DIMENSION-SIX ELECTROWEAK TOP-LOOP CORRECTIONS IN HIGGS PRODUCTION AND DECAY

CEN ZHANG INSTITUTE OF HIGH ENERGY PHYSICS, CAS

APRIL 18 HEFT 2018 MAINZ

In collaboration with Eleni Vryonidou, 1804.xxxx

SMEFT

2

SMEFT @ 1-LOOP

How large are these?

We study dim-6 EW top-loop effects in Higgs processes, including

- VBF, ZH, WH at LHC
- ZH, WWF, ZZF at e⁺e⁻
- H decay to $\gamma\gamma$, γZ , ZII, WIv, bb, $\tau\tau$, $\mu\mu$
- ggH is known

OUTLINE

- Motivation
- Implementation
- Results
- Physics impacts
- Conclusion

MOTIVATION

MOTIVATION (1)

• Physics:

To correctly interpret Higgs signal strength measurements...
 Are we measuring

- When does this start to matter, Run-2? HL/HE? Future LC?
- NLO EW in SMEFT may not be small:

 $\mathcal{O}(\alpha_{EW}/\pi \cdot C_t/C_H)$ instead of $\mathcal{O}(\alpha_{EW}/\pi)$

given that in general C_t is less constrained than C_H.

• **TH uncertainties** due to unknown C_t cannot be avoided, in a global view.

MOTIVATION (2)

• Techical:

- Along the effort of automating SMEFT @ NLO with MG5, see Ken's talk for progress in NLO QCD.
 - Existing implementation, see e.g.

Degrande, Maltoni, Wang, CZ 15, D. B. Franzosi, CZ 15, CZ 16 Bylund, Maltoni, Tsinikos, Vryonidou, CZ 16 Degrande, Fuks, Mawatari, Mimasu, Sanz 17

. . .

- A first step towards automatic NLO EW.
 - Some NLO EW computations for Higgs, e.g.

C. Hartmann, M. Trott 15, Ghezzi, Gomez-Ambrosio, Passarino, Uccirati 15 S. Dawson, P. P. Giardino 18, Gauld, Pecjak, Scott 16

• A suitable problem for automation...

BECAUSE...

W,Z masses, oblique paretmers

 \sim

WH,ZH

 $\sim \sim$

 $H \rightarrow \gamma \gamma, \gamma Z$

H⇒Zll,Wlν

H⇒bb,μμ,ττ

10

BECAUSE...

VBF

W,Z masses, oblique paretmers

WH,ZH

 $H \rightarrow \gamma \gamma, \gamma Z$

H⇒Zll,Wlv

H⇒bb,μμ,ττ

+

10

Need R2 terms: HH, VV, HVV ₊ UV terms: HH, VV, HVV, ffV, ffH

IMPLEMENTATION

IMPLEMENTATION (0)

• Our goal is to include operators that enter either ttV, tbW, or ttH:

$$\begin{aligned} O_{t\varphi} &= \bar{Q}t\tilde{\varphi} \left(\varphi^{\dagger}\varphi\right), \\ O_{\varphi Q}^{(3)} &= (\varphi^{\dagger}\overleftarrow{iD}_{\mu}^{I}\varphi)(\bar{Q}\gamma^{\mu}\tau^{I}Q), \\ O_{\varphi tb} &= (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}b), \\ O_{tB} &= (\bar{Q}\sigma^{\mu\nu}t)\,\tilde{\varphi}B_{\mu\nu}, \end{aligned}$$

$$O_{\varphi Q}^{(1)} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{Q} \gamma^{\mu} Q),$$

$$O_{\varphi t} = (\varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi) (\bar{t} \gamma^{\mu} t),$$

$$O_{tW} = (\bar{Q}_{i} \sigma^{\mu\nu} \tau^{I} t) \tilde{\varphi} W_{\mu\nu}^{I},$$

and we define

$$O_{\varphi Q}^{(+)} \equiv \frac{1}{2} \left(O_{\varphi Q}^{(1)} + O_{\varphi Q}^{(3)} \right) \qquad O_{\varphi Q}^{(-)} \equiv \frac{1}{2} \left(O_{\varphi Q}^{(1)} - O_{\varphi Q}^{(3)} \right),$$

bbZ ttZ

IMPLEMENTATION (1)

