Minimal dark matter models

with radiative neutrino masses

Michael Klasen

Institute for Theoretical Physics, University of Münster

18 September 2018

GEFÖRDERT VOM

Radiative seesaw models

Conclusion O

References

 D. Restrepo, O. Zapata, C. Yaguna Models with radiative neutrino masses and viable dark matter candidates JHEP 1311 (2013) 011 [1308.3655]

References

- D. Restrepo, O. Zapata, C. Yaguna Models with radiative neutrino masses and viable dark matter candidates JHEP 1311 (2013) 011 [1308.3655]
- MK, C. Yaguna, J. Ruiz-Alvarez, D. Restrepo, O. Zapata Scalar dark matter and fermion coannihilations in the radiative seesaw model JCAP 1304 (2013) 044 [1302.5298]
- S. Esch, MK, D. Lamprea, C. Yaguna Lepton flavor violation and scalar dark matter in a radiative model of neutrino masses Eur. Phys. J. C 78 (2018) 88 [1602.05137]
- S. Esch, MK, C. Yaguna A singlet doublet dark matter with radiative neutrino masses JHEP (under review) [1804.03384]

Radiative seesaw models

Conclusion O

Observational evidence for dark matter

MK, M. Pohl, G. Sigl, Prog. Nucl. Part. Phys. 85 (2015) 1 [1507.03800]

Galactic rotation curve data and MOND

M. Frandsen, J. Petersen, 1805.10706

Radiative seesaw models

Constraints on Primary Black Hole mass and DM fraction

B. Carr, M. Raidal, T. Tenkanen, V. Vaskonen, H. Veermäe, Phys. Rev. D96 (2017) 023514 [1705.05567]

Radiative seesaw models

Probing the Weakly Interacting Massive Particle paradigm

E. Aprile et al. [Xenon1T], 1805.12562

DAMA/LIBRA-phase2 and isospin-violating DM

R. Bernabei et al. [DAMA/LIBRA-phase2], 1805.10486; S. Baum, K. Freese, C. Kelso, 1804.01231

Models with radiative neutrino masses and dark matter

Radiative seesaw models

Conclusion O

The best studied class: T3

Y. Farzan, S. Pascoli, M.A. Schmidt, JHEP 1010 (2010) 111; M. Aoki, S. Kanemura, K. Yagyu, Phys. Lett. B702 (2011) 355
 E. Ma, Phys. Rev. D73 (2006) 077301; E. Ma, D. Suematsu, Mod. Phys. Lett. A24 (2009) 583

Model	~	Ferm	ionic	Scalar		Exotic charges	# of N'plets
Model	u	DM	DD	DM	DD	Exotic charges	π or in pieces
Τ2 Λ	0	21	×	$1_0, 3_2$	√	√	3
13-A	-2	2_{-1}	×	3 ₀	~	×	3
T2 B	1,-3	×	×	2 _{±1}	~	√	3
13-0	-1	10	\checkmark	$2_{\pm 1}$	\checkmark	×	2
T3-C	1, -3	$3_{\pm 2}$	×	$2_{\pm 1}$	 ✓ 	√	3
13-0	-1	3 ₀	\checkmark	$2_{\pm 1}$	~	×	2
T3-E	0, -2	$2_{\pm 1}$	×	$3_0, 3_{\pm 2}$	✓	✓	3

Radiative seesaw models

The best studied class: T3

Y. Farzan, S. Pascoli, M.A. Schmidt, JHEP 1010 (2010) 111; M. Aoki, S. Kanemura, K. Yagyu, Phys. Lett. B702 (2011) 355
 E. Ma, Phys. Rev. D73 (2006) 077301; E. Ma, D. Suematsu, Mod. Phys. Lett. A24 (2009) 583

Model	0	Fermionic		Scala	r	Exotic charges	# of N'plets
Widder		DM	DD	DM	DD	Exotic charges	
Τ3-Δ	0	21	×	1 ₀ , 3 ₂	~	√	3
13-4	-2	2_{-1}	×	3 ₀	 ✓ 	×	3
T3 B	1,-3	×	×	2 _{±1}	~	√	3
13-0	-1	10	 ✓ 	$2_{\pm 1}$	\checkmark	×	2
T3-C	1, -3	$3_{\pm 2}$	×	$2_{\pm 1}$	 ✓ 	√	3
15-0	-1	3 ₀	\checkmark	$2_{\pm 1}$	~	×	2
T3-E	0, -2	2+1	×	$3_0, 3_{+2}$	~	✓	3

