

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

CRESST Results

Lucia Canonica Max Planck Institut für Physik, München

Mainz, September 18th 2018

The CRESST Collaboration

~50 Collaborators:

- 16 MPP, DE
- 4 Tubingen, DE

The CRESST experiment

Cryogenic Rare Event Search with Superconducting Thermometers

Laboratori Nazionali del Gran Sasso (Italy)

Experimental location: Average depth ~ 3600 m w.e. Muon flux ~ 2.6×10⁻⁸ μ/s/cm² Neutrons < 10 MeV: <10⁻⁶ n/s/cm²

The CRESST detector

Cryogenic Rare Event Search with Superconducting Thermometers

- Direct detection of Dark Matter particles via their scattering off target nuclei
- Target: Scintillating CaWO₄ crystals
- Operated as cryogenic calorimeters (~15mK)
- Double read-out cryogenic detector: heat (CaWO₄) and light (Light detector)
- Transition Edge Sensor (TES) for read out

Credit: MPP/T.Dettlaff

Cryogenic calorimeter

Cryogenic calorimeter

Cryogenic calorimeter

Particle Identification

If the absorber is also an efficient scintillator the energy is converted into **heat** + **light**

Particle Identification

If the absorber is also an efficient scintillator the energy is converted into **heat** + **light**

Excellent discrimination between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)

Particle Identification

If the absorber is also an efficient scintillator the energy is converted into heat + light

Excellent discrimination between potential signal events (nuclear recoils) and dominant radioactive background (electron recoils)

CRESST-II results - 2015

Crystal: Lise (mass ~300 g)

Exposure: 52 kg day

Background level \approx 8.5 counts/(keV kg day)

Threshold: 307eV

Until 2017 world-leading below 1.7GeV/c²

Opened up sub-GeV/c² regime

Hunting light dark matter requires low threshold and low background!

CRESST-II results - 2015

Crystal: Lise (mass ~300 g)

Exposure: 52 kg day

Background level \approx 8.5 counts/(keV kg day)

Threshold: 307eV

Until 2017 world-leading below 1.7GeV/c²

Opened up sub-GeV/c² regime

Hunting light dark matter requires low threshold and low background!

CaWO₄ crystals at TUM

- CRESST Crystal grown in the facility at Technische Universität München (TUM)
- Average rate achieved: ~3.5 counts /[kg keV day]
- Gamma-lines from cosmogenic activation
- All gamma lines agree within < 5eV with tabulated values

- Contamination reduction program
 - Raw materials selection
 - Re-crystallisation
 - Chemical purification of raw materials

Towards low thresholds

- Detector layout optimized for lowmass dark matter: reduction of crystal dimension (from 300g to 24g)
- Cuboid fully scintillating housing
- Instrumented holders

Threshold design goal: 100 eV threshold

CRESST-III detectors

10 detectors operating in Gran Sasso from July 2016 to February 2018

Optimum thresholds

5 detectors reach/ exceed the CRESST-III design goal

Optimum thresholds

5 detectors reach/ exceed the CRESST-III design goal

NEW FRONTIER IN DIRECT DM DETECTION

Detector A

Data taking period: 10/2016 – 01/2018 Target crystal mass: 23.6 g Gross exposure (before cuts): 5.7 kg days Energy threshold: 30.1 eV

- Analysis chain includes selections on:
 - Rate: to select stable noise conditions
 - *Stability*: to select detector(s) in operating point
 - Data quality: Non-standard pulse shapes are discarded
 - Coincidences: rejected events in coincidence with iSticks, with other detectors and with muon veto

Neutron calibration data

Dark matter data

Dark matter acceptance region

Acceptance region defined before unblinding

Energy spectra

• 445 events in the acceptance region

Energy spectra

Counts per 30eV

- 445 events in the acceptance region
- Unexpected rise of event rate <200 eV

Result

1D Yellin optimum interval method to compute the exclusion limit:

Energy spectrum of accepted events + Expected DM energy spectrum

Result

10⁶ Dark Matter Particle-Nucleon Cross Section (pb) RESST-above ground 201 10⁵ 10 -³² (-³³ Section (-³⁴ S 10⁴ One order of magnitude 10³ 1D Yellin optimum 10² improvement at 0.5 GeV/c² interval method to -35 SS 10⁻³⁶ O 10 compute the exclusion limit: Particle-Nucleon 10⁻³⁷ 10⁻¹ 10⁻² -38 10 10⁻³ Energy spectrum of 10 \bigcirc \bigcirc 10⁻⁴ 10 accepted events 10⁻⁵ 10 10⁻⁶ 10 Dark Matter **Expected DM energy** 10⁻⁷ 10^{-1} spectrum 10⁻⁸ 10° 10⁻⁹ 10° 10^{-46} **10**⁻¹⁰ Coherent Neutrino Scattering on CaWO ___10^{_47} 10^{-11} 20 567810 0.2 0.3 2 3 0.1 4 World leading limit at Dark Matter Particle Mass (GeV/c²) low-mass <1.7 GeV/c² **Background limited**

L. Canonica

26

Result

10⁶

10⁵

10⁴

10³

10²

10

1D Yellin optimum interval method to compute the exclusion limit:

Energy spectrum of accepted events Expected DM energy spectrum

Lowest limit

>0.16 GeV/c²

Dark Matter Particle-Nucleon Cross Section (pb) 10⁻¹ 10⁻² 10⁻³ \bigcirc \bigcirc 10^{-4} 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁻⁹ **10**⁻¹⁰ Coherent Neutrino Scattering on CaWO 10^{-11} 2 4 5 6 7 8 1 0 0.2 0.3 3 0.1 Dark Matter Particle Mass (GeV/c²)

Performance "limited"

L. Canonica

20

(_u_____ Section (cm⁻)

10⁻³⁵ So 10⁻³⁶ O 10^{-35}

 10^{-37}

 10^{-42}

10⁻⁴⁴

 10^{-46}

___10^{_47}

Extended reach from

 $0.5 \text{ GeV/c}^2 \rightarrow 0.16 \text{ GeV/c}^2$

PICO-60 C₂F₈ 2016

XENON100 Low-Mass 2016

Second CRESST-III run

- Upgraded detector modules with dedicated hardware changes to understand source of excess events (different crystal absorbers, different detector holders)
- Implemented a new active magnetic field compensation with three air coils for x,y,z-axes

The run is going to start soon, new results to come!

Conclusions

- Cryogenic calorimeters represent a well established technology for the investigation of dark matter.
- CRESST has reached an unprecedented low nuclear recoil thresholds of 30eV, and is leading sensitivity over one order of magnitude in the region at 160MeV/c².
- Cryogenic calorimeters are complementary to noble liquids for the investigation of dark matter properties.
- New explorative run is ongoing to investigate the source of excess events.

Conclusions

- Cryogenic calorimeters represent a well established technology for the investigation of dark matter.
- CRESST has reached an unprecedented low nuclear recoil thresholds of 30eV, and is leading sensitivity over one order of magnitude in the region at 160MeV/c².
- Cryogenic calorimeters are complementary to noble liquids for the investigation of dark matter properties.
- New explorative run is ongoing to investigate the source of excess events.