- MadGraph5.26x, with <u>reweighting functionality</u>
 - Generate events at tree level in SM
 - then for each event recompute a new weight with EW loops (at dim-6).
- For loops, need R2. Compute with FeynArts->FeynCalc
 - Gamma5: KKS scheme (Korner, Kreimer, Schilcher 92)
 - always anticommute
 - no cyclic relation
 - trace starts with a reading point

$\overline{64 \pi^2 \text{ Lambda}^2 \text{ sw}^2 \text{ vev}}$

i EL IPL({}) $(\overline{p}^{\mu_1 \mu_2} (-2 \text{ vev } \overline{p_3}^2 (\text{EL vev } (\text{cHQM} - \text{cHQP}) + 4\sqrt{2} \text{ ctW } \text{MT sw}) - 2 \text{ cHQM } \text{EL vev}^2 \overline{p_4}^2 + 2 \text{ cHQP } \text{EL vev}^2 \overline{p_4}^2 - 8\sqrt{2} \text{ ctW } \text{MT sw } \text{vev } \overline{p_4}^2 - 32\sqrt{2} \text{ ctW } \text{MT sw } \text{vev } (\overline{p_3} \cdot \overline{p_4}) + 12 \text{ cHQM } \text{EL } \text{MB}^2 \text{ vev}^2 + 6\sqrt{2} \text{ cHQM } \text{EL } \text{MB } \text{vev}^3 \text{ yb} + 12 \text{ cHQM } \text{EL } \text{MT}^2 \text{ vev}^2 + 12 \text{ cHQM } \text{EL } \text{MT } \text{MT } \text{vev}^2 - 12 \text{ cHQP } \text{EL } \text{MT}^2 \text{ vev}^2 + 6\sqrt{2} \text{ cHQM } \text{EL } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{MT } \text{vev}^2 + 3\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 3\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 3\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{MT } \text{vev}^2 + 3\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 3\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 3\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 3\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 6\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 74\sqrt{2} \text{ cHW } \text{MT } \text{vev}^2 + 74\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 74\sqrt{2} \text{ cHW } \text{EL } \text{MT } \text{vev}^2 + 7$

IMPLEMENTATION (2)

- Dim-6 renormalization
 - Counter term operators
- $$\begin{split} O_{\varphi WB} &= \varphi^{\dagger} \tau^{I} \varphi W_{\mu\nu}^{I} B^{\mu\nu}, & O_{\varphi W} &= \varphi^{\dagger} \varphi W_{\mu\nu}^{I} W^{I\mu\nu}, \\ O_{\varphi B} &= \varphi^{\dagger} \varphi B_{\mu\nu} B^{\mu\nu}, & O_{\varphi \Box} &= \left(\varphi^{\dagger} \varphi\right) \Box \left(\varphi^{\dagger} \varphi\right), \\ O_{\varphi D} &= \left(\varphi^{\dagger} D^{\mu} \varphi\right)^{*} \left(\varphi^{\dagger} D_{\mu} \varphi\right), & O_{W} &= i D^{\mu} \varphi^{\dagger} \tau^{I} D^{\nu} \varphi W_{\mu\nu}^{I}, \\ O_{B} &= i D^{\mu} \varphi^{\dagger} D^{\nu} \varphi B_{\mu\nu}, & O_{b\varphi} &= (\varphi^{\dagger} \varphi) \bar{l}_{2} e_{2} \varphi, & O_{\tau\varphi} &= (\varphi^{\dagger} \varphi) \bar{l}_{3} e_{3} \varphi. \end{split}$$
- Starting with Warsaw basis but replace

$$egin{aligned} &O^{(3)}_{arphi q} + O^{(3)}_{arphi l}, \ &rac{1}{6} O^{(1)}_{arphi q} - rac{1}{2} O^{(1)}_{arphi l} + rac{2}{3} O_{arphi u} - rac{1}{3} O_{arphi d} - O_{arphi e}, \end{aligned}$$

by O_W , O_B which are blind directions in EWPO.

