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Physics of e.m. Interactions Physics of e.m. Interactions with with 
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What can one learn from a comparison What can one learn from a comparison 
theory-experiment?theory-experiment?

Which questions might  such a Which questions might  such a 
comparison   answer ?comparison   answer ?



G. Orlandini  – SFB workshop on "Electromagnetic observables for low-energy nuclear physics”, Mainz, October  1-3 2018

General features of e.m. interaction with nuclei
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The e.m. interaction is perturbative compared to the nuclear strong 
interaction

                                         H = H
N
+ V

em
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The e.m. interaction is perturbative compared to the nuclear strong interaction

H = H
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Therefore at 1st order P.T. the reaction cross sections are proportional to

s ~ | < F |  V
em

 
 
| I > | 2 



G. Orlandini  – SFB workshop on "Electromagnetic observables for low-energy nuclear physics”, Mainz, October  1-3 2018

  | F > and | I >  are eigenstates of the nuclear H
N
 

 

Where:

The e.m. interaction is perturbative compared to the nuclear strong interaction

H = H
N
+ V

em

Therefore at 1st order P.T. the reaction cross sections are proportional to

s ~ | < F |  V
em

 
 
| I > | 2 



G. Orlandini  – SFB workshop on "Electromagnetic observables for low-energy nuclear physics”, Mainz, October  1-3 2018

Where:
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Where:

  | F > and | I >  are eigenstates of the nuclear H
N
 

 
  V

em
   is the e.m interaction between the electron and the e.m  property of 

            the relevant d.o.f.   

   | I > is a bound state (g.s.)  

The e.m. interaction is perturbative compared to the nuclear strong interaction

H = H
N
+ V

em

Therefore at 1st order P.T. the reaction cross sections are proportional to
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The e.m. interaction is perturbative compared to the nuclear strong interaction

H = H
N
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Where:

  | F > and | I >  are eigenstates of the nuclear H
N
 

 
  V

em
   is the e.m interaction between the electron and the e.m  property of 

            the relevant d.o.f.   

   | I > is a bound state (g.s.)  

  | F > can be a bound or a continuum (scattering) state
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What can one learn from a comparison What can one learn from a comparison 
theory-experiment?theory-experiment?

 | F > and | I >  are eigenstates of the nuclear H
N
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What can one learn from a comparison What can one learn from a comparison 
theory-experiment?theory-experiment?

 | F > and | I >  are eigenstates of the nuclear H
N
 

 

1: Are Protons and  Neutrons the relevant (effective) degrees of 
freedom of H

N
? “free-like”? “modified’’? 

 
    (question and answers are kinematics (scale) dependent!)

2: how do Protons and  Neutrons interact? In the same way as it 
appears from NN scattering data? (Off-shell part of the potential?) 

 s ~ | < F |  V
em

 
 
| I > | 2 

Related  questions one might answer:Related  questions one might answer:
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em
   is the e.m interaction between the electron and the e.m  

          property of  the relevant d.o.f.  

What can one learn from a comparison What can one learn from a comparison 
theory-experiment?theory-experiment?

1: Are Protons and  Neutrons the only   relevant (effective) degrees of 
freedom also for V

em
 ? i.e. are there other  currents on play ?

2: How do such additional currents look like? How are they 
connected to H

N
 (is charge conservation enough? Do we need  

more??)
     
 

 

 s ~ | < F |  V
em

 
 
| I > | 2 

Related questions one might answer:Related questions one might answer:



G. Orlandini  – SFB workshop on "Electromagnetic observables for low-energy nuclear physics”, Mainz, October  1-3 2018
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What can one learn from a comparison What can one learn from a comparison 
theory-experiment?theory-experiment?

 
  | I > is a bound state (g.s.)  

1: given the relevant d.o.f., which is the appropriate technique to 
calculate the ground state wave function?
  
2: Are we able to control the possible necessary approximations, i.e. 
to estimate  the accuracy? 

