Few-body results from $\chi {\rm EFT}$

Laura E. Marcucci

University of Pisa

SFB 1044-Workshop: Electromagnetic observables for low-energy nuclear physics

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Few-body results from χ EFT

Results obtained in collaboration with:

- A. Kievsky and M. Viviani (INFN Pisa)
- L. Girlanda (Univ. of Lecce)
- <u>A. Gnech</u> (GSSI L'Aquila)
- R. Machleidt and F. Sammarruca (Univ. of Idaho)
- A. Baroni (USC)
- S. Pastore and M. Piarulli (WUSL)
- R. Schiavilla (ODU and JLab)
- S. Pieper and R.B. Wiringa (ANL)

Color code: blue: "Pisa group"; green: "Idaho group"; cyan: "JLab group"

- Q: Which nuclei? A: d, ³H and ³He (ideal "labs")
- Q: What are we investigating? A: Electromagnetic (EM) structure and *NN* momentum distributions
- Q: Within which framework? A: chiral EFT (χ EFT)
 - Nuclear potential
 - N3LO V_{NN} (+ N2LO V_{3N}) of EM03¹
 - LO-N4LO V_{NN} (+ N2LO V_{3N}) of EMN17²
 - N3LO V_{NN} (+ N2LO V_{3N}) of NV³
 - Electromagnetic currents
- ¹ D.R. Entem and R. Machleidt, PRC **68**, 041001 (2003)
- ² D.R. Entem, R. Machleidt, and Y. Nosyk, PRC **96**, 023004 (2017)
- ³ M. Piarulli et al., PRC 91, 024003 (2015) & PRL 120, 052503 (2018)

Nuclear interactions (latest non-local)

Two-nucleon interaction V_{NN} of EMN17

- from LO to N4LO with $\Lambda=450,500,550~\text{MeV}$
- same power counting scheme and cutoff procedures at each order
- πN LECs from Roy-Steiner analysis¹
- ¹ M. Hoferichter et al., PRL **115**, 192301 (2015)

Three-nucleon interaction V_{3N}

 V_{3N} at N2LO: Fit c_D and c_E with B(A = 3) and GT 3 H β -decay

$$d_R = -\frac{1}{4} \frac{M_N}{\Lambda_\chi \, g_A} c_D + \frac{1}{3} M_N(c_3 + 2 \, c_4) + \frac{1}{6}$$
²

Possibility to add the 2π -exchange V_{3N} at N3LO or N4LO just readjusting c_1, c_3, c_4 ³

- ² R. Schiavilla, unpublished; L.E. Marcucci et al., PRL 121, 049901 (2018) (E)
- ³ H. Krebs et al., PRC **85**, 054006 (2012)

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Few-body results from χ EFT

Mainz, October 1-3 2018

Nuclear interactions (NV potential)

N3LO V_{NN}

- Explicit Δ 's in 2π -exchange up to N3LO
- minimally non-local/coordinate space: Gaussian cutoffs $(R_S, R_L) = (0.8, 1.2)$ fm (model I)
- fit the 2013 Granada database
 - up to $E_{lab} = 125$ MeV (~ 2700 data) with χ^2 /datum ≤ 1.1 (model a)
 - up to $E_{lab}=$ 200 MeV (\sim 3500 data) with $\chi^2/$ datum \leq 1.4 (model b)

M. Piarulli et al., PRL 120, 052503 (2018)

The NVIa* and NVIb* potentials

To avoid correlation between B(A = 3) and $a_{nd} \rightarrow B(A = 3)$ and $GT^{3}H \beta$ -decay $\Rightarrow j_{A}(q)$ NSLO Ignore pion-pole terms [(b), (d), (f), (h), (j), (l)] • diagrams (g) and (h) vanish; diagram (e) $\rightarrow c_3^{\Delta}$; c_4^{Δ} (similar to c_3 ; c_4 of diagram (i)) CTs in (i) and (k) $\mathbf{j}_{5,a}^{N3LO}(\mathbf{q};CT) = \mathbf{z}_0 e^{i\mathbf{q}\cdot R_{ij}} \frac{e^{-(r_{ij}/R_S)^2}}{\pi^{3/2}} (\tau_i \times \tau_j)_a (\sigma_i \times \sigma_j)$ $z_0 = \frac{g_A}{2} \frac{m_\pi^2}{f_+^2} \frac{1}{(m_\pi R_S)^3} \left[-\frac{m_\pi}{4g_A \Lambda_V} c_D + \frac{m_\pi}{3} (c_3 + 2c_4 + c_3^\Delta + 2c_4^\Delta) + \frac{m_\pi}{6m} \right]$ but $c_3^{\Delta} + 2c_4^{\Delta} = -\frac{h_A^2}{9m_{AM}} + 2\frac{h_A^2}{18m_{AM}} = 0$ with $h_A \equiv g_A^*$

	NVIa	NVIb
cD	3.666	-2.061
c _E	-1.638	-0.982
GT	0.9885	0.9730
	NVIa*	NVIb*
cD	-0.635	-4.71
сE	-0.09	0.55

 ${\rm GT}^{\it exp} = 0.9511 \pm 0.0013$

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

- $d_R/z_0 ~(\Rightarrow c_D)$ from muon capture on deuteron (MuSun experiment)
- In V_{3N} only c_E to be fixed with B(A = 3)
- $\rightarrow\,$ GT in ^3H $\beta\text{-decay}$ and muon capture on ^3He become predictions
- $\Rightarrow\,$ more stringent test for $\chi {\rm EFT}$ using the weak sector

More are the data, the better it is!

