maneschg (MPIK)

CEvNS: recent results and perspectives

September 18, 2018