

CHRIS MURPHY

GLOBAL FITS IN THE SMEFT

CM 1710.02008

J. Ellis, CM, V. Sanz, T. You 1803.03252

HEP SCORE CARD

- origin of EWSB: Higgs discovery! (incomplete)
- something unexpected: inconclusive
- dark matter: no
- EW baryogenesis: no
- neutrino masses: no
- naturalness: no

HOW SHOULD WE INTERPRET THESE MEASUREMENTS?

No evidence of other new particles

• implies a separation of scales, $v < \Lambda$

Use effective field theory approach

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \dots$$

$$\mathcal{L}^{(n)} = \sum_{i} \frac{c_i^{(n)}}{\Lambda^{n-4}} O_i^{(n)}$$

PART 1 – STATISTICAL APPROACH TO HIGGS COUPLINGS

A LARGE NUMBER OF PARAMETERS

Henning, Lu, Melia, Murayama 1512.03433

2,499 B# conserving at dimension-6: Alonso, Jenkins, Manohar, Trott 1312.2014

WHAT TO DO ABOUT LARGE NUMBER OF PARAMETERS

- Impose symmetries
- Add more (classes of) measurements to the fit
 - more on this later
- Regularize the fit...

REVIEW OF LEAST SQUARES

- chi-squared function $\chi^2(\mathbf{c}) = (\mathbf{y} \boldsymbol{\mu}(\mathbf{c}))^\top V^{-1}(\mathbf{y} \boldsymbol{\mu}(\mathbf{c}))$
- > predicted values linear functions of parameters $\mu_i = H_{ij}c_j$
- estimators for central values $\hat{\mathbf{c}} =$

$$\mathbf{\hat{c}} = \left(H^{\top} V^{-1} H \right)^{-1} H^{\top} V^{-1} \mathbf{y}$$

covariance matrix for estimators

$$U = \left(H^\top V^{-1} H \right)^{-1}$$

- U exists if
 - # measurements > # parameters
 - H_i sufficiently unique

REGULARIZED LEAST SQUARES

Augment standard chi-squared function w/ positive definite regulation term

$$\chi^{2} \left(\mathbf{c} \right) = \left(\mathbf{y} - \boldsymbol{\mu} \left(\mathbf{c} \right) \right)^{\top} V^{-1} \left(\mathbf{y} - \boldsymbol{\mu} \left(\mathbf{c} \right) \right) + \mathbf{c}^{\top} \kappa \, \mathbf{c}$$
$$\mathsf{take} \quad \kappa_{ij} = \kappa \delta_{ij}$$
$$\hat{\mathbf{c}} = \left(H^{\top} V^{-1} H + \kappa \mathbb{1} \right)^{-1} H^{\top} V^{-1} \, \mathbf{y}$$
$$U = \left(H^{\top} V^{-1} H + \kappa \mathbb{1} \right)^{-1}$$

MEASUREMENTS USED

- Higgs Results:
 - 22 Run-1 signal strengths (mostly ATLAS+CMS combined)
 - 33 Run-2 signal strengths
 - no differential/boosted measurements
- no EWPD or diboson couplings

HIGGS SIGNAL STRENGTHS

- Probe 10 directions in SMEFT space
- Proof of principle: include 12 operators in the fit
 - Explicit expressions will be shown later

CROSS-VALIDATION

- Split data into training and validation sets
- Optimize parameters using training data w/ regularized linear regression
- Compute χ^2 w/ optimized parameters w/o regularization
- > Optimal regularization parameter minimizes this χ^2 / n

CROSS-VALIDATION...

CROSS-VALIDATION W/ ARTIFICIAL BSM SIGNAL

CROSS-VALIDATION W/ ACTUAL DATA

UTILITY OF κ ?

- ► $\kappa < 1$: enforce experimental upper limit ($pp \rightarrow hh$; $h \rightarrow Z\gamma$)
- ▶ $\kappa \ge 1$: set lowest BSM scale of $\Lambda_{min} \sim v\sqrt{\kappa}$
 - normalization dependent
- Regularization matrix in general not proportional to identity
 - e.g. if strongly coupled theory assumed, relate entries of κ_{ij} to size of coefficients expected from NDA?

PART 2 – UPDATED GLOBAL SMEFT FIT

NEXT-GENERATION ANALYSIS

- Previously assumed:
 - EWPD >> diboson >> Higgs
- No longer justified, theoretically unsatisfactory
- Kinematic information encoded in Simplified Template Cross Sections (STXS)

SIMPLIFIED TEMPLATE CROSS SECTIONS

see next talk by Zemaityte

ANALYSIS FRAMEWORK

Focus on leading dimension-6 operators

$$\mathcal{L}_{\text{SMEFT}} \supset \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda_i^2} \mathcal{O}_i$$

- Work to linear order in Wilson coefficients
- Impose U(3)⁵ flavor symmetry for fermionic operators
- Use α_{EM} , G_F , M_Z , as input parameters

