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Jet substructure

67

What is the arrangement of the constituents 
inside the jet?

At the end of a jet finding (i.e. clustering) 
procedure, a jet is a collection of constituents 

to which we assign a 4-momentum 
(related to the sum of the 4-momenta of the constituents)

≠
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Jet substructure

68

First studied by Mike Seymour in the early ‘90s
to distinguish W jets from QCD jets

Topic revived about 10 years 
ago in order to study boosted objects

X
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Jet substructure

69

The past ten years have seen en explosion in jet 
substructure studies, i.e. how radiation is 

arranged within jets, and what it can tell us
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Jet substructure

70

Jet 
declustering

Machine learning

Jet shapes 
(calculate a function from 

radiation distribution
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Why boosted objects

71

Heavy particle X at rest Boosted heavy particle X

X
X

Easy to resolve jets and 
calculate invariant mass, 

but signal very likely 
swamped by background 

(eg H→bb v. tt →WbWb)

Cross section very much 
reduced, but acceptance 

better and some 
backgrounds smaller/

reducible
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Mass of a single jet

72

A heavy object decaying 
into a single jet naturally 

gives it a mass...

... but pure QCD jets can be 
massive too:

G. Salam

Signal

Background
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This means that one can’t rely on the invariant mass only. 
An appropriate strategy must be found to reduce the background 

and enhance the signal

Mass of a single jet

73

Summing ‘signal’ and ‘background’ (with appropriate cross sections)
shows how much the background dominates

Background only Signal + background

Practically identical
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Tagging

74

X
How to tell this from this ?

Decay of a heavy 
(boosted) object

Light parton 
fragmentation
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Tagging and Grooming

75

‣The substructure of a jet can be exploited to
‣tag a particular structure inside the jet, i.e. a massive 

particle
‣ First examples: Higgs (2-prong decay), top (3-prong decay)

‣remove background contamination from the jet or its 
components, while keeping the bulk of the perturbative 
radiation (often generically denoted as grooming)

‣ First examples: filtering,  trimming, pruning
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Nomenclature

76

‣Groomer
‣ procedure that always returns an output jet

(i.e. it only subtracts uncorrelated ‘UE/pileup’ radiation from 
it.  This is used to “clean” the jets from radiation largely 
unrelated to the fragmentation of the particle of interest)

‣Tagger
‣ procedure that might not return an output jet

(i.e. it either tags a heavy particle originating the jet or 
returns zero. This is used to identify a specific particle 
originating the jet.)

In practice, this classification is not always followed. 
In some cases it also denoted a ‘tagger’ a procedure that rejects 

background jets more often than signal jets
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Why substructure

77

Scales: m ~ 100 GeV, pt ~ 500 GeV
(e.g. electroweak particle from decay of ~ 1TeV BSM particle)

Possible strategies
‣ Use large R, get a single jet : background large
‣ Use small R, resolve the jets : what is the right scale?
‣Also: small jets lead to huge combinatorial issues

‣ need small R (< 2m/pt ~ 0.4) to resolve two prongs
‣ need large R (>~ 3m/pt ~ 0.6) to cluster into a single jet

 Let an algorithm find the ‘right’ substructure
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What jets to use for substructure?

78

Different jet algorithms will give different ‘pictures’ 
of what’s inside a jet
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Dendrogram

79

Distance between two objects 
is given by the height of the 
lowest internal node that they 

share.

Internal node

Order of clustering here is A, B, C, D

A
B

C
D

Used to represent graphically the sequence of clustering steps 
in a sequential recombination algorithm

Distance

The clustering sequence is 4-5 (A), 2-3 (B), 23-45 (C), 1-2345 (D)

1 2 3 4 5
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First try

80

anti-kt
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Hierarchical substructure

81

Anti-kt distance measure

Cluster by merging 
to the hardest/closest particle

dij = min

�
1
p2

ti

,
1

p2
tj

�
�y2 + ��2

R2
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 3.57137e−05

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000496598

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000688842

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000805103

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000773759

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.0014577

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 0.00147749

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.



Matteo Cacciari - LPTHE PRISMA Summer School - September 2018 97

Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 1.96

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.