Potential in T3-B with $\alpha = -1$ ("Inert Doublet Model"):

$$\begin{aligned} -\mathcal{L}_{H_{1},H_{2}} &= \mu_{1}^{2}H_{1}^{\dagger}H_{1} + \mu_{2}^{2}H_{2}^{\dagger}H_{2} + \frac{\lambda_{1}}{2}\left(H_{1}^{\dagger}H_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} \\ &+ \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) + \frac{\lambda_{5}}{2}\left(H_{1}^{\dagger}H_{2}\right)^{2} \\ &+ \text{ h.c.} \end{aligned}$$

Radiative corrections to the Inert Doublet Model

MK, J. Ruiz-Alvarez, C. Yaguna, Phys. Rev. D87 (2013) 075025 [1302.1657]

Radiative seesaw models

Conclusion O

The best studied class: T3

Y. Farzan, S. Pascoli, M.A. Schmidt, JHEP 1010 (2010) 111; M. Aoki, S. Kanemura, K. Yagyu, Phys. Lett. B702 (2011) 355
 E. Ma, Phys. Rev. D73 (2006) 077301; E. Ma, D. Suematsu, Mod. Phys. Lett. A24 (2009) 583

Model	0	Fermionic		Scalar		Exotic charges	# of N'plets	
Widder		DM	DD	DM	DD	Exotic charges	# Of N piets	
Τ3_Δ	0	21	×	1 ₀ , 3 ₂	 ✓ 	√	3	
13-4	-2	2_{-1}	×	3 ₀	~	×	3	
T3 B	1,-3	×	×	2 _{±1}	~	√	3	
13-0	-1	10	 ✓ 	$2_{\pm 1}$	\checkmark	×	2	
T3.C	1, -3	3 ± 2	×	$2_{\pm 1}$	√	√	3	
13-0	-1	3 ₀	 ✓ 	$2_{\pm 1}$	\checkmark	×	2	
T3-E	0, -2	$2_{\pm 1}$	×	$3_0, 3_{\pm 2}$	~	\checkmark	3	

Potential in T3-B with $\alpha = -1$ ("Scotogenic Model"):

$$\begin{aligned} -\mathcal{L}_{H_{1},H_{2}} &= \mu_{1}^{2}H_{1}^{\dagger}H_{1} + \mu_{2}^{2}H_{2}^{\dagger}H_{2} + \frac{\lambda_{1}}{2}\left(H_{1}^{\dagger}H_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(H_{2}^{\dagger}H_{2}\right)^{2} \\ &+ \lambda_{3}\left(H_{1}^{\dagger}H_{1}\right)\left(H_{2}^{\dagger}H_{2}\right) + \lambda_{4}\left(H_{1}^{\dagger}H_{2}\right)\left(H_{2}^{\dagger}H_{1}\right) + \frac{\lambda_{5}}{2}\left(H_{1}^{\dagger}H_{2}\right)^{2} \\ &+ \text{ h.c.} \end{aligned}$$

Radiative seesaw models

The best studied class: T3

Y. Farzan, S. Pascoli, M.A. Schmidt, JHEP 1010 (2010) 111; M. Aoki, S. Kanemura, K. Yagyu, Phys. Lett. B702 (2011) 355
 E. Ma, Phys. Rev. D73 (2006) 077301; E. Ma, D. Suematsu, Mod. Phys. Lett. A24 (2009) 583

Model	0	Fermionic		Scalar		Exotic charges	# of N'plets
Iniodei		DM	DD	DM	DD	Exotic charges	# of it piets
T3-4	0	21	×	$1_0, 3_2$	✓	√	3
13-4	-2	2-1	×	3 ₀	~	×	3
T3 B	1,-3	×	×	2 _{±1}	~	√	3
13-0	-1	10	 ✓ 	$2_{\pm 1}$	\checkmark	×	2
T3.C	1, -3	3 _{±2}	×	$2_{\pm 1}$	√	√	3
13-0	-1	30	 ✓ 	$2_{\pm 1}$	\checkmark	×	2
T3-E	0, -2	$2_{\pm 1}$	×	$3_0, 3_{\pm 2}$	 ✓ 	√	3

