

The EDELWEISS Dark Matter Search

Astroparticle Physics in Germany, Mainz 17-19.09.2018

Bernhard Siebenborn on behalf of the EDELWEISS collaboration

WIMPs as Dark Matter

- Rotation curves of galaxies \rightarrow DM halo
- Assume DM particle candidate: WIMP
 - gravitation
 - additional "weak" interactions
- WIMP-nucleus scattering in detector
- Kinematics \rightarrow keV-scale recoils
- Potential for WIMP discovery in a detector via combination of
 - heat
 - Ionization
 - scintillation
- Unknown parameters:
 - cross section
 - WIMP mass

credit to Illustris Collaboration

(low mass) WIMP searches

(low mass) WIMP searches

EDELWEISS low mass WIMP searches

EDELWEISS-III

■ Exploitation of results with 20 kg array
 → EPJC 76 (2016) 548

Ionization channel R&D

- Improving discrimination to explore the ⁸B region with resolution (DMB8)
- Exploring non-WIMP DM with smaller array

Heat channel R&D

- Improving the heat channel resolution to reach lower WIMP masses
- Above-ground R&D (Surf) and deployment at LSM (LT)

EDELWEISS collaboration

University of Oxford University of Sheffield

EDELWEISS-III setup

- Laboratory: LSM, ~4800m.w.e. rock overburden (deepest in Europe) \rightarrow 5 µ/m²/d
- Active muon veto + PE + Pb shield
- Clean room, de-radonised air \rightarrow 10-20 mBq/m³
- Cryostat hosting up to 40kg of detectors at 18mK
- Selection of radio pure material

Performance of the EDELWEISS-III experiment for direct dark matter searches JINST 12 (2017) P08010

EDELWEISS-III detectors

- ~870g mono-crystal high purity Ge detectors
- 2 heat sensors per detector (GeNTDs)
- Electrodes: Al rings covering all faces

Clear **event-by-event** separation down to ~ keV energy (nuclear recoils)

ALP and dark photon results (e⁻ recoils)

expected sensitivity with improved ionization channel

arXiv:1808.02340

prospects for GeV-range masses

Complete study based on present measured backgrounds and resolutions vs possible improvements: **PRD 97 (2018) 022003**

EDELWEISS-LT: NL-boost & improved heat

Institut für Kernphysik

Bernhard Siebenborn - EDELWEISS dark matter search

resolution improvements on a 32g HPGe

- R&D with 32g HPGe combined with the objective of testing the above-ground sensitivity to sub-GeV WIMPs
- optimized NTD heat sensor on a 32g crystal, no electrodes (i.e. 1keV = 1keV_{NR})
- kept at 17 mK in IPNL low-vibration dilution fridge [arXiv:1803.03463]
- one day blinded for WIMP search in [0-2] keV region
- 60eV analysis threshold

unblinding the data

No surprise:

blinded day = carbon copy of preceding + following days

Find maximal WIMP rate compatible with total number of counts observed in the pre-defined windows \rightarrow 90% CL on WIMP signals as function of WIMP mass

EDELWEISS surface limit

10⁻³² cross section (cm²) CRESSTv-cleus (above ground) 10⁻³³ Best above-ground limit down to 600 MeV/c²: SIMP 10⁻³⁴ First sub-GeV limit with Ge, down to 500 MeV/c² **EDELWEISS-Surf** 10⁻³⁵ (above ground) 10-36 10^{-37} Achieved resolution on a smaller detector exceeds **MIMP-nucleon SI** 10⁻³⁸ by x5 the original LT goal with 800 g detectors 10⁻³⁹ **EDELWEISS-II** 10^{-40} Small detectors with lower thresholds to be 10⁻⁴ combined with expertise acquired on HV: 10-42 threshold reduction by factor $(1+V_{bias}/3)$ in keV_{ee} 10^{-43} **10**⁻⁴⁴ 10^{-45} **10**⁻⁴⁶ 10 0.1

WIMP Mass (GeV/c²)

Conclusions & outlook

- EDELWEISS-III : large detectors with excellent rejection
 - Exploitation of FID to get best ALP limits, enter the sub-keV range
- EDELWEISS-MELODI: develop large detectors with EDELWEISS design
 - Exploring non-WIMP DM with prototype: ALPs in the 0.1-1 keV range
 - Building block for larger search experiment (DMB8), addressing specifically region where DM signal has to be spectrally separated from solar ⁸B neutrinos
- Prospects in the sub-GeV-WIMP range: beyond EDELWEISS-LT
 - Going beyond original [PRD] goal: 100 eV \rightarrow 18 eV (~500 eV EDW-III)
 - Best surface limit for WIMPs above 0.6 GeV/c²
 - Combining excellent energy resolution with NL-boost
 → 2019/2020: intensive R&D in surface labs
 - KIT + U Heidelberg: NL-boosted Ge detectors with MMC phonon sensors
 → DELight