3: Is the estimated accuracy compatible to the experimental one?
 

 s ~ | < F |  V
em
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  | F > can be a bound or a continuum (scattering) state
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  | F > can be a bound or a continuum (scattering) state

What can one learn from a comparison What can one learn from a comparison 
theory-experiment?theory-experiment?

 s ~ | < F |  V
em

 
 
| I > | 2 

Related questions one might answer:

1: given the relevant d.o.f. are we able to calculate the many body 
scattering state  
  
2: Are we able to control necessary approximations, namely to 
estimate  the accuracy? 

3: how does  the estimated accuracy on   | F >  reflects on the 
accuracy of the observable?

4:  are experimental and theoretical accuracy compatible ?
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Other general questions:Other general questions:
 

  What are the limits in q and w of the non-relativistic framework?

 Is first order perturbation theory sufficient?

 Given the fact that  the “low momentum transfer q”  ( w < q, 
therefore “low energy”w !)   corresponds to large l, i.e.  the virtual 
photon probes long range properties,  do we see  the emergence of a 
collective behaviour from a pure MIcroscopic description in terms of A 
interacting protons and neutrons? 

 When can an “experimental bump” be interpreted as  a “collective          
   behaviour” or  a “quantum  mechanical resonance”?
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Low-energy/momentumLow-energy/momentum
observablesobservables
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Example N.1:Example N.1:

00++ “Resonance” in   “Resonance” in  44HeHe
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0+ Resonance in  4He

Position  at ER = 20.1 MeV, (i.e. above the 3H-p threshold)

  = 270±70 keV -  frst seen in hadronic  [p-3H,  T(d,pn)T] reactions,
 Strong evidence in (e,e’) scattering 

G. Koebschall et al./ Quasi bound state in 4He - Nucl. Phys. A405, 648 (1983)   
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 The (e,e’) cross section 

= V= V
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q  = w
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Electron scattering
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The measurements have 
concentrated on the peaks of the 
resonance  as function of q
i.e. the “transition form factor”
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The 0+ resonance of 4He is a typical 
isoscalar monopole (C0) 

excitation 
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Isoscalar monopole excitation operator

= V= V
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isoscalar

isovector

Negligible !

Bacca et al. Phys.Rev.C76:014003(2007)
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N3LO+N2LO 3bf

with EIHH

Monopole response as function of w| 
S.Bacca et al.  PRL 110 042503 (2013)
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Similar behaviour in  a many-body system: the plasmon

The dynamical structure function   
S(q,w) 

 presents a prominent peak at  low q.
 

 For  increasing q the peak becomes less and less 
pronounced

 on an increasing background

w

The many-body system: 
valence-electron gas 

in  metals

More later!
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In S.Bacca et al.  PRL 110 042503 (2013),   S
M
(q,w) was calculated via the Lorentz 

Integral Transform (LIT) method and looked in particular at the transition form 

factor or two different realistic potentials (N3LO+N2LO 3bf, AV18 +UIX) 

An interesting aspect of this resonance: 
its transition form factor as a “prism” of nuclear potentials
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Electron scattering

0+ 
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The measurements have 
concentrated on the peaks of the 
resonance  as function of q
i.e. the “transition form factor”
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S.Bacca et al.  PRL 110 042503 (2013)

Very large potential dependence !!!

F
 t 

r

Transition form factor|<E
R
| C0(q) |0>|2
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How  were  those results How  were  those results 
obtained:obtained:
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 †

With the integral transform methodWith the integral transform method
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One frst calculates One frst calculates LL
LL
((q q , , ww

00
 ,  ,  )   )  with bound  with bound  

state methods  and then inverts the transformstate methods  and then inverts the transform
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((q q , , ww
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 ,  ,  ) )  ==∫∫dd  ww  S

M
(q , w) L ( L (ww, , ww
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The many-body scattering problem is avoided
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S.Bacca et al.  PRL 110 042503 (2013)

Very large potential dependence !!!
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Example N.2:Example N.2:
                      

Longitudinal S(q,Longitudinal S(q,ww) ) 

(all multipoles)(all multipoles)
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Longitudinal (Coulomb) excitation operator

= V= V
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One frst calculates One frst calculates LL
LL
((q q , , ww

00
 ,  ,  ) )       and then and then 

inverts the transforminverts the transform
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Same procedure of calculation Same procedure of calculation 
with integral transform:with integral transform:
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SURPRISE !