Potential in T3-B with $\alpha = -1$ ("Scotogenic Model"):

$$\begin{aligned} -\mathcal{L}_{H_1,H_2} &= \mu_1^2 H_1^{\dagger} H_1 + \mu_2^2 H_2^{\dagger} H_2 + \frac{\lambda_1}{2} \left(H_1^{\dagger} H_1 \right)^2 + \frac{\lambda_2}{2} \left(H_2^{\dagger} H_2 \right)^2 \\ &+ \lambda_3 \left(H_1^{\dagger} H_1 \right) \left(H_2^{\dagger} H_2 \right) + \lambda_4 \left(H_1^{\dagger} H_2 \right) \left(H_2^{\dagger} H_1 \right) + \frac{\lambda_5}{2} \left(H_1^{\dagger} H_2 \right)^2 \\ &+ \text{h.c.} \\ \mathcal{L}_N &= h_{\alpha i} \bar{\ell}_{\alpha} H_2^{\dagger} P_R N_i + \text{h.c.} \end{aligned}$$

Coannihilations in the Scotogenic Model

MK, C. Yaguna, J. Ruiz-Alvarez, D. Restrepo, O. Zapata, JCAP 1304 (2013) 044

Radiative seesaw models

Conclusion O

Class T1-3

S. Fraser, E. Ma, O. Popov, Phys. Lett. B737 (2014) 280; D. Restrepo et al., Phys. Rev. D92 (2015) 013005;
 S. Esch, MK, D. Lamprea, C. Yaguna, Eur. Phys. J. C78 (2018) 88; J. Fiaschi, MK, S. May, in preparation

Model	~	Fermionic		Sca	lar	Exotic charges	# of N'plets
Widder	L u	DM	DD	DM	DD	Exotic charges	# Of N piets
T1-3-A	0	$1_0, 2_{\pm 1}$	~	10	\checkmark	×	3
T1-3-B	0	$1_0, 2_{\pm 1}$	~	30	~	×	3
T1-3-C	±1	$1_0, 2_{\pm 1}$	√	21	\checkmark	×	4
T13D	1	2 ₁ , 3 ₀	~	21	\checkmark	×	4
11-5-0	$^{-1}$	$1_0, 2_{-1}, 3_{-2}$	\checkmark	2_{-1}	\checkmark	\checkmark	4
T1-3-F	±1	$2_{\pm 1}, 3_0, 3_{\pm 2}$	√	$2_{\pm 1}$	\checkmark	√	4
T1-3-G	0	$2_{\pm 1}, 3_0$	~	10	\checkmark	×	3
T1-3-H	0	$2_{\pm 1}, 3_0$	\checkmark	30	\checkmark	×	3

Conclusion O

Class T1-3

S. Fraser, E. Ma, O. Popov, Phys. Lett. B737 (2014) 280; D. Restrepo et al., Phys. Rev. D92 (2015) 013005;
 S. Esch, MK, D. Lamprea, C. Yaguna, Eur. Phys. J. C78 (2018) 88; J. Fiaschi, MK, S. May, in preparation

Model	0	Fermionic		Sca	ılar	Exotic charges	# of N'plets
Widder		DM	DD	DM	DD	Exotic charges	# Of N piets
T1-3-A	0	$1_0, 2_{\pm 1}$	 ✓ 	10	\checkmark	×	3
T1-3-B	0	$1_0, 2_{\pm 1}$	 ✓ 	30	 ✓ 	×	3
T1-3-C	±1	$1_0, 2_{\pm 1}$	✓	21	 ✓ 	×	4
T1.3.D	1	2 ₁ , 3 ₀	 ✓ 	21	\checkmark	×	4
11-5-0	-1	$1_0, 2_{-1}, 3_{-2}$	\checkmark	2_1	\checkmark	\checkmark	4
T1-3-F	±1	$2_{\pm 1}, 3_0, 3_{\pm 2}$	 ✓ 	$2_{\pm 1}$	 ✓ 	√	4
T1-3-G	0	$2_{\pm 1}, 3_0$	 ✓ 	10	~	×	3
T1-3-H	0	$2_{\pm 1}, 3_0$	~	30	\checkmark	×	3

Potential in T1-3-B with $\alpha = 0$:

$$\begin{aligned} -\mathcal{L}_{Y} &= (\lambda_{1})^{ij} (H^{\dagger} H) \operatorname{Tr}(\phi_{i} \phi_{j}) + (\lambda_{3})^{ijkm} \operatorname{Tr}(\phi_{i} \phi_{j} \phi_{k} \phi_{m}) \\ &+ (\lambda_{4} (H^{\dagger} \psi') \Psi + \text{h.c.}) + (\lambda_{5} (H \psi) \Psi + \text{h.c.}) \\ &+ ((\lambda_{6})^{ij} L_{i} \phi_{j} \psi' + \text{h.c.}) \end{aligned}$$