Matteo Cacciari - LPTHE PRISMA Summer School - September 2018 98

Identifying jet substructure: try out anti-kt

anti-kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way

through the secondary blob → no

clear identification of substructure

associated with 2nd parton.
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Second try

99

kt
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Hierarchical substructure

100

kt distance measure

Cluster by merging 
the softest/closest particles

dij = min(p2
ti, p

2
tj)

�y2 + ��2

R2
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 1.48276

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 2.34277

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 717.825

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is diB = 11432

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics
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Identifying jet substructure: try out kt

kt algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard

pieces. Easily undone to identify un-

derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02
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Third try

118

Cambridge/Aachen
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Hierarchical substructure

119

C/A distance measure

Cluster by merging 
the closest particles

dij =
�y2 + ��2

R2
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.142857

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1



Matteo Cacciari - LPTHE PRISMA Summer School - September 2018 123

Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.214286

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.415037

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.686928

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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DeltaR_{ij} = 1.20645

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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DeltaR_{ij} = 1.93202

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm
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DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1



Matteo Cacciari - LPTHE PRISMA Summer School - September 2018 136

Identifying jet substructure: Cam/Aachen

Cambridge/Aachen algorithm

pt/GeV
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0
0 1 2 3 4 y

30
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08
Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09
Ellis, Vermilion & Walsh ’09

G. Salam (CERN/Princeton/Paris) test-bed., G. Salam June 13, 2013 1 / 1
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Hierarchical substructure

137

Slide by 
Gavin Salam

Undo the last 
clustering step(s)
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The IRC safe algorithms

138

Speed Regularity UE
contamination

Backreaction Hierarchical
substructure

kt ☺︎☺︎☺︎ ☂ ☂☂ ☁☁ ☺☺︎☺☺︎

Cambridge
/Aachen

☺︎☺︎☺︎ ☂ ☂ ☁☁ ☺︎☺︎☺︎

anti-kt ☺︎☺︎☺︎ ☺☺︎☺☺︎ ☁/☺︎ ☺☺︎☺☺︎ ✘

SISCone    ☺☺︎ ☁ ☺☺︎☺☺︎ ☁ ✘

Array of tools with different characteristics. 
Pick the right one for the job
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QCD v. heavy decay

139

A possible approach for reducing the QCD background is to identify the two 
prongs of the heavy particle decay, and put a cut on their momentum fraction

Signal: Background: 
P (z) ⇥ 1 + z2

1� z
P (z) ⇥ 1 + (1� z)2

z
P (z) � 1

Will split mainly 
symmetrically

Will split mainly 
asymmetrically

Will split mainly 
symmetrically
Will split mainly 

symmetrically

Potential tagger: asymmetric splitting

y = min(p2
ti, p

2
tj)

�R2
ij

m2
� min(pti, ptj)

max(pti, ptj)
Possibly 

implemented 
via a cut on
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Splittings and distances

140

Quasi-collinear 
splitting (ptj < pti)

pt
pti = (1-z)pt

m ptj = zpt

m2 ⇥ ptiptj�R2
ij = (1� z)zp2

t �R2
ijInvariant mass:

dij = z2p2
t �R2

ij ⇥
z

1� z
m2

kt distance:

For a given mass, the background will have smaller distance dij than the signal, 
i.e.  it will tend to cluster earlier in the kt algorithm

(ptj < pti)

Potential tagger: last clustering in kt algorithm
This is where the hierarchy of the kt algorithm becomes relevant. 

QCD radiation is clustered first, and only at the end the symmetric, 
large-angle splittings due to decays are reclustered
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Alternative algorithms

141

‣ Suppose that for some reasons (which will become clearer later) one does not 
with to use the kt algorithm

‣ One must then find a way to determine what the relevant splitting (i.e. the 
one due to the decay, not to QCD radiation) is.

A possible approach is to use a Mass-Drop requirement:
the clustering is progressively undone, and a splitting is the relevant one if 

both subjects are much less massive than their combination 
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The BDRS tagger/groomer

142

‣A two-prong tagger/groomer for boosted Higgs, which
‣ Uses the Cambridge/Aachen algorithm (because it’s ‘physical’)

‣ Employs a Mass-Drop condition, as well as an asymmetry cut to 
find the relevant splitting (i.e. ‘tag’ the heavy particle)

‣ Includes a post-processing step, using ‘filtering’ (introduced in the same paper) 
to clean as much as possible the resulting jets of UE contamination 
(‘grooming’)

Butterworth, Davison, Rubin, Salam, 2008

pp →ZH → ννbb--
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pp →ZH → ννbb

Start with the 
hardest jet

Use C/A with 
large R=1.2

mj = 150 GeV
G

. S
al

am

- -
BDRS: tagging
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pp →ZH → ννbb

Undo last step of 
clustering

Check how the mass splits 
between the two subjets

(m1 = 139 GeV, m2 = 5 GeV)
and how asymmetric the 

splitting is

If repeator
min(p2

t1, p
2
t2)

m2
j

�R2
12 < ycut

max(m1,m2)
mj

> µ

BDRS: tagging
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pp →ZH → ννbb

m1 = 52 GeV, m2 = 28 GeV

Stop when a large mass 
drop is observed 

(and recombine these
 two jets)

[NB. Parameters used μ = 0.67 and ycut = 0.09]
G

. S
al

am

BDRS: tagging
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BDRS: filtering