LARGE EFFECT OF 
3-BODY FORCE  

NO MEASUREMENTS
AT LOW q !!!

S.Bacca et al., PRL 102 (2009) 162501

4Hewithout 3BF
                with 3BF

LOW q:



G. Orlandini  – SFB workshop on "Electromagnetic observables for low-energy nuclear physics”, Mainz, October  1-3 2018

Effect of different 3-body forces

without 3BF
                with two different 3BF
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Effect of different 3-body forces (N2LO &UIX)
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Example N.3:Example N.3:

””Collettive behaviour” in 4,6 body Collettive behaviour” in 4,6 body 
systemssystems
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6-Body total photodisintegration

Theory:
LIT+ EIHH 6Li

6He

classical GT mode ??

soft mode ??

S.Bacca et al. PRL89(2002)052502S.Bacca et al. PRL89(2002)052502
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comparison with experiment

6Li 6He
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7-Body total photodisintegration with LIT method

'75

'75

S.Bacca et al.
Phys.Lett. B603 
(2004) 159-164 
 

???
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Higher energy/momentumHigher energy/momentum
observables (q.e.)observables (q.e.)
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dotted: PWIA

full: AV18+UIX

Role of 
Final State
Interaction:

S.Bacca et al., 
PRL 102 (2009) 162501

4He

“quasi elastic”  electron scattering

without FSI
                      with FSI

4He
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 Role of relativity???

“quasi elastic”  electron scattering

S.Bacca et al., 
PRL 102 (2009) 162501

dashed: AV18

full: AV18+UIX

4He
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Check frame dependence
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One can perform calculation in various 
frames:

Laboratory:                 PT = 0
Breit:                           PT = -q/2
Anti-Lab:                     PT = -q
Active Nucleon Breit:  PT = -Aq/2

Results must be compared in the LAB frame

RL(q,w) =
q2

(qfr)2

ET 
fr

MT

RL(qfr,wfr)
f
r





Exp: Marchand 1985, Dow 1988, Carlson 2002

   V.D. Efros et al. RC72 (2005) 011002(R) 3He
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Quasielastic region: 
assume two-body kinematics as 

input of a n.r. calculation and use the 
correct relativistic relative 

momentum

3He

Curves collapse around the ANB result
 

ANB frame minimizes relativistic  
effects! 
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The same 
happens

 also in 4He!

 q=700 MeV/c

4He

N.Rocco et al. Phys. Rev. C 97, 055501 (2018) 
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 frame 
dependence 

much reduced!

Assuming q.e. kinematics  [2-body break-up 1-(A-1) ] 

one can treat the relativistic kinematical inputs 

correctly!! 

 q=700 MeV/c

4He

   

N.Rocco et al. Phys. Rev. C 97, 055501 (2018) 

4He
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 frame 
dependence 

much reduced!

Assuming q.e. kinematics  [2-body break-up 1-(A-1) ] 

one can treat the relativistic kinematical inputs 

correctly!! 

 q=700 MeV/c

4He

   

N.Rocco et al. Phys. Rev. C 97, 055501 (2018) 

4He

One can extend the applicability of a  n.r. calculation 
choosing the right frame
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Conclusions:
 

which measurements              which questions

2: how do Protons and  Neutrons interact? 

4:  are experimental and theoretical 
accuracy compatible ?
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Conclusions:
 

which measurements              which questions

2: how do Protons and  Neutrons interact? 
without 3BF
                with 3BF
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Conclusions:
 

which measurements              which questions

1: Are Protons and  Neutrons the only   relevant (effective) degrees of 
freedom also for V

em
 ? i.e. are there other  currents on play ?

2: How do such additional currents look like? How are they 
connected to H

N
 (is charge conservation enough? Do we need  

more??)
     