Conclusion O

Class T1-3

S. Fraser, E. Ma, O. Popov, Phys. Lett. B737 (2014) 280; D. Restrepo et al., Phys. Rev. D92 (2015) 013005; S. Esch, MK, D. Lamprea, C. Yaguna, Eur. Phys. J. C78 (2018) 88; J. Fiaschi, MK, S. May, in preparation

Model	0	Fermionic		Sca	lar	Exotic charges	# of N'plets
Widder		DM	DD	DM	DD	Exotic charges	# of N piets
T1-3-A	0	$1_0, 2_{\pm 1}$	 ✓ 	10	\checkmark	×	3
T1-3-B	0	$1_0, 2_{\pm 1}$	 ✓ 	30	\checkmark	×	3
T1-3-C	±1	$1_0, 2_{\pm 1}$	✓	21	\checkmark	×	4
T1.3.D	1	2 ₁ , 3 ₀	 ✓ 	21	\checkmark	×	4
11-3-0	$^{-1}$	$1_0, 2_{-1}, 3_{-2}$	~	2-1	\checkmark	√	4
T1-3-F	±1	$2_{\pm 1}, 3_0, 3_{\pm 2}$	 ✓ 	$2_{\pm 1}$	\checkmark	√	4
T1-3-G	0	$2_{\pm 1}, 3_0$	 ✓ 	10	\checkmark	×	3
T1-3-H	0	$2_{\pm 1}, 3_0$	~	30	\checkmark	×	3

Potential in T1-3-B with $\alpha = 0$:

$$\begin{aligned} -\mathcal{L}_{Y} &= (\lambda_{1})^{ij} (H^{\dagger}H) \operatorname{Tr}(\phi_{i}\phi_{j}) + (\lambda_{3})^{ijkm} \operatorname{Tr}(\phi_{i}\phi_{j}\phi_{k}\phi_{m}) \\ &+ (\lambda_{4}(H^{\dagger}\psi')\Psi + \mathrm{h.c.}) + (\lambda_{5}(H\psi)\Psi + \mathrm{h.c.}) \\ &+ ((\lambda_{6})^{ij}L_{i}\phi_{j}\psi' + \mathrm{h.c.}) \end{aligned}$$

Neutrino mass matrix for two generations of scalars:

$$\frac{1}{32\pi^2} \left(A_1 \begin{pmatrix} (\lambda_6^{e1})^2 & \lambda_6^{e1}\lambda_6^{\mu1} & \lambda_6^{e1}\lambda_6^{\tau1} \\ \lambda_6^{\mu1}\lambda_6^{\tau1} & (\lambda_6^{\mu1})^2 & \lambda_6^{\mu1}\lambda_6^{\tau1} \\ \lambda_6^{e1}\lambda_6^{e1} & \lambda_6^{\mu1}\lambda_6^{\tau1} & (\lambda_6^{\tau1})^2 \end{pmatrix} + A_2 \begin{pmatrix} (\lambda_6^{e2})^2 & \lambda_6^{e2}\lambda_6^{\mu2} & \lambda_6^{e2}\lambda_6^{\tau2} \\ \lambda_6^{\mu2}\lambda_6^{\tau2} & (\lambda_6^{\mu2})^2 & \lambda_6^{\mu2}\lambda_6^{\tau2} \\ \lambda_6^{e2}\lambda_6^{\mu2}\lambda_6^{\pi2} & (\lambda_6^{\tau2})^2 \end{pmatrix} \right)_{13}$$

13 / 24

Radiative seesaw models

Conclusion 0

Neutrino masses in T1-3-B

J. Fiaschi, MK, S. May, in preparation

Radiative seesaw models

Conclusion O

Relic density in T1-3-B

J. Fiaschi, MK, S. May, in preparation

Conclusion O

Class T1-3

S. Fraser, E. Ma, O. Popov, Phys. Lett. B737 (2014) 280; D. Restrepo et al., Phys. Rev. D92 (2015) 013005;
 S. Esch, MK, D. Lamprea, C. Yaguna, Eur. Phys. J. C78 (2018) 88; J. Fiaschi, MK, S. May, in preparation