146

Start with the 
recombined jet

pp →ZH → ννbb

G
. S

al
am
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Recluster the 
contituents with Rfilt

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Only keep the nfilt 
hardest jets

The low-momentum stuff surrounding the hard particles has been removed

pp →ZH → ννbb

G
. S

al
am

BDRS: filtering
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Visualisation of BDRS

149

Cluster with a large R
Undo the clustering into subjets,

until a large asymmetry/mass drop 
is observed: tagging step

Re-cluster with smaller R, 
and keep only 3 hardest 

jets: grooming step

pp →ZH → ννbb--
Butterworth, Davison, Rubin, Salam, 2008
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First taggers/groomers

150

‣ Mass Drop + Filtering

‣ Jet ‘trimming’  

‣ Jet ‘pruning’ 

Butterworth, Davison, Rubin, Salam, 2008

Krohn, Thaler, Wang, 2009

S. Ellis, Vermilion, Walsh, 2009

Aim: limit contamination from QCD background while 
retaining bulk of perturbative radiation

Decluster with mass drop and asymmetry conditions
Recluster constituents into subjets at distance scale Rfilt,  retain nfilt hardest subjets 

Recluster constituents into subjets at distance scale Rtrim,  
retain subjets with pt,subjet > εtrim pt,jet 

While building up the jet, discard softer subjets when ΔR > Rprune 
and min(pt1,pt2) < εprune (pt1+pt2)

Trimming and pruner are a priori groomers, but can become taggers 
when combined with an invariant mass window test 

(if you can groom everything then there’s no heavy particle in the jet)
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The jet substructure maze

151

Slide by G. Salam, now a few years old
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Soft Drop declustering

152

Larkoski, Marzani, Soyez,Thaler, 2014

Decluster and drop softer constituent unless i.e. remove wide-angle 
soft radiation from a jet

The paper contains
✓ analytical calculations and comparisons to Monte Carlos
✓ study of effect of non-perturbative corrections
✓ performance studies

Example of SoftDrop 
performance when used 
as a boosted W tagger
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Alternatives to hierarchical substruct.

153

‣ If what we are interested in is the structure of the constituents of a jet, the 
“jet” itself is not the most important feature. 
‣ A different algorithm, or simply the study of the constituents in a certain patch 

will also do.  Selected alternatives are:
‣ Use of jet-shapes to characterise certain features
‣ e.g. N-subjettiness: how many subjets a jets appears to have

‣ Alternative ways of clustering
‣ e.g. Qjets: the clustering history not deterministic, but controlled by 

random probabilities of merging. Can be combined with, e.g. pruning

‣ Use information from matrix element
‣ e.g. shower deconstruction: use analytic shower calculations to estimate 

probability that a certain configuration comes from signal or from 
background

‣ Use event shapes mimicking jet properties
‣ e.g. JetsWithoutJets, mimicking trimming

Thaler, van Tilburg, 2011

Ellis, Hornig, Roy, Krohn, Schwartz, 2012

Soper, Spannowsky, 2011

Bertolini, Chen, Thaler, 2013
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Distances to axes of N subjets

N-subjettiness

154

τN measures departure from N-parton energy flow:
if a jet has N subjets, τN-1 should be much larger than τN

Sum over constituents 
of a jet

Thaler, van Tilburg, 2010
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N-subjettiness

155

A jet with a small τN,N-1 

is more likely to have 
N than N-1 subjets  

(from 1011.2268, with β=1)

Thaler, van Tilburg, 2010
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C

156

Energy correlation functions
Probes of N-prong structures without requiring 

identification of subjets

ECF(N+1) is zero if there are only N particles 

More generally, if there are N subjets one expects 
ECF(N+1) to be much smaller than ECF(N)
[because radiation will be mainly soft/collinear to subjets]

Angular (y-φ) distances 
between constituents

Larkoski, Salam, Thaler 2013
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C

157

Discriminators

A jet with a small CN is more likely 
to have N prongs and at most soft/coll radiation  

Larkoski, Salam, Thaler 2013

small for N prongs: 
if N hard partons, small if radiation 

only soft-collinear
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C

158

C1
quark-gluon discriminator

C3
top tagging

Note different values of β 
(chosen to maximise discriminating power)
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D

159

The D functions are variations of the C ones
Larkoski, Moult, Neill, 2014

Instead of

define

Attempt to improve the 
discriminating power, 

and to account for different 
regions of phase space of 

radiation
[also, gives an idea of increasing 

‘sophistication’, or complexification]
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Robustness of substructure tools

160

Tools that are considered (or can be seen in Monte Carlo tests) to behave 
‘similarly’ could cease to do so in different parameter regions

Dasgupta, Fregoso, Marzani, Salam, 2013
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Analytic calculations of jet substructure