Muon capture on deuteron and ³He

• $\mu^{-} + d \rightarrow n + n + \nu_{\mu}$ (MuSun at PSI with 1.5 % accuracy) • $\mu^{-} + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu} [\Gamma({}^{3}\text{He})^{Exp} = (1496 \pm 4) \text{ s}^{-1}]$ • $\mu^{-} + {}^{3}\text{He} \rightarrow n + d + \nu_{\mu}$ (poor data) • $\mu^{-} + {}^{3}\text{He} \rightarrow n + n + p + \nu_{\mu}$ (poor data)

	$^{1}S_{0}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	${}^{1}D_{2}$	${}^{3}F_{2}$	Γ(² H)	Γ(³ He)
IA(500)	238.8	21.1	44.0	72.4	4.5	0.9	381.7	1355
IA(600)	238.7	20.9	43.8	72.0	4.5	0.9	380.8	1351
FULL(500)	253.7±0.9	20.3	47.0	72.0	4.5	0.9	398.4±0.9	$1488{\pm}10$
FULL(600)	$253.3{\pm}1.0$	20.1	46.7	71.6	4.5	0.9	$397.1 {\pm} 1.0$	$1495{\pm}9$

L.E. Marcucci *et al.*, PRL **108**, 052502 (2012); PRL **121**, 049901 (2018) (E) see also B. Acharya *et al.*, arXiv:1806.09481: $\Gamma(^{2}H) - {}^{1}S_{0} = (252.8 \pm 4.6 \pm 3.9) s^{-1}$

Room for more "fun":

- Apply χ EFT to breakup A = 3 channels
- Connection to neutrino scattering and more (see Golak's contribution)
- Study muon capture on ⁴He

Electromagnetic current (I)

- ${\ensuremath{\, \bullet }}$ not included the Δ intermediate states at N3LO
- $\mathbf{j}_{\mathrm{OPE}}^{\mathrm{N3LO}}(\mathbf{q}) \rightarrow \mathbf{d}_2^{S}$
- $\mathbf{j}_{\mathrm{MIN}}^{\mathrm{N3LO}}(\mathbf{q}) \rightarrow \text{from } \pi N \text{ scattering}$
- $\mathbf{j}_{\mathrm{NM}}^{\mathrm{N3LO}}(\mathbf{q})
 ightarrow \mathbf{d}_1^{\mathcal{S}}$; $\mathbf{d}_1^{\mathcal{V}}$

To be noticed: in ∯-EFT

$$egin{aligned} \mathbf{j}_{ ext{OPE}}^{ ext{N3LO}}(\mathbf{q}) \propto rac{oldsymbol{\sigma}_j \cdot \mathbf{k}_j}{(m_\pi^2 + \mathbf{k}_j^2)} \, \mathbf{q} imes [(oldsymbol{d}_2^{ extsf{S}} oldsymbol{ au}_i + oldsymbol{d}_2^{ extsf{V}} oldsymbol{ au}_j^z) \mathbf{k}_j \ + oldsymbol{d}_3^{ extsf{V}} (oldsymbol{ au}_i imes oldsymbol{ au}_j)^z oldsymbol{\sigma}_i imes \mathbf{k}_j] \end{aligned}$$

 d_2^V ; $d_3^V
ightarrow$ saturated with Δ -current of panel (e)

Fitting the LECs with NVIa* and NVIb*

• d_1^S and $d_2^S \rightarrow \mu_d$ and $\mu_S(A=3)$ • $d_1^V \rightarrow \mu_V(A=3)$

Fitting the LECs with N3LO of EM03 (A-EFT)

- d_1^S and $d_2^S \rightarrow \mu_d$ and $\mu_S(A=3)$
- (SET III) $d_1^V \rightarrow \mu_V(A=3)$
- d_2^V and $d_3^V \Delta$ -resonance saturation picture

Selected results: the deuteron magnetic form factors

Selected results: the deuteron photodisintegration

$$\mathbf{q}\cdot\mathbf{j}^{\mathrm{NLO}} = [\mathbf{v}_{ij}^{\mathrm{LO}}, \rho(\mathbf{q})] \quad \text{for } \mathbf{q} \to \mathbf{0}$$

 $v^{\rm LO}_{ij}
ightarrow {\sf OPE} + {\sf CT}~(C_S~{\sf and}~C_T~{\sf LECs})$ fitted to B_d and NN data up to 125 MeV

Selected results: the $\overline{A} = 3$ form factors (I)

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Few-body results from χ EFT

Mainz, October 1-3 2018

Selected results: the A = 3 form factors (II)

Piarulli et al., PRC 87, 014006 (2013) \rightarrow "old" N3LO of EM03

Discrepancy also within phenomenological approach: Isn't this also a puzzle?