Model	0	Fermionic	Scalar		Exotic charges	# of N'plets	
Widder		DM	DD	DM	DD	Exotic charges	# Of N piets
T1-3-A	0	$1_0, 2_{\pm 1}$	 ✓ 	10	\checkmark	×	3
T1-3-B	0	$1_0, 2_{\pm 1}$	 ✓ 	30	\checkmark	×	3
T1-3-C	±1	$1_0, 2_{\pm 1}$	✓	21	\checkmark	×	4
T1.3.D	1	2 ₁ , 3 ₀	 ✓ 	21	\checkmark	×	4
11-3-0	$^{-1}$	$1_0, 2_{-1}, 3_{-2}$	~	2_{-1}	\checkmark	√	4
T1-3-F	±1	$2_{\pm 1}, 3_0, 3_{\pm 2}$	 ✓ 	$2_{\pm 1}$	\checkmark	√	4
T1-3-G	0	$2_{\pm 1}, 3_0$	 ✓ 	10	\checkmark	×	3
T1-3-H	0	$2_{\pm 1}, 3_0$	~	30	\checkmark	×	3

Potential in T1-3-A with $\alpha = 0$:

$$\mathcal{L}_{Y} = \alpha_{ij}\overline{\psi'}\nu_{jL}^{c}\phi_{i} + \alpha_{ij}\overline{E'}e_{jL}^{c}\phi_{i} + \frac{\beta_{1}}{\sqrt{2}}\overline{\psi}^{c}Sh + \frac{\beta_{2}}{\sqrt{2}}\overline{\psi'}S^{c}h + \text{h.c.}$$

Class T1-3

S. Fraser, E. Ma, O. Popov, Phys. Lett. B737 (2014) 280; D. Restrepo et al., Phys. Rev. D92 (2015) 013005;
 S. Esch, MK, D. Lamprea, C. Yaguna, Eur. Phys. J. C78 (2018) 88; J. Fiaschi, MK, S. May, in preparation

Model	0	Fermionic		Scalar		Exotic charges	# of N'plets
Widder		DM	DD	DM	DD	Exotic charges	# Of N piets
T1-3-A	0	$1_0, 2_{\pm 1}$	 ✓ 	10	\checkmark	×	3
T1-3-B	0	$1_0, 2_{\pm 1}$	~	30	~	×	3
T1-3-C	±1	$1_0, 2_{\pm 1}$	✓	21	\checkmark	×	4
T1.3.D	1	2 ₁ , 3 ₀	 ✓ 	21	\checkmark	×	4
11-5-0	-1	$1_0, 2_{-1}, 3_{-2}$	\checkmark	2_{-1}	\checkmark	\checkmark	4
T1-3-F	±1	$2_{\pm 1}, 3_0, 3_{\pm 2}$	 ✓ 	$2_{\pm 1}$	\checkmark	√	4
T1-3-G	0	$2_{\pm 1}, 3_0$	 ✓ 	10	\checkmark	×	3
T1-3-H	0	$2_{\pm 1}, 3_0$	~	30	~	×	3

Potential in T1-3-A with $\alpha = 0$:

$$\mathcal{L}_{Y} = \alpha_{ij}\overline{\psi'}\nu_{jL}^{c}\phi_{i} + \alpha_{ij}\overline{E'}e_{jL}^{c}\phi_{i} + \frac{\beta_{1}}{\sqrt{2}}\overline{\psi}^{c}Sh + \frac{\beta_{2}}{\sqrt{2}}\overline{\psi'}S^{c}h + \text{h.c.}$$

Lepton flavor violation:

16 / 24

Conclusion O

Lepton flavor violation in T1-3-A

S. Esch, MK, D. Lamprea, C. Yaguna, Eur. Phys. J. C 78 (2018) 88

Class T1-2

S. Esch, MK, C. Yaguna, 1804.03384, JHEP (under review); R. Longas, D. Portillo, D. Restrepo, O. Zapata, JHEP 1603 (2016)

Model	~	Fermionic		Scalar		Exotic charges	# of N'plets
Woder	α	DM	DD	DM	DD	Exotic charges	# Of N piets
T1-2-A	0	$1_0, 2_1$	 ✓ 	$1_0, 2_1$	\checkmark	×	4
11-2-7	-2	2_1	×	2-1	~	×	4
T1.2 B	0	$1_0, 2_1$	 ✓ 	2 ₁ , 3 ₀	\checkmark	×	4
11-2-0	-2	2_1	×	$2_{-1}, 3_{-2}$	\checkmark	√	4
T1.2 D	1	$2_1, 3_2$	×	21	\checkmark	√	4
11-2-0	-1	$2_{-1}, 3_0$	 ✓ 	$1_0, 2_{-1}$	\checkmark	×	4
T1.2 F	1	$2_1, 3_2$	×	$2_1, 3_2$	\checkmark	√	4
11-2-1	-1	$2_{-1}, 3_0$	 ✓ 	$2_{-1}, 3_0$	\checkmark	×	4

