Nuclear Astrophysics:

Nucleosynthesis and Chemical Evolution Studies

Astroparticle Physics in Germany: Status and Perspectives

Mainz, 19.09.2018

Daniel Bemmerer

Nuclear Astrophysics: The creation of the chemical elements

Connections to astroparticle physics:

- Big Bang nucleosynthesis
- Solar neutrino fluxes
- Cosmic-ray cross sections
- r-process in explosive events

Experimental techniques

- Underground physics
- γ-ray satellites
- Radioactive (ion) beams

Nuclear Astrophysics: The production of the chemical elements

Mitglied der Helmholtz-Gemeinschaft

Hydrogen burning

Mitglied der Helmholtz-Gemeinschaft

LUNA = Laboratory Underground for Nuclear Astrophysics

LUNA @ Gran Sasso

- Italy
- Germany (HZDR)
- UK
- Hungary

at or near the relevant energies (= Gamow peak), using

- low background
- great patience

Mitglied der Helmholtz-Gemeinschaft

²²Ne(p, γ)²³Na, part of the H-burning NeNa cycle

F. Cavanna *et al.* (LUNA) Phys. Rev. Lett. 115, 252501 (2015)

D. Bemmerer *et al.* (LUNA) Europhys. Lett. 122, 52001 (2018)

Three new resonances discovered!

F. Ferraro *et al.* (LUNA) Phys. Rev. Lett., submitted

Two old resonances ruled out!

 $^{22}Ne(p,\gamma)^{23}Na$ and the Na – O anticorrelation

Daniel Bemmerer | Nuclear Astrophysics | Astroparticle Physics in Germany | Mainz, 19.09.2018 | http://www.hzdr.de

$^{17}O(p,\alpha)^{14}N$, low-energy resonance and its consequences

10

2× higher thermonuclear reaction rate leads to better explanation of oxygen abundance patterns in meteoritic grains.

Mitglied der Helmholtz-Gemeinschaft

20

On-resonance (71.5 keV)

Off-resonance (65 keV)

¹⁸O(p, α)¹⁵N, yet another poorly known low-energy resonance

C. G. Bruno *et al.* (LUNA), preliminary

DRESDEN concept

Mitglied der Helmholtz-Gemeinschaft

Big bang nucleosynthesis

Mitglied der Helmholtz-Gemeinschaft

Cosmology and ²H

Blue band: ²H Green circle: CMB (Planck 2015) Red circle: ²H and CMB combined

- Highly precise measurement of primordial ²H abundance to ~1% (R. Cooke 2014 ff.)
- Predicted ²H abundance limited by nuclear physics of the ²H(p,γ)³He reaction.

Mitglied der Helmholtz-Gemeinschaft

Cosmology and ²H: The ²H(p,γ)³He cross section

Mitglied der Helmholtz-Gemeinschaft

Cosmology and ²H: The ²H(p,γ)³He cross section

⁷Li cosmology – and solar ⁷Be neutrinos: ³He(α , γ)⁷Be

Steffen Turkat's PhD project, TU Dresden

Mitglied der Helmholtz-Gemeinschaft

Carbon burning

¹²C+¹²C fusion studied by the Trojan Horse method, ¹²C+¹⁴N

Mitglied der Helmholtz-Gemeinschaft

The production of the chemical elements

Mitglied der Helmholtz-Gemeinschaft

New experimental facilities with strong impact on the field

LUNA-MV Italy

H, He, C burning s-process neutron sources

FAIR Darmstadt r-process,

s-process

FRANZ Frankfurt s-process

Felsenkeller Dresden

Solar fusion He burning

New LUNA-MV 3.5 MV accelerator for ¹H, ⁴He, ¹²C beams: Installation in LNGS hall B from spring 2019

Slide 20

Mitglied der Helmholtz-Gemeinschaft

LUNA MV- scientific program (2019 \rightarrow 2024)

Commissioning measurement: ${}^{14}N(p,\gamma){}^{15}O$. High scientific interest for revised data covering a wide energy range (400 keV- 3.5 MeV).