DIMENSION-6 OPERATORS IN WARSAW BASIS

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} &\supset \frac{\bar{C}_{Hl}^{(3)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l) + \frac{\bar{C}_{Hl}^{(1)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l) + \frac{\bar{C}_{ll}}{v^2}(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l) \\ &\quad + \frac{\bar{C}_{HD}}{v^2} \left| H^{\dagger}D_{\mu}H \right|^2 + \frac{\bar{C}_{HWB}}{v^2} H^{\dagger}\tau^{I}H W_{\mu\nu}^{I}B^{\mu\nu} \\ &\quad + \frac{\bar{C}_{He}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) + \frac{\bar{C}_{Hu}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) + \frac{\bar{C}_{Hd}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \\ &\quad + \frac{\bar{C}_{Hq}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q) + \frac{\bar{C}_{Hq}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) + \frac{\bar{C}_{W}}{v^2} \epsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \end{split}$$

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} &\supset \frac{\bar{C}_{eH}}{v^2} y_e H^{\dagger} H)(\bar{l}eH) + \frac{\bar{C}_{dH}}{v^2} y_d H^{\dagger} H)(\bar{q}dH) + \frac{\bar{C}_{uH}}{v^2} y_u H^{\dagger} H)(\bar{q}u\tilde{H}) \\ &+ \frac{\bar{C}_G}{v^2} f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} + \frac{\bar{C}_{H\Box}}{v^2} (H^{\dagger} H) \Box (H^{\dagger} H) + \frac{\bar{C}_{uG}}{v^2} y_u (\bar{q}\sigma^{\mu\nu} T^A u) \tilde{H} G^A_{\mu\nu} \\ &+ \frac{\bar{C}_{HW}}{v^2} H^{\dagger} H W^I_{\mu\nu} W^{I\mu\nu} + \frac{\bar{C}_{HB}}{v^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{C}_{HG}}{v^2} H^{\dagger} H G^A_{\mu\nu} G^{A\mu\nu} \,. \end{split}$$

results of EMSY 1803.03252 expressed in both SILH and Warsaw bases

EFT DETAILS

tth production probes many coefficients not otherwise constrained by our dataset

 $C_{uG} \to C_{uG} + 0.006 C_{uW} + 0.002 C_{uB} - 0.13 C_{qu}^{(8)} + \text{ additional } \psi^4 \text{ operators}$

- Include only C_{uG} as it has the largest contribution
- Alternatively...
 - one could regularize the fit as in 1710.02008
 - add in top-quark measurements

PRECISION ELECTROWEAK MEASUREMENTS USED IN SMEFT FIT

- 12 Z-pole measurements
- 74 LEP 2 W+Wmeasurements
- New M_W measurement from ATLAS
- Probes 11 SMEFT directions

Observable	Measurement	Ref.	SM Prediction	Ref.
$\blacktriangleright \Gamma_Z [\text{GeV}]$	2.4952 ± 0.0023	[41]	2.4943 ± 0.0005	[40]
$\sigma_{ m had}^0 \; [{ m nb}]$	41.540 ± 0.037	[41]	41.488 ± 0.006	[40]
R^0_ℓ	20.767 ± 0.025	[41]	20.752 ± 0.005	[40]
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	[41]	0.01622 ± 0.00009	[118]
$\mathcal{A}_{\ell}\left(P_{ au} ight)$	0.1465 ± 0.0033	[41]	0.1470 ± 0.0004	[118]
$\mathcal{A}_{\ell}(\mathrm{SLD})$	0.1513 ± 0.0021	[41]	0.1470 ± 0.0004	[118]
R_b^0	0.021629 ± 0.00066	[41]	0.2158 ± 0.00015	[40]
R_c^0	0.1721 ± 0.0030	[41]	0.17223 ± 0.00005	[40]
$A^{0,b}_{ m FB}$	0.0992 ± 0.0016	[41]	0.1031 ± 0.0003	[118]
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	[41]	0.0736 ± 0.0002	[118]
\mathcal{A}_b	0.923 ± 0.020	[41]	0.9347	[118]
\mathcal{A}_c	0.670 ± 0.027	[41]	0.6678 ± 0.0002	[118]
$M_W \; [{ m GeV}]$	80.387 ± 0.016	[42]	80.361 ± 0.006	[118]
$M_W \; [{ m GeV}]$	80.370 ± 0.019	[98]	80.361 ± 0.006	[118]

EMSY 1803.03252

ATLAS+CMS HIGGS DATA FROM RUN 1

Production	Decay	Signal Strength	Production	Decay	Signal Strength
$gg\mathrm{F}$	$\gamma\gamma$	$1.10^{+0.23}_{-0.22}$	Wh	au au	-1.4 ± 1.4
$gg\mathrm{F}$	ZZ	$1.13_{-0.31}^{+0.34}$	Wh	bb	1.0 ± 0.5
$gg\mathrm{F}$	WW	0.84 ± 0.17	Zh	$\gamma\gamma$	$0.5\substack{+3.0 \\ -2.5}$
$gg\mathrm{F}$	au au	1.0 ± 0.6	Zh	WW	$5.9^{+2.6}_{-2.2}$
VBF	$\gamma\gamma$	1.3 ± 0.5	Zh	au au	$2.2^{+2.2}_{-1.8}$
VBF	ZZ	$0.1^{+1.1}_{-0.6}$	Zh	bb	0.4 ± 0.4
VBF	WW	1.2 ± 0.4	tth	$\gamma\gamma$	$2.2^{+1.6}_{-1.3}$
VBF	au au	1.3 ± 0.4	tth	WW	$5.0^{+1.8}_{-1.7}$
Wh	$\gamma\gamma$	$0.5^{+1.3}_{-1.2}$	tth	au au	$-1.9^{+3.7}_{-3.3}$
Wh	WW	$1.6^{+1.2}_{-1.0}$	tth	bb	1.1 ± 1.0
pp	$Z\gamma$	$2.7^{+4.6}_{-4.5}$	pp	$\mu\mu$	0.1 ± 2.5