Saclay vs. JLab data

A. Camsonne et al., PRL 119, 162501 (2017)

	PhenApp (AV18)	χ EFT (N3LO - EM03)	Exp.
$r_c(d)$ [fm]	2.119	2.126(4)	2.130(10)
<mark>Q(d)</mark> [fm ²]	0.280	0.2836(16)	0.2859(3)
$r_c(^{3}\text{He})$ [fm]	1.928	1.962(4)	1.973(14)
<i>r_m</i> (³ He) [fm]	1.909	1.920(7)	1.976(47)
$r_c(^{4}\text{He})$ [fm]	1.639	1.663(11)	1.681(4)

L.E. Marcucci et al., JPG 43, 023002 (2016)

Two-nucleon momentum distributions

$$n^{np}(k_{rel}, K_{c.m.}) = \int d\hat{\mathbf{k}}_{rel} \int d\hat{\mathbf{K}}_{c.m.} \Psi^{\dagger}(\mathbf{k}_{rel}, \mathbf{K}_{c.m.}) P_{np} \Psi(\mathbf{k}_{rel}, \mathbf{K}_{c.m.})$$
$$n^{np}(k_{rel}, K_{c.m.} = 0) \rightarrow \text{back} - \text{to} - \text{back} (BB)$$

See also:

- D. Lonardoni et al., arXiv:1804.08027
- R. Weiss *et al.*, arXiv:1807.08677, 1806.10217, PLB **785**, 304 (2018); PLB **780**, 211 (2018) ...

 \Rightarrow SRCs

EMN17 potentials

L.E. Marcucci et al., arXiv:1809.01849

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Order-by-order convergence ($\Lambda = 500$ MeV as an example)

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Λ-dependence

$SRCs - BB (N_{np}^{SRC,BB})$

$$N_{np}^{SRC,BB} = 4\pi \int_{k_{rel}^{-}}^{\infty} n^{np}(k_{rel}, K_{c.m.} = 0) k_{rel}^2 \, dk_{rel} \quad \text{with } k_{rel}^{-} = 1.5 \, \text{fm}^{-1}$$

	$\Lambda = 450 \text{MeV}$	$\Lambda = 500 \text{MeV}$	$\Lambda = 550 \text{ MeV}$
LO	0.094	0.120	0.144
NLO	0.047	0.066	0.096
N2LO	0.087	0.118	0.141
N2LO/N2LO	0.086	0.114	0.135
N3LO	0.131	0.112	0.122
N3LO/N2LO-II	0.121	0.107	0.117
N4LO	0.125	0.119	0.129
N4LO/N2LO-II	0.116	0.113	0.123

 $\begin{array}{l} \mbox{CDBonn}/\mbox{TM} \Rightarrow 0.157 \mbox{ (no } V_{3N} : 0.171 \mbox{)} \\ \mbox{AV18}/\mbox{UIX} \Rightarrow 0.210 \mbox{ (no } V_{3N} : 0.241 \mbox{)} \Rightarrow \mbox{Significant model-dependence} \end{array}$

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Preliminary results with NV potentials (I)

Preliminary results with NV potentials (II)

SRCs – BB
$$(N_{np}^{SRC,BB})$$

0.210
0.157
0.113
0.167
0.185

 \Rightarrow again large model-dependence

Summary and outlook

Summary

- Few-body systems: "ideal" labs to study nuclear interactions and currents
- EM structure of $A \leq 3$ within "local" χ EFT framework (\rightarrow MC approach)
- Two-nucleon momentum distributions of ³He in $\chi {\rm EFT}$
 - Small V_{3N} contributions
 - Reasonable order-by-order convergence
 - Significant model-dependence

Outlook

- Other EM observables within the "local" χ EFT framework: radiative captures (*np*, *nd*, *pd*^{*} ...), *A* = 3, 4 electro-disintegration
- Systematic study of A ≤ 4 momentum-distributions, pp/np probabilities, spectral function S_N(k, E) ...
- Move to A > 4 (work in progress: A = 6 nuclei almost there)

The pd radiative capture

$$p + d \rightarrow {}^{3}\mathrm{He} + \gamma$$

• Relevant for Big Bang Nucleosynthesis ($E_{c.m.} \sim 100 - 300 \text{ keV}$)

 ${}^{2}\text{H/H}|_{TH} = (2.46 \pm 0.03 \pm 0.03) \times 10^{-5}$ $\Omega_{b}h^{2} \rightarrow \text{Planck 2015 \& standard } N_{eff}$ vs. ${}^{2}\text{H/H}|_{Exp} = (2.53 \pm 0.04) \times 10^{-5}$

L.E. Marcucci et al., PRL 116, 102501 (2016)