 

 

'75
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6Li

6He

Conclusions:
 

which measurements              which questions

 ...do we see  the emergence of a collective 
behaviour from a pure MIcroscopic 
description in terms of A interacting protons 
and neutrons?
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Conclusions:
 

which measurements              which questions

  What are the limits in q and w of 
the non-relativistic framework?

 q=700 MeV/c

We need to check on 
(e,e’) to interpret 
neutrino data!! 
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More on Collective behaviours in few-body 
systems 
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A typical example of collectivity in  a many-body system: the plasmon

The dynamical structure function   
S(q,w) 

 presents a prominent peak at  low q.
 

 For  increasing q the peak becomes less and less 
pronounced

 on an increasing background

w

The many-body system: valence-
electron gas 

in  metals
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a “collective” oscillation  of the  free electron density with 
respect to the fixed positive ions in a metal 

+ +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +
-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -
+ +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +
 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -
+ +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +
 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -
+ +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +
-  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -

A classical interpretation of the plasmon:
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a “collective” oscillation  of the  free electron density with 
respect to the fixed positive ions in a metal 
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              -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -
+ +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +
              -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -

A classical interpretation of the plasmon:
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Monopole Resonance

Historically, for larger systems  “GMR” has been 

observed and interpreted as an harmonic collective motion 

of  compression
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Since we can calculate the whole S
M
(q,w) we can investigate whether an ab 

initio calculation of the 4He  isoscalar monopole  strength exhibits features that 

are believed to characterize a collective breathing mode, and how they depend 

on different nuclear forces.  
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When the first measurements of the 0+ resonance of 4He appeared 
in 1965 (Frosch et al.) Werntz and Ueberall asked the interesting 

question:
Is the 0+ resonance of 4He a collective breathing mode?

Their  simple breathing mode model (density scaling) implies
a) the transition density |< 0+

R
| S

i
 d(r-r

i
) | 0>|2 changes sign at  r = 

<r2>1/2

b) the breathing mode exhausts m
1
 i.e.  

w
R

w

S
M
(q,w)

“breathing mode”
(collective Monopole strength)

q4

1lim 
q--->0
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<r2>1/2     1.5 fm≈

Black: N3LO+N2LO                        red: AV18+UIX

a) the transition density |< 0+

R
| S

i
 d(r-r

i
) | 0>|2 changes sign at  r = <r2>1/2
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“Sum Rules  provide useful yardsticks for measuring 
quantitatively the degree of collectivity of a given excited state” 
                            D.Rowe in “Nuclear Collective motion” 1970 
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Sum Rules and Collectivity 

ò S
M
(q, w )  dw   = m

0
(q) =  <0| C0(q)  C0(q) |0>

ò  SM
(q, w )  w dw = m

1
(q) = <0| C0(q) H C0(q) |0>= A/2m < r2 >

    S
M
(q, w ) / w dw   = m

-1
(q) =

 

ò 2aM= Compressibility
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Sum Rules and Collectivity 

ò S
D
(q, w )  dw   = m

0
(q) =  <0| D(q)  D(q) |0>

ò S
D
(q, w )  w dw  = m

1
(q) = <0| D(q) H D(q) |0> =  NZ / (2mA)

                                         “TRK sum rule”

 

    S
M
(q, w ) / w dw   = m

-1
(q) =

 

ò 2aD= Polarizability
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“Sum Rules  provide useful yardsticks for measuring 
quantitatively the degree of collectivity of a given excited state” 
                            D.Rowe in “Nuclear Collective motion” 1970 

“A typical isoscalar collective state exhausts something like 50% 
of m

0
” 

                            D.Rowe in “Nuclear Collective motion” 1970 
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Sum rules:

 N3LO+N2LO 
AV18+UIX
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Sum rules:

 N3LO+N2LO 
AV18+UIX
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Is the 0+ resonance of the α-particle a “breathing 
mode”

???
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  S
M
(q , w ) =  ImIm{<{<00| | C0(q)    ((  w +E+E

00––H+H+i i εε))-1-1  C0 (q)    |0|0>>}}
 

Notice thatNotice that

S
M
(q , w) = Σ

n 
|< n |C0 (q)|0 >|2 δ ( w – E

n
+ E

0
) ∫

 

 
can be rewritten as
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Illustration of the calculation of Illustration of the calculation of LL
LL
((q q , , ww

