The XENON Dark Matter Project **Current Status and Future** Prospects

Constanze Hasterok *For the XENON Collaboration* MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

Astroparticle Physics in Germany 18.09.2018

Direct Detection

XENON, LUX, DEAP, CDMS, PICO, DAMA ...

nd

ctio

Production It Colliders

ATLAS, CMS, ...

18.09.2018

Constanze Hasterok (MPIK)

Fermi, Ice Cube, AMS,...

OGV XENON Dark Matter Project

The dual-phase TPC Technology X E N C Derk Matter Pr

- Light from prompt scintillation (S1) and ionization (S2)
- 3D position reconstruction
- Background discrimination

The XENON Collaboration

Laboratoi Nazonali del Gran Sasso (LNGS), Italy

~170 scientists from 27 institutions

Purdue

Coimbra

Subatech

LPNHE

LAL

Bologna LNGS Torino Napoli

Weizmann

NYUAD

The XENON Story

XENON10

XENON100

XENON1T

XENONnT

18.09.2018

Scaling up the Fiducial Mass

XENON1T

The XENON1T Infrastructure

XENON1T Science Data

More than one calendar year of stable data taking and still ongoing

SR0 - 34 live days

SR1 - 247 live days

18.09.2018

Background Composition

- Electronic recoils (68% in reference region)
- Nuclear recoils (23% in reference region)
- PTFE Surface events (4% in reference region)
- Accidental coincidences
 (5% in reference region)

X E N O N Dark Matter Project

Electronic Recoil Background

Controlled by:

- Screening of materials during detector construction
- ²²²Rn emanation measurements of materials
- Cryogenic distillation of Krypton
- Fiducial volume selection

Nuclear Recoil Background

Controlled by:

- 3600 m.w.e rock overburden
- Water Cherenkov Muon Veto
- Screening of materials during detector construction
- Fiducial volume selection
- Single scatter requirement
- Total expected rate (NR_{tot}): ~ 0.6 evts/(t·y)

Source	Fraction of NR _{tot} [%] in 1T FV, (4-40)keV
Radiogenic neutrons	96.5
CEvNS	2.0
Muon-induced neutrons	< 2.0

18.09.2018

Event Distribution/Interpretation

- SR0 data re-analysis (32.13 d) + SR1 data (246.74 d): <u>278 live days</u>
- Blind analysis
- Results interpreted with unbinned profile likelihood analysis in (S1,S2,R) space + segmentation of Z space into two bins
- Piecharts indicate the relative PDF from the best-fit of a 200 GeV/c² WIMP with cross-section of 4.4x10⁻⁴⁷cm²

XENON1T Dark Matter Search Result

- Most stringent limit on SI WIMP-nucleon interactions with $m_{\chi} > 6 \text{ GeV}$
- Minimum: 4.1x10⁻⁴⁷ cm² for a WIMP of 30 GeV/c²
- Factor 7 better sensitivity compared to other LXe TPCs
- Phys. Rev. Lett. 121, 111302 (2018) → Editors Suggestion

18.09.2018

Upgrade XENONnT

18.09.2018

XENONnT Strategy

Minimal Upgrade Fiducial LXe Target

- Re-use XENON1T infrastructure
- Only exchange TPC
- Total LXe: 8 tons
- Fiducial mass: ~4 tons

Background

 Reduce ²²²Rn induced backgrounds by a factor of ~10

Fast Turnaround

 XENONnT commissioning in 2019

New Features of XENONnT

New TPC

- PMT number increased
 To achieve fast from 248 to 494 → Almost finished testing additional tubes
- Length: ~1.5 m Diameter: ~1.3 m

LXe-Purification

- cleaning of the large LXe volume (5L/min LXe, 2500 SLPM)
- GXe purification (120 SLPM)

Radon-Distillation Collumn

 High throughput of 200 SLPM to extract Rn from **TPC** and remove from LXe

Neutron Veto

- Gd in the Water tank: 0.5% of $Gd_2(SO_4)_3$
- 120 PMTs 8-inch PMTs (sames as for Muon-Veto)

Poster X1

18.09.2018

Mitigation of 222Rn Backgrounds

Achievements towards XENONnT

Radon Reduction:

Poster X2

- SR1: (11.8±0.2) μBq/kg
- New radon-free pump (EPJ C 78 (2018) 604) (6.3±0.1) μBq/kg
- Rn reduction by 45% w.r.t SR1

Increased purification gas flow

- increased by 39% w.r.t. Q-drive
- Electron lifetime of 1 ms reached!

 Online Radon distillation allowed another reduction of ~30% to ~4 µBq/kg → only factor 4 above XENONnT goal

Excellent results with view on XENONnT!

18.09.2018

XENONnT is on its Way

XENONnT is on its way! Commissioning in 2019

Ongoing XENON1T Analyses:

- Spin-dependent WIMP interactions
- Detection of DM by annual modulation
- Low mass WIMP searches (investigation of lowering the threshold, S2 only analysis)
- Double electron capture of ¹²⁴Xe and ¹²⁶Xe → currently most sensitive experiment for this process
- Neutrinoless double beta decay of ¹³⁶Xe

→ Stay Tuned!

18.09.2018