

New Results from GERDA

Matteo Agostini for the GERDA Collaboration

Technical University of Munich (TUM)

Astroparticle Physics in Germany, Set 17-19 2018, Mainz

Neutrinoless Double- β Decay

Hypothetical nuclear transition:

- foreseen by many extensions of the SM
- ➤ 2 leptons created from pure energy → matter creation
- > possible only if neutrinos are Majorana particles

Minimal SM extension - 3 massive Majorana neutrinos:

- > probability proportional to $\overline{m_{\beta\beta}}(\theta_{12}, \theta_{13}, m_1, m_2, m_3, \alpha_1, \alpha_2)$
- > interplay with oscillation experiments $\rightarrow m_{BB}$ > 17 meV for IO
- interplay with neutrino direct mass searches and cosmology

Neutrinoless Double-eta Decay

Hypothetical nuclear transition:

- foreseen by many extensions of the SM
- ➤ 2 leptons created from pure energy → matter creation
- > possible only if neutrinos are Majorana particles

GERDA Detection Strategy

Search for $0\nu\beta\beta$ decay of $^{76}Ge \rightarrow ^{76}Se + 2e^{-1}$

Semiconductor Ge detectors (87% ⁷⁶Ge):

- > source = detector \rightarrow
- ➤ radio-pure
- > high density
- > semiconductor

- high efficiency
 no intrinsic backar
 - no intrinsic background
- → e⁻ absorbed in ~1 mm
- → $\Delta E < 0.1\%$ at $Q_{\beta\beta}$

Ονββ signature:

- point-like event in bulk volume
- sharp energy peak at 2039 keV(FWHM = 3-4 keV)

Ge detector as time-projection chambers:

> $0v\beta\beta$ events + single site interactions in bulk volume

HPGe detector as time-projection chambers:

> $0v\beta\beta$ events \rightarrow single site interactions in bulk volume

HPGe detector as time-projection chambers:

- > $0\nu\beta\beta$ events + single site interactions in bulk volume
- $\rightarrow \underline{\gamma} \underline{rays} \rightarrow \underline{multiple Compton scattering}$

HPGe detector as time-projection chambers:

- > $0\nu\beta\beta$ events + single site interactions in bulk volume
- $\rightarrow \underline{\gamma} \underline{rays} \qquad \rightarrow \underline{multiple Compton scattering}$

HPGe detector as time-projection chambers:

- $0v\beta\beta$ events \rightarrow single site interactions in bulk volume
 - → multiple Compton scattering
- \succ <u>*α*/β-rays</u> → surface events

 \succ

 γ -rays

HPGe detector as time-projection chambers:

- > $0\nu\beta\beta$ events + single site interactions in bulk volume
- \succ γ -rays \rightarrow multiple Compton scattering
- \succ *α*/β-rays → surface events

Liquid Argon (LAr):

- keep detectors at operational temperature
- > ultrapure shield against radioactivity
- > active veto against backgrounds releasing energy in LAr

Detectors mounting:

- > low mass holders
- contacting with wire bonding

Array deployed in Dec 2015:

- > 7 strings / 40 detectors
- > 30 enriched BEGe (20 kg)
- > 7 enriched Coax (15.6 kg)
- 3 natural Coax (7.6 kg)

LAr scintillation detection:

- > 16 PMTs (9 top / 7 btm)
- ~1 km fibers with WLS + 90 SiPMs
- nylon mini-shroud around each string coated with WLS

100

Phase II Data Taking

- ➤ Dec 2015 → Apr 2018: 835 d live time
- > 93% duty cycle

- Phase II Exposure: 59 kg yr
- Phase I + Phase II: 82 kg yr

Energy Scale

- Weekly calibration with Th-228 sources
- Fluctuations between calibrations <1 keV</p>
- Resolution at Q_{ββ} better than 0.1%
 (3-4 keV FWHM)

