

Creation of elements

European Research Council Established by the European Commission

Bundesministerium für Bildung und Forschung

1 H																	2 He	
3 Li	4 Be													7 N	8 0	9 F	10 Ne	
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo	
119 Uun																		
* Lanthanides			des	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
** Actinides			des	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Stars build elements up to iron group

Hydrostatic burning stages Final stage: iron core No more energy gain from fusion

Massive stars: 8 M $_{\odot}$ < M \lesssim 70 M $_{\odot}$ (M $_{\odot}$ =1.99 × 10³⁰ kg)

Η

He

Ne

S

Fe

energy source during a star's life produces elements up to iron

Connecting Quarks with the COSMOS

Eleven Science Questions for the New Century

NATIONAL RESEARCH COUNCE

How were the elements from iron to uranium made?

		31 Ga	32 Ge	33 As	34 Se	<mark>35</mark> Br	<mark>36</mark> Kr
7	48	49	50	51	52	53	<mark>54</mark>
9	Cd	In	Sn	Sb	Te	I	Xe
r	<mark>80</mark>	81	82	83	84	85	<mark>86</mark>
S	Hg	TI	Pb	Bi	Po	At	Rn
1	112	113	114	115	116	117	118
g	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo

64	65	66	67	68	69	70	71
Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
96	97	98	99	100	101	102	103
Cm	Bk	Cf	Es	Fm	Md	No	Lr

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

Contribution of all nucleosynthesis processes

s-process and r-process

slow and rapid neutron capture compared to beta decay

figure: J. Lippuner

closed neutron shell

Galactic chemical evolution

Fingerprint of the r-process

Oldest observed stars

Solar system abundances

HE 1523-0901: Frebel et al. (2007)

Where does the r-process occur?

rapid process \rightarrow explosions high neutron densities \rightarrow neutron stars

Core-collapse supernovae

Neutron star mergers

GW170817

LIGO-LIVINGSTON OBSERVATORY

LIGO-HANFORD OBSERVATORY

Credit: LISO Hanford

VIRGO AT CASCINA, ITALY

Multimessenger

Kilonova

R-process in neutron star mergers confirmed by kilonova (radioactive decay of n-rich nuclei) after gravitational wave detection from GW170817

Li & Paczynski (1998)

Neutron star mergers

Ejecta and nucleosynthesis

Neutron star mergers: neutrino-driven wind

3D simulations after merger disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

Martin et al. (2015)

see also

Fernandez & Metzger 2013, Metzger & Fernandez 2014, Just et al. 2014, Sekiguchi et al.

Kilonova

Martin et al. (2015)

Equation of state and neutrinos

GR simulations: different EoS (Bovard et al. 2017) impact of neutrinos (Martin et al. 2018)

Connecting Quarks with the COSMOS

Eleven Science Questions for the New Century

How were the elements from iron to uranium made?

R-process in neutron star mergers

Are we done? No

- GCE points to more contributions
- Nuclear physics of extreme neutron-rich nuclei

Core-collapse supernovae

Standard **neutrino-driven supernova**: Weak r-process and vp-process Elements up to ~Ag

Origin of elements from Sr to Ag

Core-collapse supernovae

Standard **neutrino-driven supernova**: Weak r-process and vp-process Elements up to ~Ag

Magneto-rotational supernovae

Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006)

2D and 3D + parametric neutrino treatment :

- jet-like explosion: heavy r-process
- magnetic field vs. neutrinos: weak r-process

Nishimura et al. 2015, 2017, Winteler et al. 2012, Mösta et al. 2018

Magneto-rotational supernovae: r-process

Neutrinos and late evolution are important Martin Obergaulinger: 2D, M1, ~1-2s Progenitor: 35 M_{sun}

Obergaulinger & Aloy (2017)

Impact of rotation and magnetic field

RO: progenitor RRW: weak mag. field strong rot. RW: weak mag. field RS: strong mag. field

Reichert, Obergaulinger, Aloy, Arcones (in prep)

Nuclear physics input

nuclear masses, beta decay, reaction rates (neutron capture), fission

Erler et al. (2012)

Nuclear masses

Abundances based on density functional theory

- six sets of different parametrisation (Erler et al. 2012)
- two realistic astrophysical scenarios: jet-like sn and neutron star mergers

Martin, Arcones, Nazarewicz, Olsen (2016)

First systematic uncertainty band for r-process abundances

Uncertainty band depends on A, in contrast to homogeneous band for all A e.g., Mumpower et al. 2015

Can we link masses to r-process abundances?

Two neutron separation energy: abundances

Fission: barriers and yield distributions

Neutron star mergers: r-process with two fission descriptions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures

Conclusions

Core-collapse supernovae: wind: up to ~Ag Magneto-rot.: r-process

r-process path