SFB1044 workshop: Electromagnetic observables for low-energy nuclear physics

Few-Nucleon Systems

Elżbieta Stephan University of Silesia, Katowice, Poland

E. Stephan UŚl

Hadronic Few Body Systems Starting point: 2 Nucleons

very rich data base: ~3000 data points for pp below 350 MeV
 phase shift analysis by Nijmegen group (PWA93)
 quality of description: χ² close to 1

System of 3 Nucleons

Predictions of NN potentials alone:

- fail to reproduce binding energies of 3N, 4N and heavier systems
- fail to reproduce minimum of the d(N,N)d elastic scattering cross section

Binding energy [MeV]	³ Н	³ He	⁴ He
Experimental value	8.48	7.72	28.3
CD Bonn	8.01	7.29	26.3
CD Bonn + TM99	8.48	7.73	29.2

Introducing concept of three-nucleon forces: genuine (irreducible) interaction of three nucleons

as a consequence of internal nucleon structure

Systematic approach within ChPT

E. Stephan UŚl

3N Systems

what can be studied experimentally?

➢Processes:

◆Elastic scattering: N + d → N + d
◆Breakup: N + d → N + N + N
◆and electromagnetic processes

Observables:
 differential cross section
 vector&tensor analyzing powers
 polarization transfer, correlations

Energy range - why "medium" and what does it mean?
 measurable 3NF effects
 below pion threshold

Technique:
 spectrometers
 large acceptance detectors

E. Stephan UŚl

3N Systems – Elastic Scattering Analyzing Powers

- 3NF not always improves descriptiona lot of examples at various energies
- problem with spin part of 3NF?

•140 MeV - K. Sekiguchi et al., Phys. Rev. C 70, 014001 (2004) •130 MeV - H. Mardanpour et al., Eur. Phys. Jour. 31, 383 (2007), E.Stephan et al., Phys. Rev. 76 057001 (2007) •100 MeV E.Stephan et al.,

3N Systems Elastic Nucleon-Deuteron Scattering

pd and nd Elastic Scattering at 70-400 MeV/nucleon

- Number of observables for the elastic scatterng channel - complete set would provide full dynamical information (at the given energy)
- Only fraction has been measured accurately and systematically (RIKEN/RCNP/IUCF/KVI)
- Not completely clear picture still much to explore !
- Complementary studies needed:
 Nucleon-Deuteron Breakup

Diagram: K. Sekiguchi, FB20

3N Systems-¹H(d,pp)n Breakup Reaction

- Three nucleons in the final state 9 variables
- Energy-momentum conservation 4 equations
- Five independent kinematical variables
 - ✓ Complete (exclusive) exp. measured \ge 5
 - ✓ Inclusive exp. measured \leq 4 parameters

¹H(d,pp)n Measurement at 130 MeV (65 Mev/nucleon) Cross Section Results – 3NF & Coulomb Effects

¹H(d,pp)n Breakup Cross Section 3NF+Coulomb

65 MeV/nucleon

170 MeV/nucleon

¹H(d,pp)n and ²H(p,pp)n Breakup Cross Section Relativistic Effects

²H(n,pn)n 200 MeV

¹H(d,pp)n 170 MeV/nucleon

R. Skibiński, Eur. Phys. J. A 30, 369, (2006)

Nucleon-Deuteron Breakup Recent achievements in theoretical calculations

ChPT

□ awaited **new ChPT** calculations, at N3LO with 3NF

- Realistic potentials
 - calculations including each ingredient separately: 3NF, Coulomb, relativistic approach - all the effects are important at medium energies !
 - calculations including Coulomb interaction and 3NF (A.Deluva et al. 2009)
 - □ calculations in relativistic approach including 3NF (H.Witała et al. 2011)

3N system - ²H(p,pp)n Breakup Vector (proton) Analyzing Power

E. Stephan UŚI

Proton-Deuteron Collisions: role of 3NF Elastic Scattering vs Breakup Reaction

	p-d Elastic Scattering	Deuteron Breakup in p-d
3NF - influence on the cross section	significant, confirmed problem at energies >100 MeV	significant, confirmed ? (relativistic effects)
3NF - polarization observables	inconclusive	inconclusive
Coulomb interaction- influence on the cross section	negligible	significant, dominating at pp FSI , confirmed
relativistic effects	negligible	large effects in calculations, experimental confirmation in progress
E. Stephan UŚI		Mainz - SFB1044 workshop

Electron scattering for Few Body Physics Basic questions.