EMSY 1803.03252

RUN 2 HIGGS MEASUREMENTS USED IN SMEFT FIT

 Include all available
 kinematical
 information

- Include 1 W+Wmeasurement at high p_T
- Probe 13 SMEFT directions

		CMS			/	ATLAS	
	Production	Decay	Sig. Stren.		Production	Decay	Sig. Stren.
[100]	1-jet, $p_T > 450$	$b\overline{b}$	$2.3^{+1.8}_{-1.6}$	[109]	pp	$\mu\mu$	-0.1 ± 1.5
[101]	Zh	$b\bar{b}$	0.9 ± 0.5	[110]	Zh	$b\overline{b}$	$0.69\substack{+0.35 \\ -0.31}$
[101]	Wh	$b\bar{b}$	1.7 ± 0.7	[110]	Wh	$bar{b}$	$1.21\substack{+0.45 \\ -0.42}$
[102]	$t ar{t} h$	$b\bar{b}$	$-0.19\substack{+0.80\\-0.81}$	[111]	$t\bar{t}h$	$bar{b}$	$0.84\substack{+0.64\\-0.61}$
[103]	$t \bar{t} h$	$1\ell + 2\tau_h$	$-1.20^{+1.50}_{-1.47}$	[112]	$t\bar{t}h$	$2\ell os + 1\tau_h$	$1.7^{+2.1}_{-1.9}$
[103]	$t ar{t} h$	$2\ell ss + 1\tau_h$	$0.86\substack{+0.79\\-0.66}$	[112]	$t\bar{t}h$	$1\ell + 2\tau_h$	$-0.6^{+1.6}_{-1.5}$
[103]	$t ar{t} h$	$3\ell + 1\tau_h$	$1.22^{+1.34}_{-1.00}$	[112]	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.6^{+1.8}_{-1.3}$
[104]	$t ar{t} h$	$2\ell ss$	$1.7^{+0.6}_{-0.5}$	[112]	$t ar{t} h$	$2\ell ss + 1\tau_h$	$3.5^{+1.7}_{-1.3}$
[104]	$t ar{t} h$	3ℓ	$1.0^{+0.8}_{-0.7}$	[112]	$t ar{t} h$	3ℓ	$1.8^{+0.9}_{-0.7}$
[104]	$t ar{t} h$	4ℓ	$0.9^{+2.3}_{-1.6}$	[112]	$tar{t}h$	$2\ell ss$	$1.5_{-0.6}^{+0.7}$
[105]	0-jet	WW	$0.9^{+0.4}_{-0.3}$	[113]	VBF	WW	$1.7^{+1.1}_{-0.9}$
[105]	1-jet	WW	1.1 ± 0.4	[113]	Wh	WW	$3.2^{+4.4}_{-4.2}$
[105]	2-jet	WW	1.3 ± 1.0	[114]	${ m B}(h o \gamma \gamma) / { m B}(h$	$\rightarrow 4\ell$)	$0.69\substack{+0.15 \\ -0.13}$
[105]	VBF 2-jet	WW	1.4 ± 0.8	[114]	0-jet	4ℓ	$1.07\substack{+0.27 \\ -0.25}$
[105]	Vh 2-jet	WW	$2.1^{+2.3}_{-2.2}$	[114]	1-jet, $p_T < 60$	4ℓ	$0.67\substack{+0.72 \\ -0.68}$
[105]	Wh 3-lep	WW	-1.4 ± 1.5	[114]	1-jet, $p_T \in (60, 120)$	4ℓ	$1.00\substack{+0.63 \\ -0.55}$
[106]	$gg\mathrm{F}$	$\gamma\gamma$	$1.11\substack{+0.19\\-0.18}$	[114]	1-jet, $p_T \in (120, 200)$	4ℓ	$2.1^{+1.5}_{-1.3}$
[106]	VBF	$\gamma\gamma$	$0.5\substack{+0.6\\-0.5}$	[114]	2-jet	4ℓ	$2.2^{+1.1}_{-1.0}$
[106]	$t ar{t} h$	$\gamma\gamma$	2.2 ± 0.9	[114]	"BSM-like"	4ℓ	$2.3^{+1.2}_{-1.0}$
[106]	Vh	$\gamma\gamma$	$2.3^{+1.1}_{-1.0}$	[114]	VBF, $p_T < 200$	4ℓ	$2.14\substack{+0.94 \\ -0.77}$
[107]	$gg\mathrm{F}$	4ℓ	$1.20\substack{+0.22\\-0.21}$	[114]	Vh lep	4ℓ	$0.3^{+1.3}_{-1.2}$
[108]	0-jet	au au	0.84 ± 0.89	[114]	$t ar{t} h$	4ℓ	$0.51\substack{+0.86 \\ -0.70}$
[108]	boosted	ττ	$1.17\substack{+0.47\\-0.40}$				
[108]	VBF	au au	$1.11\substack{+0.34\\-0.35}$			EMSY 180	3.03252