C. Grojean, W. Skiba, J. Terning 06 I. Brivio, M. Trott 17

- CTs are independent of basis.
- S and T parameters can be identified as C_{φWB} and C_{φD}

IMPLEMENTATION (3)

Mixing

	$O_i = O_{\varphi t}$	$O^+_{\omega Q}$	$O^{\omega Q}$	$O_{\varphi tb}$	O_{tW}	O_{tB}	$O_{t\varphi}$
$O_j = O_{\varphi WB}$	$\frac{1}{3s_W c_W}$	$\frac{1}{3s_W c_W}$	$-\frac{1}{6s_W c_W}$	0	$-rac{5y_t}{2ec_W}$	$-rac{3y_t}{2es_W}$	0
$O_{\varphi D}$	$-6rac{y_t^2}{e^2}$	$3rac{y_t^2-y_b^2}{e^2}$	$3rac{y_t^2-y_b^2}{e^2}$	$-6rac{y_ty_b}{e^2}$	0	0	0
$O_{arphi \Box}$	$-rac{3}{2}rac{y_t^2}{e^2}$	$-rac{3y_t^2+6y_b^2}{2e^2}$	$\tfrac{6y_t^2+3y_b^2}{2e^2}$	$3rac{y_ty_b}{e^2}$	0	0	0
$O_{arphi W}$	0	$rac{1}{4s_W^2}$	$-rac{1}{4s_W^2}$	0	$rac{3y_t}{2es_W}$	0	0
$O_{arphi B}$	$\left rac{1}{3c_W^2} ight $	$rac{1}{12c_W^2}$	$rac{1}{12c_W^2}$	0	0	$rac{5y_t}{2ec_W}$	0
O_W	0	$\frac{1}{es_W}$	$-\frac{1}{es_W}$	0	0	0	0
O_B	$rac{4}{3ec_W}$	$\frac{1}{3ec_W}$	$rac{1}{3ec_W}$	0	0	0	0
$O_{b\varphi}$	0	$-rac{y_b}{2c_W^2}$	$y_b \tfrac{-4\lambda+3y_t^2+7y_b^2}{4e^2}$	$rac{3y_t}{4s_W^2}$	$rac{y_t y_b}{2es_W}$	0	$rac{3y_ty_b}{4e^2}$
		$+y_brac{8\lambda-3y_t^2-5y_b^2}{4e^2}$		$-y_trac{2\lambda+y_t^2-6y_b^2}{2e^2}$			
$O_{\mu arphi}$	0	$-rac{3y_{\mu}(y_t^2+y_b^2)}{2e^2}$	$rac{3y_{\mu}(y_t^2+y_b^2)}{2e^2}$	${3y_ty_by_\mu\over e^2}$	0	0	$\left. rac{3 y_t y_\mu}{2 e^2} ight $
$O_{ au arphi}$	0	$-rac{3 y_{ au} (y_t^2 + y_b^2)}{2 e^2}$	$rac{3y_{ au}(y_t^2\!+\!y_b^2)}{2e^2}$	$rac{3y_ty_by_ au}{e^2}$	0	0	$rac{3y_ty_ au}{2e^2}$

Consistent with [Alonso, Jenkins, Manohar, Trott]

- MSbar renomalization for all C's except $C_{\Phi WB}$ and $C_{\Phi D}$, where S and T are used as renormalization conditions.
 - So that we can easily set S=T=0 to be consistent with EWPO

IMPLEMENTATION (4)

 $W^{\pm} - \left(1 \pm \frac{1}{\delta} Z_{W}\right) W^{\pm}$

SM renormalization

$$\begin{split} w_{0} &= \left(1 + \frac{1}{2}\delta Z_{W}\right) W \\ &Z_{0} &= \left(1 + \frac{1}{2}\delta Z_{ZZ}\right) Z + \frac{1}{2}\delta Z_{ZA}A \\ &M_{W,0}^{2} &= M_{W}^{2} + \delta M_{W}^{2} \\ &M_{Z,0}^{2} &= M_{Z}^{2} + \delta M_{Z}^{2} \\ &M_{H,0}^{2} &= M_{H}^{2} + \delta M_{H}^{2}. \end{split}$$