00
 ,  ,  ) )  

        

S
M
(q , w)=  ImIm{<{<00| | C0(q)    ((ww+E+E

00––H+H+i i εε))-1-1  C0 (q)  |0>}

LL
LL
((q q , , ww

00
 ,  ,  ) )  ==ImIm{<{<00| | C0(q)    ((ww

00
+E+E

00––H+H+i i ))-1-1  C0 (q)    |0|0>>}}

    

  

Notice the similarity!Notice the similarity!
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Illustration of the calculation of Illustration of the calculation of LL
LL
((q q , , ww

00
 ,  ,  ) )  

        

S
M
(q , w)=  ImIm{<{<00| | C0(q)    ((ww+E+E

00––H+H+i i εε))-1-1  C0 (q)  |0>}

LL
LL
((q q , , ww

00
 ,  ,  ) )  ==ImIm{<{<00| | C0(q)    ((ww

00
+E+E

00––H+H+i i ))-1-1  C0 (q)    |0|0>>}}

    

  

Notice the similarity!Notice the similarity!

  finitefinite!!
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Illustration of the calculation of Illustration of the calculation of LL
LL
((q q , , ww

00
 ,  ,  ) )  

        

S
M
(q , w)=  ImIm{<{<00| | C0(q)    ((ww+E+E

00––H+H+i i εε))-1-1  C0 (q)  |0>}

LL
LL
((q q , , ww

00
 ,  ,  ) )  ==ImIm{<{<00| | C0(q)    ((ww

00
+E+E

00––H+H+i i ))-1-1  C0 (q)    |0|0>>}}

    

  

Notice the similarity!Notice the similarity!

  finitefinite!!

the calculation of LL
LL
((q q , , ww

00
 ,  ,  ) )  is a bound state like problem !!!
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Because of a finite ,
 
now it is perfectly legitimate to solve the problem  on a square 

integrable basis  
 

    

LL
LL
((q q , , ww

00
 ,  ,  ) )  ==ImIm{<{<00| | C0(q)    ((ww

00
+E+E

00–H+–H+i i ))-1-1  C0 (q)    |0|0>>}}

 Σ
n
|m >< m|= I  Σ

n
|n >< n|= I 
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Because of a finite ,
 
now it is perfectly legitimate to solve the problem  on a square 

integrable basis  
 

    

LL
LL
((q q , , ww

00
 ,  ,  ) )  ==ImIm{<{<00| | C0(q)    ((ww

00
+E+E

00–H+–H+i i ))-1-1  C0 (q)    |0|0>>}}

 Σ
n
|m >< m|= I  Σ

n
|n >< n|= I 

By diagonalizing H
mn

 one obtains eigenvalues  x
n 

and eigenfunctions  |x
n

 

 
and L

L
 becomes  a sum of Lorentzians centered in x

n
of width    

    
  LL

LL
((q ,q ,ww

00
  , ,   ) =) =  ΣΣ

nn                                                  
  

  ( ( ww
00
+E+E

00––xx
n n 

))22+ +   22

|< n |C0 (q)|0 >|2
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We have used the Hyperspherical Harmonics

 basis and the Suzuki-Lee unitary transformation to speed up the convergence (EIHH)

As potentials we have used 

both AV18+UIX and  N3LO+N2LO
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Some results:Some results:

sI = 5 MeV
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sI = 1 MeV

Some results:Some results:

sI = 5 MeV

sI = 1 MeV



G. Orlandini  – SFB workshop on "Electromagnetic observables for low-energy nuclear physics”, Mainz, October  1-3 2018

si =0.001 MeV

sI = 1 MeV

Some results:Some results:
sI = 0.001 MeV

sI = 5 MeV

sI = 1 MeV
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si =0.001 MeV

sI = 0.001 MeV

Some results:Some results:

Of 200,000 “states” only very few are close to 
threshold 
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The  precision of the calculation did not allow to resolve the shape of the 
resonance, therefore the width could not be determined.
[now possible! See W.Leidemann, Phys. Rev. C 91, 054001 (2015)]

}
too few states!
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The precision of the calculation did not allow to resolve the shape of the 
resonance, therefore the width could not be determined.
[now possible! See W.Leidemann, Phys. Rev. C 91, 054001 (2015)]

However, the strength of the resonance (transition f.f.) 
could be determined!