SMEFT PREDICTIONS

pre-LHC

Berthier, Bjorn, Trott 1606.06693; Brivio, Trott 1706.08945

LHC

SMEFTsim: Brivio, Jiang, Trott 1709.06492

CONSTRAINTS ON OBLIQUE PARAMETERS

GLOBAL FIT RESULTS

	Theory	χ^2	$\chi^2/n_{ m d}$	<i>p</i> -value
	SM	153	0.972	0.585
20 coefficients -	SMEFT	133	0.973	0.572
13 coefficients	►SMEFT*	139	0.963	0.609

*assumes SMEFT is UV-completed by a renormalizable, weakly-coupled theory

FIT TO EACH OPERATOR INDIVIDUALLY

FIT TO ALL OPERATORS SIMULTANEOUSLY

CORRELATION MATRIX

SIMPLE EXTENSIONS OF THE SM

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
\mathcal{S}_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
φ	0	1	2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
[1]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ_1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
\mathcal{B}	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
\mathcal{B}_1	1	1	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
\mathcal{W}	1	1	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
\mathcal{W}_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$

de Blas, Criado, Perez-Victoria, Santiago 1711.10391

NUMERICAL CONSTRAINTS ON EXTENSIONS

improve $\chi^2 \& \chi^2/n_d$

only improve χ^2

improve neither

Model	χ^2	$\chi^2/n_{\rm d}$	Coupling	Mass / TeV
\mathbf{SM}	152.6	0.972	-	-
\mathcal{S}_1	151	0.971	$ y_{\mathcal{S}_1} ^2 = (6.3 \pm 5.9) \cdot 10^{-3}$	$M_{\mathcal{S}_1} = (9.1, 53)$
[1]	151	0.968	$ \kappa_{\Xi} ^2 = (4.1 \pm 3.4) \cdot 10^{-3}$	$M_{\Xi} = (12, 36)$
N	150	0.963	$ \lambda_N ^2 = (1.8 \pm 1.2) \cdot 10^{-2}$	$M_N = (5.8, 13)$
\mathcal{W}_1	151	0.968	$\left \hat{g}_{\mathcal{W}_1}^{\phi} \right ^2 = (3.3 \pm 2.7) \cdot 10^{-3}$	$M_{\mathcal{W}_1} = (4.1, 13)$
φ , Type I	152	0.976	$Z_6 \cdot \cos\beta = -0.41 \pm 0.66$	$M_{\varphi} = (1.0, \infty)$
E	152.5	0.978	$ \lambda_E ^2 = (2.0 \pm 9.7) \cdot 10^{-3}$	$M_E = (9.2, \infty)$
Δ_3	152	0.975	$ \lambda_{\Delta_3} ^2 = (0.8 \pm 1.1) \cdot 10^{-2}$	$M_{\Delta_3} = (7.3, \infty)$
\sum	152	0.977	$ \lambda_{\Sigma} ^2 = (0.9 \pm 2.0) \cdot 10^{-2}$	$M_{\Sigma} = (5.9, \infty)$
Q_5	152	0.975	$ \lambda_{Q_5} ^2 = 0.07 \pm 0.10$	$M_{Q_5} = (2.4, \infty)$
T_2	152	0.977	$ \lambda_{T_2} ^2 = (1.8 \pm 5.1) \cdot 10^{-2}$	$M_{T_2} = (3.8, \infty)$
S	152.6	0.978	$\left y_{\mathcal{S}}\right ^2 < 0.47$	$M_{\mathcal{S}} > 1.5$
Δ_1	152.6	0.978	$ \lambda_{\Delta_1} ^2 < 5.7 \cdot 10^{-3}$	$M_{\Delta_1} > 13$
Σ_1	152.6	0.978	$ \lambda_{\Sigma_1} ^2 < 7.3 \cdot 10^{-3}$	$M_{\Sigma_1} > 12$
U	152.6	0.978	$ \lambda_U ^2 < 3.1 \cdot 10^{-2}$	$M_U > 5.7$
D	152.6	0.978	$ \lambda_D ^2 < 1.5 \cdot 10^{-2}$	$M_D > 8.2$
Q_7	152.6	0.978	$ \lambda_{Q_7} ^2 < 7.2 \cdot 10^{-2}$	$M_{Q_7} > 3.7$
T_1	152.6	0.978	$\left \lambda_{T_1}\right ^2 < 0.11$	$M_{T_1} > 3.0$
\mathcal{B}_1	152.6	0.978	$\left \hat{g}_{\mathcal{B}_1}^{\phi} \right ^2 < 2.4 \cdot 10^{-3}$	$M_{\mathcal{B}_1} > 20$