Switch to MW, MZ, GF scheme (for convenient reweighting):

$$\Delta_r^{(6)} = \left. \frac{\partial \bar{\Sigma}_{AA}^{(6)}(k^2)}{\partial k^2} \right|_{k^2 = 0} - \frac{c_W^2}{s_W^2} \left(\frac{\bar{\Sigma}_{ZZ}^{(6)}(M_Z^2)}{M_Z^2} - \frac{\bar{\Sigma}_{WW}^{(6)}(M_W^2)}{M_W^2} \right) + \frac{\bar{\Sigma}_{WW}^{(6)}(0) - \bar{\Sigma}_{WW}^{(6)}(M_W^2)}{M_W^2}.$$

RESULTS (PRELIMINARY)

RESULT (0)

- A UFO model, with which we can compute dim-6 top loop corrections in many processes, thanks to automation
 - Higgs production at LHC: WH, ZH, VBF
 - Higgs production at LC: ZH, WWF, ZZF
 - Higgs decay: γγ, γΖ, WW*->WIv, ZZ*->ZII, bb, ττ, μμ
 - EWPO: STU
 - Many others: W-/Z-pole, widths, ee→ff, Drell-Yan at LHC...
- All results are with scale dependence...

$$\sigma = C_H(\mu_{EFT})\sigma_{ ext{tree}} + C_t rac{lpha_{EW}}{\pi} \left(\log rac{Q^2}{\mu_{EFT}^2} \sigma_{ ext{log}} + \sigma_{ ext{fin}}
ight)$$

RESULT (0)

- A UFO model, with which we can compute dim-6 top loop corrections in many processes, thanks to automation
 - Higgs production at LHC: WH, ZH, VBF
 - Higgs production at LC: ZH, WWF, ZZF
 - Higgs decay: γγ, γΖ, WW*->WIv, ZZ*->ZII, bb, ττ, μμ
 - EWPO: STU
 - Many others: W-/Z-pole, widths, ee→ff, Drell-Yan at LHC...
- All results are with scale dependence...

$$\sigma = C_H(\mu_{EFT})\sigma_{ ext{tree}} + C_t rac{lpha_{EW}}{\pi} \left(\log rac{Q^2}{\mu_{EFT}^2} \sigma_{ ext{log}} + \sigma_{ ext{fin}}
ight)$$

"Top-down": $\mu_{EFT} = 1 \text{ TeV}$ "Bottom-up": $\mu_{EFT} = 125 \text{ GeV}$

RESULT (1): LHC

13 TeV, $C/\Lambda^2 = 1 \text{ TeV}^{-2}$

channel	$\mu_{\rm EFT}$ [GeV]	$O_{arphi W}$	$O_{arphi B}$	$O_{arphi t}$	$O_{\varphi Q}^+$	$O^{\varphi Q}$	$O_{arphi tb}$	O_{tW}	O_{tB}	O_{tarphi}
$pp \rightarrow ZH$	125	73.7	8.17	-0.30	0.21	0.21	-0.0034	1.00	-0.064	-0.017
$pp \rightarrow ZH$	1000			0.57	0.11	-0.66	-0.055	-2.75	-0.44	-0.017
$pp \rightarrow WH$	125	88.6		-0.15	-0.041	0.19	-0.000050	0.43	0	-0.21
$pp \rightarrow WH$	1000			0.79	-0.27	-0.52	-0.051	-4.08	0	-0.21
$pp \rightarrow Hjj$	125	-4.52	-0.035	-0.26	-0.24	0.51	0.0065	0.044	-0.0050	0.029
$pp \rightarrow Hjj$	1000			0.68	0.94	-1.61	-0.045	0.29	-0.0031	0.029

This means the 0.94% deviation in signal strength

RESULT (2): LEPTON COLLIDER

channel	$\mu_{\rm EFT}$ [GeV]	$O_{arphi t}$	$O^+_{\varphi Q}$	$O^{\varphi Q}$	$O_{arphi tb}$	O_{tW}	O_{tB}	$O_{t \varphi}$
$e^+e^- \rightarrow ZH$	125	-0.40	-0.21	0.22	-0.00063	1.82	-0.25	0.0053
$e^+e^- \rightarrow ZH$	1000	0.78	-0.10	-0.71	-0.052	-2.71	0.62	0.0053
$e^+e^- \rightarrow H \nu \nu$	125	-0.15	-0.26	0.41	0.0076	-0.083	0	-0.0138
$e^+e^- \rightarrow H \nu \nu$	1000	0.79	0.76	-1.55	-0.044	0.127	0	-0.0138
$e^+e^- \rightarrow He^+e^-$	125	-0.51	-0.27	0.56	0.00050	0.68	0.65	0.084
$e^+e^- \rightarrow He^+e^-$	1000	0.28	0.77	-1.50	-0.051	0.78	-0.57	0.084