Of course not by taking the strength to the state |x
n

 
, but by arranging the 

inversion in a suitable way:
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LIT - Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function   S
M
(q , w)

   S
M
(q , w)= S

m=1
 c

m
 c

m
(q ,w ,a

i
)

with given set of functions
  
c

m  
, and unknown coefcients c

m
  

M
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LIT - Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function   S
M
(q , w)

   S
M
(q , w)= S

m=1
 c

m
 c

m
(q ,w ,a

i
)

with given set of functions
  
c

m  
, and unknown coefcients c

m
  

 

2) Calculate:   lm (q q , , ww00 ,  ,   ) =∫ dww  cm(q ,ai) L ( ww,, ww00 ,  ,   )    

M
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LIT - Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function   S
M
(q , w)

   S
M
(q , w)= S

m=1
 c

m
 c

m
(q ,w ,a

i
)

with given set of functions
  
c

m  
, and unknown coefcients c

m
  

 

2) Calculate:   lm (q q , , ww00 ,  ,   ) =∫ dww  cm(q ,ai) L ( ww,, ww00 ,  ,   )    

M

3) Construct L
L
( q q , , ww

00
 ,  ,  ) = S

m=1
 c

m
 l

m
(q q , , ww

00
 ,  ,    )
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LIT - Inversion

Standard LIT inversion method

1) Take the following ansatz for the response function   S
M
(q , w)

   S
M
(q , w)= S

m=1
 c

m
 c

m
(q ,w ,a

i
)

with given set of functions
  
c

m  
, and unknown coefcients c

m
  

 

2) Calculate:   lm (q q , , ww00 ,  ,   ) =∫ dww  cm(q ,ai) L ( ww,, ww00 ,  ,   )    

M

3) Construct L
L
( q q , , ww

00
 ,  ,  ) = S

m=1
 c

m
 l

m
(q q , , ww

00
 ,  ,    )

4) Determine c
m

  and a
i
 by best fit on L

L
( q q , , ww

00
 ,  ,  )   
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1)  Subtract a Lorentzian centered in ER  with parameter f
R
                 

        L'
L
(q ,w

0
, , f

R
 ) ≡ L

L
(q ,w

0
, , f

R
 )   - fR  / [(w0

  – ER)2  + 2 ] 
 

Inversion in this case of a resonance 
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1)  Subtract a Lorentzian centered in ER  with parameter f
R
                 

        L'
L
(q ,w

0
, , f

R
 ) ≡ L

L
(q ,w

0
, , f

R
 )   - fR  / [(w0

  – ER)2  + 2 ] 
 

Inversion in this case of a resonance 

2) Include in the inversion a basis function with resonant      structure
                    

                     c
R
(w) = fR / [(ER – w)2  + 2 / 4 ]
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1)  Subtract a Lorentzian centered in ER  with parameter f
R
                 

        L'
L
(q ,w

0
, , f

R
 ) ≡ L

L
(q ,w

0
, , f

R
 )   - fR  / [(w0

  – ER)2  + 2 ] 
 

3) Reduce  the strength fR up to the point that the inversion does not show any resonant 

structure at the resonance energy  ER

Inversion in this case of a resonance 

2) Include in the inversion a basis function with resonant      structure
                    

                     c
R
(w) = fR / [(ER – w)2  + 2 / 4 ]
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Inversion results with diferent fR values

[ AV18+UIX, q=300 MeV/c,  = 5 MeV)

0.

0.01

0.02
fR

0.028

0.0295

0.0290
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ENERGIES

1st th. 
(p-3H)

2nd th. 
(n-3He)

E
R
 Exp.

AV18
UIX

N3LO
N2LO

G. Orlandini –  "Inelastic Reactions in Light Nuclei” , Jerusalem, October  6-10,  2013
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