- What can be calculated?
- What is interesting?
 - on the basis of calculations, i.e. sensitivity to dynamics
 - on the basis of existing data (discrepancies)
- What can be measured? At what accuracy?
 - statistical accuracy luminosity, detector acceptance
 - systematic accuracy

Beams vs Targets

- Beam MESA
 - external: 155 MeV, 0.1mA, polarization 80%
 - internal (recovery mode): 105 MeV, >1 mA, polarization 80% ?
 - if polarization polarimeter (Moller, Mott)
- Target (d, ³He, ⁴He, ...)
 - internal gas (jet) target
 - no windows
 - Iow density
 - well defined interaction point (beam target intersection)
 - open tube target -
 - walls threshold for outgoing particles (p,d)
 - polarization
 - E. Stephan UŚl

electron scattering

what can be studied experimentally?

➢Processes:

Inclusive (dominated with quasielastic?)

- Semi-exclusive
- Exclusive

➢Observables:

- differential cross section I
- polarized beam (analysing power) II
- \$polarized target (analysing power) II
- \$ polarized beam x polarized target (correlations) III
- polarized beam x polarization analysis in final state (polarization transfer) III

Kinematics

E. Stephan UŚl

Hig. 1. The kinematics for quasi-elastic scattering of a bound proton in a nucleus, defining scattering and reaction planes.

Dytman et al. $\theta = 60^{\circ}$, 134.5° 800 elastic scattering 600 |q⁺| (MeV/c) 400 real photon limit 200 0 200 300 0 100 400 500 ω (MeV)

FIG. 2. Kinematics for this experiment. The locus of points covered at the various beam energies and scattering angles is shown in terms of the energy loss (ω) and momentum transfer (q). Forward-angle kinematics (60°) are shown as diamonds and back-angle kinematics (134.5°) are shown as boxes joined by solid lines. The solid line cutting across these lines shows the kinematics for elastic electron-nucleon scattering. The diagonal line shows the real photon limit, $q = \omega$.

Reactions to study Number of particles & level of exclusivity...

Target	Inclusive	Semi-exclusi	ve	Exclus	sive
² H	² H(e,e')				² H(e,e'p)
³ He	³ He(e,e')	³ He(e,e'p) ³ He(e,e'd)			³ He(e,e'pp)
⁴ He	⁴ He(e,e')	⁴ He(e,e'p) ⁴ He(e,e'd)	⁴He(e,e'pp))	⁴ He(e,e'pd)

E. Stephan UŚI

electron scattering

Detection Technique for Exclusive Measurements

spectrometer - the only choice for electrons

- outgoing hadrons -
 - Iarge (as compared to spectrometers) acceptance detector ,
 - position sensitive,
 - with PID and energy determination
- *cross section normalization: elastic scattering?

Measurements at NIKHEF (C.M.Spaltro et al.) in plane ³He(e,e'd) and ³He(e,e'p)

Fig. 3. Measured cross sections for different values of q at the two beam energies, compared to the results of the calculations by Golak et al. for the Bonn-B (dotted and dash-dotted curves) and AV18 potential (dashed and full curves), without and with the inclusion of MEC, respectively.

E. Stephan UŚl

outlook

basic checks for feasibility of ³He(e,e'd) and ³He(e,e'p) measurement at MESA energies:

Choice of kinematics - with respect to energy thresholds

Calculation of cross section - feasible measurement? with which ranges of averaging? interesting with respect of 3NF effects?

WASA@COSY Pellet Target

deuteron beam energy	300, 340, 380, 400 MeV
reaction channels	$\begin{array}{l} dp \rightarrow dp \\ dp \rightarrow ppn \\ dp \rightarrow {}^{3}\text{He} + \gamma \\ dp \rightarrow dp \gamma \end{array}$
luminosity	~10 ²⁹ /s/cm ²
deuterons in flat top	(1.3-1.4)*10 ⁸
total trigger rate	~6*10 ⁴ events/s (trigger in) ~3*10 ⁴ events/s (trigger out)
coincidence rate per bin	0.05-0.1 breakup events/s
Δσ /σ	~1%
collected data	22 TB (984 runs ,~22GB per run)