— 2HDM

EMSY 1803.03252

CONSTRAINTS ON SM EXTENSIONS

EMSY 1803.03252

NON-RENORMALIZABLE MODELS

If UV model has both super-renormalizable and nonrenormalizable interactions

$$\mathcal{L} = \frac{1}{\Lambda} \left(a g_2^2 \sigma W^{a \,\mu \,\nu} W^a_{\mu \,\nu} + b g_1^2 \sigma B^{\mu \,\nu} B_{\mu \,\nu} + c g_1 g_2 \,\Sigma^a W^a_{\mu \,\nu} B^{\mu \,\nu} \right) + \Lambda \left(d \,H^\dagger H \sigma + f \,H^\dagger \tau^a H \Sigma_a \right),$$
(A.1)

Low energy EFT can have higher-dimensional operators w/ arbitrary coefficients

$$\mathcal{L} = \frac{ad}{m_{\sigma}^2} g_2^2 H^{\dagger} H W^{a\,\mu\nu} W^a_{\mu\nu} + \frac{bd}{m_{\sigma}^2} g_1^2 H^{\dagger} H B^{\mu\nu} B_{\mu\nu} + \frac{cf}{m_{\Sigma}^2} g_1 g_2 H^{\dagger} \tau^a H W^a_{\mu\nu} B^{\mu\nu} . \quad (A.2)$$

see e.g. Jenkins, Manohar, Trott 1305.0017

NON-RENORMALIZABLE MODELS

Subset of models: explanations of muon g-2

• $E^{(5)}$: $C_{H\ell}^{(1)} = C_{H\ell}^{(3)}$. $\begin{pmatrix} \bar{C}_{eH} \\ \bar{C}_{H\ell}^{(3)} \end{pmatrix} = \begin{pmatrix} (-1.9 \pm 8.9) \cdot 10^{-2} \\ (-0.3 \pm 1.5) \cdot 10^{-4} \end{pmatrix}$ • $\Delta_{1,3}^{(5)}$: $\begin{pmatrix} \bar{C}_{eH} \\ \bar{C}_{He} \end{pmatrix} = \begin{pmatrix} (-1.9 \pm 8.9) \cdot 10^{-2} \\ (-2.3 \pm 3.3) \cdot 10^{-4} \end{pmatrix}$ • $\Sigma_{1}^{(5)}$: $C_{H\ell}^{(1)} = -3C_{H\ell}^{(3)}$. $\begin{pmatrix} \bar{C}_{eH} \\ \bar{C}_{H\ell} \end{pmatrix} = \begin{pmatrix} (-1.9 \pm 8.9) \cdot 10^{-2} \\ (-1.2 \pm 0.9) \cdot 10^{-4} \end{pmatrix}$ EMSY 1803.03252

NON-RENORMALIZABLE MODELS

Heavy scalar singlet

• $S^{(5)}$: Pull = 1.4.

$$\begin{pmatrix} 0.46\bar{C}_{H\Box} - 0.04\bar{C}_{HW} + 0.01\bar{C}_{HB} + 0.18\bar{C}_{eH} + 0.84\bar{C}_{uH} + 0.21\bar{C}_{dH} \\ -0.27\bar{C}_{H\Box} + 0.02\bar{C}_{HW} + 0.66\bar{C}_{eH} - 0.16\bar{C}_{uH} + 0.68\bar{C}_{dH} \\ 0.55\bar{C}_{H\Box} - 0.05\bar{C}_{HW} + 0.02\bar{C}_{HB} + 0.62\bar{C}_{eH} - 0.32\bar{C}_{uH} - 0.45\bar{C}_{dH} \\ 0.63\bar{C}_{H\Box} - 0.06\bar{C}_{HW} + 0.02\bar{C}_{HB} - 0.39\bar{C}_{eH} - 0.40\bar{C}_{uH} + 0.54\bar{C}_{dH} \\ 0.10\bar{C}_{H\Box} + 0.95\bar{C}_{HW} - 0.29\bar{C}_{HB} \\ 0.93\bar{C}_{HG} + 0.11\bar{C}_{HW} + 0.35\bar{C}_{HB} \\ -0.36\bar{C}_{HG} + 0.27\bar{C}_{HW} + 0.89\bar{C}_{HB} \end{pmatrix} = \begin{pmatrix} -0.02 \pm 0.19 \\ 0.21 \pm 0.12 \\ (-3.8 \pm 8.3) \cdot 10^{-2} \\ (7.7 \pm 6.2) \cdot 10^{-2} \\ (-3.8 \pm 9.2) \cdot 10^{-3} \\ (0.5 \pm 1.6) \cdot 10^{-4} \\ (0.3 \pm 8.4) \cdot 10^{-5} \end{pmatrix}$$

$$(18)$$

EMSY 1803.03252

SUMMARY

SUMMARY

- SMEFT: model-independent way to search for heavy, new physics
- Regularized linear regression prevents a fit from falling into an overfit solution
- Higgs measurements currently compete w/ EWPD