250 GeV $(e^+,e^-) = (+0.3,-0.8)$

$\mu_{\rm EFT}$ [GeV]	$O_{arphi t}$	$O^+_{arphi Q}$	$O^{\varphi Q}$	$O_{arphi tb}$	O_{tW}	O_{tB}	O_{tarphi}
125	-0.44	0.36	0.55	-0.0085	-0.62	0.17	0.055
1000	0.0031	1.14	-1.42	-0.060	-1.35	-2.35	0.055
25	-0.15	-0.26	0.41	0.0076	-0.0083	0	-0.0138
1000	0.79	0.76	-1.55	-0.044	0.0127	0	-0.0138
25	-0.62	0.127	0.66	-0.0086	0.43	1.69	0.048
1000	0.29	0.92	-1.08	-0.060	-0.60	-1.11	0.048
	$u_{\rm EFT}$ [GeV] 25 000 25 000 25 000 25 000 25 000 25 000	$t_{\rm EFT}$ [GeV] $O_{\varphi t}$ 25-0.440000.003125-0.150000.7925-0.620000.29	$t_{\rm EFT}$ [GeV] $O_{\varphi t}$ $O_{\varphi Q}^+$ 25-0.440.360000.00311.1425-0.15-0.260000.790.7625-0.620.1270000.290.92	$u_{\rm EFT}$ [GeV] $O_{\varphi t}$ $O_{\varphi Q}^+$ $O_{\varphi Q}^-$ 25-0.440.360.550000.00311.14-1.4225-0.15-0.260.410000.790.76-1.5525-0.620.1270.660000.290.92-1.08	$u_{\rm EFT}$ [GeV] $O_{\varphi t}$ $O_{\varphi Q}^+$ $O_{\varphi Q}^ O_{\varphi tb}$ 25-0.440.360.55-0.00850000.00311.14-1.42-0.06025-0.15-0.260.410.00760000.790.76-1.55-0.04425-0.620.1270.66-0.00860000.290.92-1.08-0.060	$u_{\rm EFT}$ [GeV] $O_{\varphi t}$ $O_{\varphi Q}^+$ $O_{\varphi Q}^ O_{\varphi tb}$ O_{tW} 25-0.440.360.55-0.0085-0.620000.00311.14-1.42-0.060-1.3525-0.15-0.260.410.0076-0.00830000.790.76-1.55-0.0440.012725-0.620.1270.66-0.00860.430000.290.92-1.08-0.060-0.60	$t_{\rm EFT}$ [GeV] $O_{\varphi t}$ $O_{\varphi Q}^+$ $O_{\varphi Q}^ O_{\varphi tb}$ O_{tW} O_{tB} 25-0.440.360.55-0.0085-0.620.170000.00311.14-1.42-0.060-1.35-2.3525-0.15-0.260.410.0076-0.008300000.790.76-1.55-0.0440.0127025-0.620.1270.66-0.00860.431.690000.290.92-1.08-0.060-0.60-1.11

250 GeV $(e^+,e^-) = (-0.3,+0.8)$

PHYSICS IMPACT

PHYSICS IMPACT 1: AT LHC

- Let's use current constraints on the top operators
 - Current constraints: (reconstruct the 95% allowed region in parameter space, neglecting correlation)