162 [1511.01873]

-

Radiative seesaw models

Class T1-2

S. Esch, MK, C. Yaguna, 1804.03384, JHEP (under review); R. Longas, D. Portillo, D. Restrepo, O. Zapata, JHEP 1603 (2016)

Model	a	Fermio	nic	Scalar		Evotic charges	# of N'plets
woder	u u	DM	DD	DM	DD	Exotic charges	# Of N piecs
Τ1-2-Δ	0	$1_0, 2_1$	√	$1_0, 2_1$	\checkmark	×	4
11-2-7	-2	2_1	×	2-1	~	×	4
T1.2 B	0	$1_0, 2_1$	√	$2_1, 3_0$	~	×	4
11-2-0	-2	2_1	×	$2_{-1}, 3_{-2}$	~	\checkmark	4
T1.2 D	1	$2_1, 3_2$	×	21	~	√	4
11-2-0	$^{-1}$	$2_{-1}, 3_0$	\checkmark	$1_0, 2_{-1}$	\checkmark	×	4
T1.2 F	1	$2_1, 3_2$	×	$2_1, 3_2$	\checkmark	\checkmark	4
1 1-2-1	-1	$2_{-1}, 3_0$	\checkmark	$2_{-1}, 3_0$	\checkmark	×	4

162 [1511.01873]

Potential in T1-2-A with $\alpha = 0$:

$$\begin{aligned} -\mathcal{L}_{\text{scalar}} &= \frac{1}{2}\lambda_{S}\phi_{S}^{2}|H|^{2} + \lambda_{D}|\phi_{D}|^{2}|H|^{2} + \lambda_{D}'|\phi_{D}^{\dagger}H|^{2} \\ &+ \frac{1}{2}\lambda_{D}''\left[\left(\phi_{D}^{\dagger}H\right)^{2} + \text{h.c.}\right] + A\left[\phi_{D}^{\dagger}H\phi_{S} + \text{h.c.}\right] \\ -\mathcal{L}_{\text{fermion}} &= y_{1}\psi_{D_{1}}H\psi_{S} + y_{2}\psi_{D_{2}}H^{\dagger}\psi_{S} + \text{h.c.} \\ -\mathcal{L}_{\text{lepton}} &= g_{1i}L_{i}\phi_{S}\psi_{D_{2}} + g_{2i}L_{i}\phi_{D}\psi_{S} + \text{h.c.} \end{aligned}$$

Radiative seesaw models

Direct detection and lepton flavor violation in T1-2-A

S. Esch, MK, C. Yaguna, 1804.03384, JHEP (under review)

Radiative seesaw models

Direct detection and lepton flavor violation in T1-2-A

S. Esch, MK, C. Yaguna, 1804.03384, JHEP (under review)

Radiative seesaw models

Conclusion O

Class T1-1

C. Boehm, Y. Farzan, T. Hambye, S. Palomares-Ruiz, S Pascoli, Phys. Rev. D77 (2008) 043516;

Model	a	Ferm	ionic	Scalar		Exotic charges	# of N'plets
Woder	α	DM	DD	DM	DD	Exotic charges	# Of N piets
T1-1-A	±2	×	×	$2_{\pm 1}$	\checkmark	√	4
11-1-4	0	10	\checkmark	$1_0, 2_{\pm 1}$	\checkmark	×	3
T1.1.B	±2	$3_{\pm 2}$	×	$2_{\pm 1}$	\checkmark	\checkmark	4
11-1-0	0	3 ₀	\checkmark	$1_0, 2_{\pm 1}$	\checkmark	×	3
T1-1-C	±1	$2_{\pm 1}$	×	$1_0, 2_{\pm 1}$	\checkmark	\checkmark	4
T11D	1	21	×	$1_0, 2_1, 3_2$	\checkmark	\checkmark	4
11-1-D	$^{-1}$	2_{-1}	×	$2_{-1}, 3_0$	\checkmark	×	4
T1-1-F	±1	$2_{\pm 1}$	×	$2_{\pm 1}, 3_0, 3_{\pm 2}$	~	\checkmark	4
T11C	±2	×	×	$2_{\pm 1}, 3_{\pm 2}$	\checkmark	\checkmark	4
11-1-0	0	10	~	$2_{\pm 1}, 3_0$	\checkmark	×	3
Т1.1.Н	±2	$3_{\pm 2}$	×	$2_{\pm 1}, 3_{\pm 2}$	\checkmark	\checkmark	4
1 1-1-11	0	30	\checkmark	$2_{\pm 1}, 3_0$	\checkmark	Х	3