ONE SIGMA LIMITS ON EIGENVECTORS

EIGENVECTOR COMPOSITION

 $W_1 \simeq 0.99c_B + 0.09c_{HW} + 0.09c_T - 0.08c_W + 0.05c_{HB}$ (B1) $W_2 \simeq 0.67 c_{HW} - 0.56 c_W - 0.36 c_B + 0.33 c_{HB} - 0.02 c_T,$ $W_3 \simeq 0.99c_6 - 0.13c_t + 0.05c_W + 0.03c_{HW} + 0.02c_{HB} - 0.01c_H,$ $W_4 \simeq 0.67c_W + 0.45c_{HW} + 0.38c_H - 0.38c_t + 0.24c_{HB} - 0.09c_6,$ $W_5 \simeq 0.76c_t + 0.40c_W - 0.32c_H + 0.24c_{HW} + 0.22c_T + 0.20c_{HB} + 0.06c_6 - 0.02c_B,$ $W_6 \simeq 0.78c_H + 0.51c_t - 0.32c_T - 0.10c_W + 0.08c_6 - 0.07c_{HB} - 0.05c_{HW} + 0.03c_b + 0.03c_B,$ $W_7 \simeq 0.87 c_{HB} - 0.48 c_{HW} + 0.09 c_H + 0.09 c_T - 0.06 c_W - 0.03 c_t + 0.01 c_b,$ $W_8 \simeq 0.91c_T + 0.34c_H - 0.16c_{HB} - 0.11c_W - 0.08c_B - 0.03c_{HW} + 0.03c_b + 0.01c_6,$ $W_9 \simeq 0.97c_b + 0.24c_\tau - 0.07c_g + 0.04c_\gamma - 0.03c_H + 0.02c_W + 0.01c_{HW} - 0.01c_t - 0.01c_T,$ $W_{10} \simeq 0.97 c_{\tau} - 0.24 c_b + 0.05 c_q,$ $W_{11} \simeq 0.93c_g + 0.35c_\gamma + 0.06c_b - 0.03c_\tau,$ $W_{12} \simeq 0.93 c_{\gamma} - 0.35 c_{g} - 0.07 c_{b}.$

TWO-DIMENSIONAL PROFILES

- variances, correlation agree
- central values differ

TWO-DIMENSIONAL PROFILES

- All scenarios agree perfectly
- Largely model-independent

TWO-DIMENSIONAL PROFILES

Presence of extra parameters shifts central values of c_γ, c_g, from central values of W₁₁, W₁₂

PREDICTIONS

Total width of Higgs boson

$$\frac{\Gamma_{SMEFT,h}}{\Gamma_{SM,h}} \simeq 0.5 \pm 0.4 \quad (\text{Run-1})$$

$$\frac{\Gamma_{SMEFT,h}}{\Gamma_{SM,h}} \simeq 0.9 \pm 0.3 \quad (\text{Run-1+Run-2})$$

PREDICTIONS

- Double Higgs boson production
 - CMS upper limit 19x SM rate (ATLAS 29x)
 - In most general case SMEFT bounds not competitive
 - > Particular scenarios can be highly restricted, e.g. $c_6 = 0$:

 $\sigma_{SMEFT}(gg \to hh) / \sigma_{SM}(gg \to hh) \simeq 1.4 \pm 0.4$

IMPLICATIONS FOR EW BARYOGENESIS IN SMEFT

assuming temperature dependence only in Higgs mass parameter

• 1st order transition if $\frac{2}{3} < \overline{c}_6 < 2$

$$c_H = \frac{1}{2}\bar{c}_H, \quad c_6 = -\frac{m_h^2}{2v^2}\bar{c}_6$$

hep-ph/0407019, 1512.00068, 1512.08922, 1709.03232

IMPLICATIONS FOR EW BARYOGENESIS IN SMEFT

1512.01963

IMPLICATIONS FOR EW BARYOGENESIS IN SMEFT

effective scale ~800 GeV – need lower____ scale BSM

GUIDANCE FOR FUTURE MEASUREMENTS

- Which measurements would improve the global constraints the most?
- Quantify using the global determinant parameter -1704.02333

$$\text{GDP} = \left(\prod_k \sigma_k^2\right)^{\frac{1}{k}}$$

ratios of GDPs normalization independent

GUIDANCE FOR FUTURE MEASUREMENTS

Add one hypothetical signal strength of 1.0 ± 0.1 to the global fit

Compute GDP ratio with/without additional measurement

Observable	GDP ratio	Observable	GDP ratio
$gg \rightarrow hh$	0.37	$Wh, h \to ZZ^*$	0.96
$h \to Z\gamma$	0.71	VBF, $h \to b\bar{b}$	0.98
$h \to c\bar{c}$	0.80	Γ_h	0.98
$h \to \mu^+ \mu^-$	0.80	$Zh, h \to \tau^+ \tau^-$	0.99
$tth, h \to ZZ^*$	0.93	$tth, h \to b\bar{b}$	0.99
$Zh, h \to ZZ^*$	0.94	$ggF, h \rightarrow b\bar{b}$	0.99

SIMPLIFIED TEMPLATE CROSS SECTIONS

- Tool to use information on kinematics
- Known dependences on operator coefficients