161

Dasgupta, Fregoso, Marzani, Salam, 2013

Monte Carlo
Analytic

(resummed pQCD) ‣ Analytical 
understanding of ‘kinks’ 
in distributions
‣ Check of Monte Carlo 

predictions
‣ Other analytical investigations: 

Rubin 2010 (filtering), Walsh, 
Zuberi 2011 (jet substructure 
with SCET), Feige Schwartz, 
Stewart, Thaler 2012 (N-
subjettiness), Dasgupta, 
Marzani, Powling 2013 
(groomed jet mass), ...
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Recap of Lecture 2

162

The big news of the past few years has been the 
development of taggers and groomers using properties of 
jet substructure, through

‣ declustering

‣ jet shapes

‣ direct analysis of images (machine learning)

These techniques have been commissioned by 
experimental collaborations proven their worth in 
‘Standard Model’ analyses. They are now being implemented 
in BSM searches
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Bonus: Jet areas

163

More in details, a jet’s active area is 
the extent of the region where a 
distribution of infinitesimally soft 

particles, that can also cluster among 
themselves, is clustered into the jet

A jet’s area is defined as the extent of the region where 
infinitesimally soft particles get clustered into the jet 

A jet’s active area, represented by the 
coloured regions,  measures a jet’s 

susceptibility to contamination 
from soft particles like underlying event 

and pileup
Jets do not necessarily have 

cone-shaped profiles 
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From jet ‘reach’ to jet areas

164

Not one, but three definitions of a jet’s size:

‣ Passive area

‣ Active area

‣ Voronoi area

MC, Salam, Soyez, 0802.1188

Reach of jet for pointlike radiation

Sum of areas of intersections of  Voronoi cells 
of jet constituents with circle of radius R 

centred on each constituent

Reach of jet for diffuse radiation

(In the large number of particles limit all areas converge to the same value)

Place a single very soft particle (a ‘ghost’) in 
the event, measure the extent of the region 

where it gets clustered within a given jet

Fill the events with many very soft particles (‘ghosts’), 
cluster them together with the hard ones, see how 

many get clustered within a given jet

Coincides with passive area for kt algorithm
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Jet passive area

165

Add a single ghost* particle to the event. 
Move it around. 
Check if it gets clustered in a given jet J.

a(J)⌘
Z
dydφ f (g(y,φ),J) f (g,J) =

⇢
1 g 2 J
0 g /2 J

* ghost particle: particle with infinitesimally small momentum with respect to all other particles in the event
  (in practice, O(10-100 GeV) )

Passive Area
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Jet active area

166

Add many ghost particles in random configurations to the event. 
Cluster many times. Allow ghosts to cluster among themselves too.
Count how many ghosts on average get clustered into a given jet J.

A(J) = lim
νg!∞

hA(J |{gi})ig

Number of ghosts
 in jet J

Ghost density
Active area of jet J for a 

single ghosts configuration

Active area of jet J

Active Area

A(J | {gi}) =
Ng(J)

�g
� AgNg(J)

Area of a single ghost
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Jet areas: the single hard particle case

167

It is worth noting that, for a jet made of a single hard particle, 
while passive areas are indeed πR2, active areas are not

Active 
areas kt Cam/Aa SISCone anti-kt

<A>/πR2 0.81 0.81 1/4 1

Only anti-kt has the behaviour one would naively expect,
i.e. area = πR2
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Jet areas: the pure ghost jet case
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Jets composed exclusively of ghosts can also be clustered, 
and their active area measured

Active areas kt Cam/Aa

<A>/πR2 0,554 0,551



Matteo Cacciari - LPTHE PRISMA Summer School - September 2018

Active area distributions

169

For a roughly uniformly soft background, anti-kt gives 
many small jets and many large ones
(you can’t fill a plane with circles!)
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Active area: analytical results?

170

Can these active area distributions be calculated 
analytically? 

At least the averages? 

At least for pure ghost jets?
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A challenge

171

Can we predict analytically the active area distribution or, at least, its average, 
for the self-clustering of a large number of  ‘particles’?

Consider a simplified toy-model: 1-dimensional clustering, and an “euclidean” recombination 
scheme: the recombination of two ‘particles’ is simply the mid-point of their coordinate.

N ‘particles’ are distributed randomly over a length L,  such that 

a � L/N ⇥ 2R⇥ L
where R is the ‘radius’ parameter of the Cambridge-like clustering algorithm

Upon clustering, we get nJ jets, with number of constituents nC. 
     The average ‘area’ (over many events) of a jet will be �A⇥ = a�nC⇥

lim
a/2R�0,2R/L�0

�A⇥
2R

Can we calculate analytically ?

(In this toy model, or in a similarly simple one. What about in higher dimensions?)