 $^{12}C+^{12}C$: solid state target. Gamma and particle detection.

¹³ $C(\alpha,n)^{16}O$: enriched ¹³C solid or gas target. Data taking at LUNA 400 kV in 2017-2019.

²²Ne(α ,n)²⁵Mg: enriched ²²Ne gas target.

Next steps (not before 2024...):

¹² $C(\alpha,\gamma)^{16}O$: ¹²C solid target depleted in ¹³C and alpha beam or α jet gas target and ¹²C beam.

5 MV Pelletron in Felsenkeller Dresden, to start late 2018

Mitglied der Helmholtz-Gemeinschaft

Installations under commissioning at Felsenkeller

Joint effort HZDR - TU Dresden

- HZDR: 5 MV Pelletron, 50 µA beams of ¹H⁺, ⁴He⁺ (single-ended), ¹²C⁺ (tandem)
- TU Dresden: 150% ultra-low-background HPGe detector for offline γ-counting

Two measurement bunkers made of low-activity concrete

Counting room (at the Earth's surface, with daylight!)

Felsenkeller, scientific program and access

In-house research by HZDR and TU Dresden

- Complementary to LUNA-MV program for 2019-2023
- ³He(α,γ)⁷Be, ¹²C(α,γ)¹⁶O

Open as a facility to any scientific users worldwide, no cost for beam time.

User selection based on the recommendations of an independent scientific advisory board

COST action ChETEK [ketek] on Nuclear Astrophysics

EUROPEAN COOPERATION

IN SCIENCE & TECHNOLOGY

Chemical Elements as Tracers of the Evolution of the Cosmos

A network to bring European research, science and business together to further our understanding of the early universe

http://www.chetec.eu

- ~150 k€/year 2017-2021
- 30 European countries

Meetings:

- Conference on "Nuclear Physics of Stellar Explosions", Debrecen/ HU 12-14 September
- School on Software Tools for Simulations in Nuclear Astrophysics, Hull/UK 17-19 September

Chair:

 Raphael Hirschi, Keele University/UK

55th Karpacz Winter School of Theoretical Physics and 'ChETEC' COST Action Training School

Nuclear Astrophysics in the Multi-Messenger Era

www.ift.uni.wroc.pl/~karp55

Nuclear Astrophysics: Some general remarks

Very active field at the intersection of

- Astrophysics
- Astronomy
- Nuclear physics

Europe plays a dominating role, and Germany plays a strong role

- Nuclei in the Cosmos conference (even years) every other time in Europe, 200-300 p.
- Nuclear Physics in Astrophysics conference (odd years) always in Europe, 200-300 p.
- 30 groups at German community meeting (November 2016)

Funding-wise in Germany at the intersection of

- BMBF KHuK, KAT, RDS
- DFG
- Helmholtz (Nuclear Astrophysics Virtual Institute, 2011-2016)

Mitglied der Helmholtz-Gemeinschaft

Nuclear Astrophysics: Summary

Strong links to astroparticle physics

- Big Bang nucleosynthesis
- Solar neutrino fluxes
- Cosmic-ray cross sections
- r-process in explosive events

Experimental facilities with German involvement

- LUNA 0.4 MV actively producing data
- LUNA-MV 3.5 MV at Gran Sasso, to be installed in 2019
- Felsenkeller 5 MV accelerator Dresden from late 2018 Deepest underground lab in Germany.
- FRANZ Uni Frankfurt, to open soon
- FAIR Darmstadt

Mitglied der Helmholtz-Gemeinschaft

Felsenkeller, muon flux measurement

Felsenkeller, neutron flux measurement

- 25 × to 180 × lower neutron flux than at the Earth's surface
- Flux depends on local shielding
- Neutron data informed the construction project

	BELEN ³ He counters [10 ⁻⁴ cm ⁻² s ⁻¹]
Tunnel	2.07 ± 0.07
Pb+Fe bunker	4.56 ± 0.16
Rock bunker	0.66 ± 0.04
Above ground	(121)

Mitglied der Helmholtz-Gemeinschaft