Cross-section region	$\sum_i A_i c_i$
$gg \to H $ (0-jet)	
$gg ightarrow H$ (1-jet, $p_T^H < 60 { m ~GeV})$	$56c'_g$
$gg \rightarrow H$ (1-jet, $60 \leq p_T^H < 120 \text{ GeV})$	
$gg \rightarrow H$ (1-jet, $120 \le p_T^H < 200 \text{ GeV}$)	$56c'_g + 18$ c3G $+ 11$ c2G
$gg ightarrow H$ (1-jet, $p_T^H \ge 200 { m ~GeV})$	$56c'_g+52$ c3G $+34$ c2G
$gg \to H \ (\geq 2\text{-jet}, \ p_T^H < 60 \ \text{GeV})$	$56c'_g$
$gg \rightarrow H~(\geq 2\text{-jet},~60 \leq p_T^H < 120~\mathrm{GeV})$	$56c'_g + 8$ c3G $+$ 7c2G
$gg \rightarrow H \ (\geq 2\text{-jet}, \ 120 \leq p_T^H < 200 \ \text{GeV})$	$56c'_g+23$ c3G $+18$ c2G
$gg \to H \ (\geq 2\text{-jet}, \ p_T^H \geq 200 \ \text{GeV})$	$56c'_g + 90$ c3G $+ 68$ c2G
$gg \rightarrow H \ (\geq 2\text{-jet VBF-like}, \ p_T^{j_3} < 25 \ \text{GeV})$	$56c'_g$
$gg \to H \ (\geq 2\text{-jet VBF-like}, \ p_T^{j_3} \geq 25 \ \text{GeV})$	$56c_g'+9$ c3G $+8$ c2G
$qq ightarrow Hqq~({ m VBF-like},~p_T^{j_3} < 25~{ m GeV})$	-1.0 cH - 1.0 cT + 1.3 cWW - 0.023 cB - 4.3 cHW
	-0.29 cHB + 0.092 cHQ - 5.3 cpHQ - 0.33 cHu + 0.12 cHd
$qq ightarrow Hqq~({ m VBF-like},~p_T^{j_3} \ge 25~{ m GeV})$	$-1.0 \mathtt{cH} - 1.1 \mathtt{cT} + 1.2 \mathtt{cWW} - 0.027 \mathtt{cB} - 5.8 \mathtt{cHW}$
	-0.41 cHB + 0.13 cHQ - 6.9 cpHQ - 0.45 cHu + 0.15 cHd
$qq ightarrow Hqq \; (p_T^j \geq 200 { m GeV})$	$-1.0 {\tt cH} - 0.95 {\tt cT} + 1.5 {\tt cWW} - 0.025 {\tt cB} - 3.6 {\tt cHW}$
	-0.24 cHB + 0.084 cHQ - 4.5 cpHQ - 0.25 cHu + 0.1 cHd
$qq \rightarrow Hqq \ (60 \le m_{jj} < 120 \ {\rm GeV})$	$-0.99 {\tt cH} - 1.2 {\tt cT} + 7.8 {\tt cWW} - 0.19 {\tt cB} - 31 {\tt cHW}$
	-2.4 cHB + 0.9 cHQ - 38 cpHQ - 2.8 cHu + 0.9 cHd
$qq \rightarrow Hqq \; ({ m rest})$	$-1.0 \mathtt{cH} - 1.0 \mathtt{cT} + 1.4 \mathtt{cWW} - 0.028 \mathtt{cB} - 6.2 \mathtt{cHW}$
	-0.42 cHB + 0.14 cHQ - 6.9 cpHQ - 0.42 cHu + 0.16 cHd
$aa/a\bar{a} \rightarrow ttH$	$-0.98 { m cH}+2.9 { m cu}+0.93 { m cG}+310 { m cuG}$
<i>99/44 → 0011</i>	+27c3G -13 c2G

Hays, Sanz, Zemaityte LHCHXSWG-INT-2017-01

SILH BASIS

$$\mathcal{L}_{\text{SMEFT}}^{\text{SILH}} \supset \frac{\bar{c}_{W}}{m_{W}^{2}} \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \vec{D}^{\mu} H \right) D^{\nu} W_{\mu\nu}^{a} + \frac{\bar{c}_{B}}{m_{W}^{2}} \frac{ig'}{2} \left(H^{\dagger} \vec{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} + \frac{\bar{c}_{T}}{v^{2}} \frac{1}{2} \left(H^{\dagger} \vec{D}_{\mu} H \right)^{2} \\
+ \frac{\bar{c}_{ll}}{v^{2}} (\bar{L} \gamma_{\mu} L) (\bar{L} \gamma^{\mu} L) + \frac{\bar{c}_{He}}{v^{2}} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{e}_{R} \gamma^{\mu} e_{R}) + \frac{\bar{c}_{Hu}}{v^{2}} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{u}_{R} \gamma^{\mu} u_{R}) \\
+ \frac{\bar{c}_{Hd}}{v^{2}} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{d}_{R} \gamma^{\mu} d_{R}) + \frac{\bar{c}'_{Hq}}{v^{2}} (iH^{\dagger} \sigma^{a} \vec{D}_{\mu} H) (\bar{Q}_{L} \sigma^{a} \gamma^{\mu} Q_{L}) \\
+ \frac{\bar{c}_{Hq}}{v^{2}} (iH^{\dagger} \vec{D}_{\mu} H) (\bar{Q}_{L} \gamma^{\mu} Q_{L}) + \frac{\bar{c}_{HW}}{m_{W}^{2}} ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a} + \frac{\bar{c}_{HB}}{m_{W}^{2}} ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\
+ \frac{\bar{c}_{3W}}{m_{W}^{2}} g^{3} \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^{b} W^{c\rho\mu} + \frac{\bar{c}_{g}}{m_{W}^{2}} g_{s}^{2} |H|^{2} G_{\mu\nu}^{A} G^{A\mu\nu} + \frac{\bar{c}_{\gamma}}{m_{W}^{2}} g'^{2} |H|^{2} B_{\mu\nu} B^{\mu\nu} \\
+ \frac{\bar{c}_{H}}{v^{2}} \frac{1}{2} (\partial^{\mu} |H|^{2})^{2} + \sum_{f=e,u,d} \frac{\bar{c}_{f}}{v^{2}} y_{f} |H|^{2} \bar{F}_{L} H^{(c)} f_{R} \\
+ \frac{\bar{c}_{3G}}{m_{W}^{2}} g_{s}^{3} f_{ABC} G_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} + \frac{\bar{c}_{uG}}{m_{W}^{2}} g_{s} y_{u} \bar{Q}_{L} H^{(c)} \sigma^{\mu\nu} \lambda_{A} u_{R} G_{\mu\nu}^{A}. \tag{6}$$