The Background Before Analysis Cuts

- > α -decays from ²¹⁰Po and ²²²Rn (surface events on p+ electrode)
- > β -decays from ⁴²K in the LAr (surface events on n+ electrode)
- γ-decays from ²²⁸Th & ²¹⁴Bi in cables & holders & electronics M. Agostini (TU Munich)

Pulse Shape Discrimination

a from ²¹⁰Po

 $0\nu\beta\beta$ efficiency $\rightarrow \epsilon_{BEGe} = (87.6+2.5)\%$ $\epsilon_{coax} = (71.2+4.3)\%$

LAr Scintillation Anti-Coincidence

Active Background Suppression

PSD: α/β background suppressed by a factor 100 PSD+LAr: γ background suppression by a factor 6-200

Active Background Suppression

PSD: α/β background suppressed by a factor 100 PSD+LAr: γ background suppression by a factor 6-200

Active Background Suppression

 $0\nu\beta\beta$ experiment with the lowest background in the ROI!

Statistical Analysis

Phase I & II combined fit:

- frequentist unbinned likelihood
- simultaneous fit of 7 data sets
- best fit for no 0vββ signal
- ➤ T_{1/2} > 0.9 10²⁶ yr (90% C.L.)
- sensitivity T_{1/2} > 1.1 10²⁶ yr
- \succ $m_{\beta\beta}^{} < (0.11 0.25) \text{ eV}$

High Resolution & Background Free 1 count at $Q_{\beta\beta} \rightarrow -2$ sigma signal

Implications for Neutrino Physics

 \succ

- Degenerate Majorana masses probed!
- Next target inverted ordering band

0vββ searches, cosmological surveys and direct mass measurements give complementary information!

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

New project built on GERDA and MAJORANA:

- ➢ GERDA → LAr veto system
- ➤ MAJORANA → low background material
 - → front-end electronics

Staged approach:

- ≻ L200
- → 200 kg mass in GERDA infrastructure
 - \rightarrow anticipated background < 2 10⁻⁴ cts/keV/kg/yr
 - → discovery power up to $T_{1/2} \sim 10^{27}$
- ► L1000 → 1000 kg mass in new setup (TBD)
 - → discovery power up to $T_{1/2} \sim 10^{28}$

Funding for L200 largely secured! Construction in 2020 Commissiong in 2021

Outlook

GERDA: high-resolution & background-free search for $0\nu\beta\beta$ in ⁷⁶Ge:

 $BI = 6 \ 10^{-4} \ cts / (keV \ kg \ yr)$

 $\Delta E < 0.1\%$ at $Q_{_{\beta\beta}}$

GERDA probed $T_{1/2}$ values at the 10^{25} yr scale. Pioneering exploration of the 10^{26} yr scale!

GERDA keeps taking data. LEGEND-200 is in preparation to reach $T_{1/2} \sim 10^{27}$ yr and beyond

The GERDA Collaboration

Backup slides

A portal to Physics beyond the Standard Model

[[]Faessler et al, PRD, 83, 11 (2011), 113003]

A portal to Physics beyond the Standard Model

The rate of the process $(1/T_{1/2})$ is proportional to the coherent sum of all mechanisms involved:

hal to
ed:
$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(Q, Z) \cdot \left|\sum_{\text{mech. }i} \mathcal{M}_i \cdot \eta_i\right|^2$$
 Mechanism
Phase Space Factor Nuclear Matrix Element

Sensitivity to new Physics is proportional to the sensitivity to $T_{1/2}$:

- > $T_{1/2}$ is for $0\nu\beta\beta$ decay what \sqrt{s} is for LHC
- > It would be interesting to factorize NME into two contributions:
 - > *NME*_{state}: initial/final nuclear state
 - > NME_{prop} : propagator and diagram
- > F.O.M. to compare experiments: $\sqrt{(T_{1/2} G^{0v} NME_{state}^2)}$

$0v\beta\beta$ and the Origin of Neutrino Masses

Independently from underlying physics: if $0\nu\beta\beta$ decay exists, neutrinos are Majorana particle!