Y. Farzan, Phys. Rev. D 80 (2009) 073009

Radiative seesaw models

Conclusion O

Class T1-1

C. Boehm, Y. Farzan, T. Hambye, S. Palomares-Ruiz, S Pascoli, Phys. Rev. D77 (2008) 043516;

Model	α	Fermionic		Scalar		Exotic charges	# of N'plets	
		DM	DD	DM	DD	Exotic charges	# Of N piets	
T1-1-A	±2	×	×	$2_{\pm 1}$	\checkmark	\checkmark	4	
	0	10	\checkmark	$1_0, 2_{\pm 1}$	\checkmark	×	3	
T1-1-B	±2	$3_{\pm 2}$	×	$2_{\pm 1}$	~	\checkmark	4	
	0	3 ₀	\checkmark	$1_0, 2_{\pm 1}$	\checkmark	×	3	
T1-1-C	± 1	$2_{\pm 1}$	×	$1_0, 2_{\pm 1}$	\checkmark	\checkmark	4	
T1-1-D	1	21	×	$1_0, 2_1, 3_2$	~	\checkmark	4	
	$^{-1}$	2_{-1}	×	$2_{-1}, 3_0$	~	×	4	
T1-1-F	± 1	$2_{\pm 1}$	×	$2_{\pm 1}, 3_0, 3_{\pm 2}$	\checkmark	\checkmark	4	
T1-1-G	±2	×	×	$2_{\pm 1}, 3_{\pm 2}$	~	\checkmark	4	
	0	10	\checkmark	$2_{\pm 1}, 3_0$	\checkmark	×	3	
T1-1-H	±2	$3_{\pm 2}$	×	$2_{\pm 1}, 3_{\pm 2}$	\checkmark	~	4	
	0	3 ₀	\checkmark	$2_{\pm 1}, 3_0$	\checkmark	X	3	

Y. Farzan, Phys. Rev. D 80 (2009) 073009

Potential in T1-1-A with $\alpha = 0$ ("SLIM Model"):

$$-\mathcal{L} = \lambda_1 |H^T(i\sigma_2)\Phi|^2 + \operatorname{Re}[\lambda_2(H^T(i\sigma_2)\phi)^2] + \lambda_3\eta^2 H^{\dagger}H + \lambda_4 \Phi^{\dagger}\Phi H^{\dagger}H + \frac{\lambda_1'}{2}(\Phi^{\dagger}\Phi)^2 + \frac{\lambda_2'}{2}\eta^4 + \lambda_3'\eta^2 \Phi^{\dagger}\Phi + g_{i\alpha}\bar{N}_i\Phi^{\dagger}L_{\alpha}$$

Scalar as Light as MeV - solution to missing satellites?

Y. Farzan, Phys. Rev. D 80 (2009) 073009; A. Arhrib, C. Boehm, E. Ma, T.C. Yuan, JCAP 1604 (2016) 049

Constraints (scalar or fermion DM):

- Unitarity, vacuum stability, non-tachyonic masses
- LEP invisible Z decay, ΔS and ΔT ; LHC H decay

Scalar as LIght as MeV - solution to missing satellites?

Y. Farzan, Phys. Rev. D 80 (2009) 073009; A. Arhrib, C. Boehm, E. Ma, T.C. Yuan, JCAP 1604 (2016) 049

Constraints (scalar or fermion DM):

- Unitarity, vacuum stability, non-tachyonic masses
- LEP invisible Z decay, ΔS and ΔT ; LHC H decay

Scalar as LIght as MeV - solution to missing satellites?