ONE COEFFICIENT AT A TIME

GLOBAL FITS IN THE SILH BASIS

GLOBAL FITS IN THE SILH BASIS

PROJECTIONS FOR HL- AND HE-LHC

- Study ongoing looking at LHC 13/14 TeV vs. 27 TeV
 - https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ HLHELHCWorkshop
- "It's difficult to make predictions, especially about the future" Yogi Berra

PROJECTION STRATEGY

- For each LHC Run-2 measurement used in the fit of 1803.03252
 - Set central value to SM prediction
 - Scale all uncertainties for the *i*th measurement by...

HL-LHC: $\sqrt{\frac{L_i}{3/ab}}$ most measurements currently have $L_i \sim 36/fb$ HE-LHC: $\sqrt{\frac{\sigma_{13,i}}{\sigma_{27,i}} \frac{L_i}{15/ab}}$

Leave correlations unchanged

PROJECTION: ONE COEFFICIENT AT A TIME

PROJECTION: ALL COEFFICIENTS SIMULTANEOUSLY

- Current Bounds
- HL-LHC projection 3/ab
- HE-LHC projection 15/ab

ASSOCIATED PRODUCTION

- Probes many (, many) coefficients
- Generally good sensitivity already in inclusive rates

$\sqrt{s} = 27 \text{ TeV}$	$\sigma_{SMEFT}/\sigma_{SM}$
Wh	$1 + 2.0\bar{C}_{H\Box} - 2.8\bar{C}_{HD} + 15\bar{C}_{HW} - 5.3\bar{C}_{HWB} - 7.0\bar{C}_{H\ell}^{(3)} + 35\bar{C}_{Hq}^{(3)} + 3.2\bar{C}_{\ell\ell}$
Zh	$\begin{split} &1+2.0\bar{C}_{H\Box}-0.24\bar{C}_{HD}+12\bar{C}_{HW}+1.7\bar{C}_{HB}+3.7\bar{C}_{HWB}\\ &-5.0\bar{C}_{H\ell}^{(3)}-1.5\bar{C}_{Hq}^{(1)}+33\bar{C}_{Hq}^{(3)}+8.5\bar{C}_{Hu}-3.1\bar{C}_{Hd}+2.5\bar{C}_{\ell\ell} \end{split}$
$t ar{t} h$	$1 + 2.4\bar{C}_G + 1.9\bar{C}_{H\square} - 0.48\bar{C}_{HD} + 8.7\bar{C}_{HG} - 2.4\bar{C}_{uH}$ $-15\bar{C}_{uG} - 0.49\bar{C}_{Hq}^{(1)} - 0.44\bar{C}_{Hq}^{(3)} - 0.48\bar{C}_{Hu} + 0.49\bar{C}_{\ell\ell} + \dots$

plus additional dipole & 4-fermion operators

ASSOCIATED PRODUCTION

• Enhancements of certain coefficients at high- p_T

Similar to high-p_T diboson production at LHC

$\sqrt{s} = 27 { m TeV}$	$\sigma_{SM,LO}$	$\sigma_{SMEFT}/\sigma_{SM}$
$Wh, p_T^h > 250 { m GeV}$	$85~{\rm fb}$	$egin{aligned} &1+2.0ar{C}_{H\Box}-2.8ar{C}_{HD}+18ar{C}_{HW}\ &-5.2ar{C}_{HWB}-7.0ar{C}^{(3)}_{H\ell}+2.3\cdot10^2ar{C}^{(3)}_{Hq}+3.2ar{C}_{\ell\ell} \end{aligned}$
$Zh, p_T^h > 250 {\rm GeV}$	46 fb	$\begin{aligned} 1 + 2.0\bar{C}_{H\Box} - 0.24\bar{C}_{HD} + 14\bar{C}_{HW} + 2.6\bar{C}_{HB} + 5.2\bar{C}_{HWB} \\ -5.0\bar{C}_{H\ell}^{(3)} - 17\bar{C}_{Hq}^{(1)} + 2.1\cdot10^2\bar{C}_{Hq}^{(3)} + 55\bar{C}_{Hu} - 18\bar{C}_{Hd} + 2.5\bar{C}_{\ell\ell} \end{aligned}$