Black Box theorem:

 $0\nu\beta\beta$ operator can be rearranged to produce a neutrino/antineutrino oscillation (i.e. a Majorana mass term)

[Schechter, Valle, PRD 25 (1982) 2951]

Note: bulk of neutrino mass not given by $0\nu\beta\beta$ operator

[Duerr et al., JHEP 1106 091,2011]

n

n

 ν_e

Neutrino Mass Observables

Cosmology (Planck, Euclid)

sum of neutrinos masses

Beta-decay kinematic (KATRIN) electron neutrino mass

- Degenerate Majorana masses probed!
- Next target inverted ordering band

> $0\nu\beta\beta$ searches, cosmological surveys and direct mass measurements give complementary information!

Probability Density from Global Fits

In absence of neutrino mass mechanisms or flavour symmetries that fix the value of the Majorana phases or drive $m_{lightest}$ to zero, the probability distribution for $m_{\beta\beta}$ is pushed to large values:

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

Flat prior for the Majorana phases \rightarrow small $m_{\beta\beta}$ values require a fine tuning of the parameters

Probability density from global fits

- > data in the analysis: oscillations + $0\nu\beta\beta$ + (cosmology)
- bands shows deformation due to NME uncertainty
- > $0v\beta\beta$ constraints on $m_{lightest}$ competitive with cosmology

Bulk of probability at reach with next generation experiments

[M.A., G Benato and J A Detwiler, Phys. Rev. D 96, 053001 (2017)] see also [A Caldwell et al, Phys.Rev. D96 (2017) no.7, 073001]

[King, Merle, Stuart, JHEP 1312, 005 (2013)] [**M.A.**, Merle, Zuber EPJ C76 (2016) no.4, 176]

Flavour Models

3-neutrino framework extended with additional finite symmetry groups to explain the values of mixing angles and mass eigenstates:

- new correlations between observables
 (sum rules) schrink range allowed for m_{ββ}
- some models will be probed with early stages of the next-generation experiments

3+1 Models

Adding a sterile neutrino changes dramatically the parameter space of interest. Current experiments are testing the IO horizontal band!

[[]W Rodejohann, Int.J.Mod.Phys. E20(2011)]

Signal and Background rates

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

$$N_{0
uetaeta} = \ln 2 \cdot arepsilon \cdot N_{atoms} \cdot rac{t}{\mathcal{T}_{1/2}^{0
u}}$$

 $T_{1/2} = 10^{25} \text{ yr} \implies O(1) \text{ event / (10 kg yr)}$ $T_{1/2} = 10^{26} \text{ yr} \implies O(1) \text{ event / (100 kg yr)}$ $T_{1/2} = 10^{27} \text{ yr} \implies O(1) \text{ event / (1 t yr)}$ $T_{1/2} = 10^{28} \text{ yr} \implies O(1) \text{ event / (10 t yr)}$

For a discovery, background rate in ROI $(Q_{\beta\beta} \pm 1-2 \sigma)$ must be similar to signal rate

Signal Extraction and background shape uncertainty

KamLAND-Zen: O(10) cts/ROI + complex shape

M. Agostini (TU Munich)

GERDA: O(0.1) cts/ROI + simple shape

CUORE: O(10) cts/ROI + simple shape

Sensitivity

- Ge experiments pursue a staged approach. Each stage as background level and exposure goals such to be background free
- Xe experiments reduce the background by self-shielding.
 Development along a clear direction with the attempt to get background free (helps for discovery)
- Sensitivity does not take into account the uncertainty/reliability of the signal extraction

[M.A., G Benato and J A Detwiler, PRD 96, 053001 (2017)]

Active Background Suppression - PSD

Expected suppression factors at Q_{RR}:

- ~ 100 for a from 210 Po
- ~ 2 for γ from ²⁰⁸Tl/²¹⁴Bi
- ~ 100 for β from 42 K