Y. Farzan, Phys. Rev. D 80 (2009) 073009; A. Arhrib, C. Boehm, E. Ma, T.C. Yuan, JCAP 1604 (2016) 049

Constraints (scalar or fermion DM):

- Unitarity, vacuum stability, non-tachyonic masses
- LEP invisible Z decay, ΔS and ΔT ; LHC H decay

ATLAS (ICHEP 2018): $R_{\gamma\gamma} = 1.08 \pm 0.08$, $R_{\gamma Z} = 2.7^{+4.6}_{-4.5} < 6.6$

Radiative seesaw models

Conclusion 0

Models allowing for gauge coupling unification

C. Hagedorn, T. Ohlsson, S. Riad, M.A. Schmidt, JHEP 1609 (2016) 111 [1605.03986]

Model	m	P1	P2	P3	P4	$\Lambda~({\rm GeV})$	$\alpha^{-1}(\Lambda)$	$\begin{array}{c} \frac{\Delta \log_{10}(\Lambda)}{\log_{10}(\Lambda)} \\ \begin{pmatrix} \% \end{pmatrix} \end{array}$	$\frac{\Delta \alpha^{-1}}{\alpha^{-1}}$ (%)
T1-1-D	$1 \\ -1$	$(1, 2, \frac{1}{2})_S$ $(1, 2, -\frac{1}{2})_S$	$(1, 1, 0)_S$ $(1, 1, -1)_S$	$(1, 2, \frac{1}{2})_F$ $(1, 2, -\frac{1}{2})_F$	$(1,3,1)_S$ $(1,3,0)_S$	$\begin{array}{c} 1.3 \cdot 10^{13} \\ 3.1 \cdot 10^{13} \end{array}$	38.4 38.2	7.7 3.2	3.9 1.7
T1-2-A	0	$(1, 1, 0)_F$	$(1, 2, \frac{1}{2})_S$	$(1, 1, 0)_S$	$(1,2,\frac{1}{2})_F$	$5.3\cdot 10^{13}$	39.4	4.1	2.9
T1-2-B	$0 \\ -2$	$(1, 1, 0)_F$ $(1, 1, -1)_F$	$(1, 2, \frac{1}{2})_S$ $(1, 2, -\frac{1}{2})_S$	$(1, 3, 0)_S$ $(1, 3, -1)_S$	$(1, 2, \frac{1}{2})_F$ $(1, 2, -\frac{1}{2})_F$	$\begin{array}{c} 4.6 \cdot 10^{13} \\ 3.2 \cdot 10^{12} \end{array}$	$38.4 \\ 35.9$	$5.6 \\ 0.54$	2.9 0.28
T1-3-A	0	$(1, 1, 0)_F$	$(1,2,\frac{1}{2})_F$	$(1, 1, 0)_S$	$(1,2,-\tfrac{1}{2})_F$	$2.8\cdot 10^{13}$	37.7	6.5	3.3
Т3-А	$0 \\ -2$	$(1, 1, 0)_S$ $(1, 1, -1)_S$	$(1,3,1)_S$ $(1,3,0)_S$	$(1, 2, \frac{1}{2})_F$ $(1, 2, -\frac{1}{2})_F$	-	$\begin{array}{c} 1.6 \cdot 10^{13} \\ 4.0 \cdot 10^{13} \end{array}$	37.3 38.7	4.4 0.21	2.3 0.11
T1-3-A	0	$(1, 1, 0)_F$	$(1,2,\frac{1}{2})_F$	$2 (1,1,0)_S$	-	$6.9\cdot 10^{13}$	39.8	7.4	4.0
T1-3-B	0	$(1, 1, 0)_F$	$(1,2,\frac{1}{2})_F$	$2 \ (1,3,0)_S$	-	$5.7\cdot 10^{13}$	38.9	2.5	1.3

Conclusion

Minimal dark matter models:

- Bottum-up, small parameter space, often completely testable
- Best motivated, if they solve also other SM problems
- Intriguing: Connection to Higgs, neutrino masses, unification

Conclusion

Minimal dark matter models:

- Bottum-up, small parameter space, often completely testable
- Best motivated, if they solve also other SM problems
- Intriguing: Connection to Higgs, neutrino masses, unification
- Many models (here only 1-loop), larger parameter spaces
- Coannihilation decouples relic density from direct detection
- Lepton flavor violation provides crucial tests

Conclusion

Conclusion

Minimal dark matter models:

- Bottum-up, small parameter space, often completely testable
- Best motivated, if they solve also other SM problems
- Intriguing: Connection to Higgs, neutrino masses, unification
- Many models (here only 1-loop), larger parameter spaces
- Coannihilation decouples relic density from direct detection
- Lepton flavor violation provides crucial tests
- Many other constraints (indirect detection, LHC)
- Work in progress ...