OperatorTop FitterRHCC tree $\sigma_{t\bar{t}H}$ [33] $C_{\varphi tb}$ [-5.28,5.28] $C_{\varphi Q}^{(3)}$ [-2.59,1.50] $C_{\varphi Q}^{(1)}$ [-3.10,3.10] $C_{\varphi t}$ [-9.78,8.18] C_{tW} [-2.49,2.49] C_{tB} [-7.09,4.68] $C_{t\varphi}$ [-6.5,1.3]				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Operator	Top Fitter	RHCC tree	$\sigma_{t\bar{t}H}$ [33]
$\begin{array}{ll} C^{(3)}_{\varphi Q} & [-2.59, 1.50] \\ C^{(1)}_{\varphi Q} & [-3.10, 3.10] \\ C_{\varphi t} & [-9.78, 8.18] \\ C_{tW} & [-2.49, 2.49] \\ C_{tB} & [-7.09, 4.68] \\ C_{t\varphi} & [-6.5, 1.3] \end{array}$	$C_{\varphi tb}$		[-5.28, 5.28]	
$\begin{array}{lll} C_{\varphi Q}^{(1)} & [-3.10, 3.10] \\ C_{\varphi t} & [-9.78, 8.18] \\ C_{tW} & [-2.49, 2.49] \\ C_{tB} & [-7.09, 4.68] \\ C_{t\varphi} & [-6.5, 1.3] \end{array}$	$C^{(3)}_{arphi Q}$	[-2.59, 1.50]		
$C_{\varphi t}$ [-9.78,8.18] C_{tW} [-2.49,2.49] C_{tB} [-7.09,4.68] $C_{t\varphi}$ [-6.5,1.3]	$C^{(1)}_{arphi Q}$	[-3.10, 3.10]		
$\begin{array}{lll} C_{tW} & [-2.49, 2.49] \\ C_{tB} & [-7.09, 4.68] \\ C_{t\varphi} & [-6.5, 1.3] \end{array}$	$C_{arphi t}$	[-9.78, 8.18]		
$\begin{array}{ccc} C_{tB} & [-7.09, 4.68] \\ C_{t\varphi} & [-6.5, 1.3] \end{array}$	C_{tW}	[-2.49, 2.49]		
$C_{t\varphi}$ [-6.5,1.3]	C_{tB}	[-7.09, 4.68]		
	C_{tarphi}			[-6.5, 1.3]

Alioli, Cirigliano, Dekens, de Vries, Mereghetti 17

Maltoni, Vryonidou, Zhang 16 The TopFitter 16

• Possible deviations in Higgs channels at LHC:

	$\gamma\gamma$	$\gamma { m Z}$	bb	WW^*	ZZ^*	au au	$\mu\mu$
gg	(-100%,1980%)	(-88%,200%)	(-40%, 48%)	(-40%, 47%)	(-40%, 46%)	(-40%, 48%)	(-40%, 48%)
VBF	(-100%,1880%)	(-88%, 170%)	(-6.1%, 5.3%)	(-6.8%, 6.7%)	(-8.8%,9.2%)	(-6.2%, 5.9%)	(-6.2%, 5.9%)
WH	(-100%,1880%)	(-88%, 170%)	(-5.5%, 4.2%)	(-6.1%, 5.6%)	(-7.8%,7.9%)	(-5.8%,5.1%)	(-5.8%, 5.1%)
\mathbf{ZH}	(-100%, 1880%)	(-87%,170%)	(-6.5%, 5.9%)	(-7.1%,7.1%)	(-9.4%,9.9%)	(-6.8%, 6.7%)	(-6.8%, 6.7%)

This means potentially ~9% deviation ZH, H->ZZ*

PHYSICS IMPACT 1: AT LHC

- Let's use current constraints on the top operators
 - Current constraints: (reconstruct the 95% allowed region in parameter space, neglecting correlation)

Operator	Top Fitter	RHCC tree	$\sigma_{t\bar{t}H}$ [33]
$C_{\varphi tb}$		[-5.28, 5.28]	
$C_{\varphi Q}^{(3)}$	[-2.59, 1.50]		
$C_{\varphi Q}^{(1)}$	[-3.10, 3.10]		
$C_{\varphi t}$	[-9.78, 8.18]		
C_{tW}	[-2.49, 2.49]		
C_{tB}	[-7.09, 4.68]		
$C_{t\varphi}$			[-6.5, 1.3]

Alioli, Cirigliano, Dekens, de Vries, Mereghetti 17

Maltoni, Vryonidou, Zhang 16 The TopFitter 16

• Possible deviations in Higgs channels at LHC:

$\gamma\gamma$ γZ bb WW^{*} Z	ZZ^* $ au au$ $\mu\mu$
gg (-100%, 1980%) (-88%, 200%) (-40%, 48%) (-40%, 47%) (-40%%) (-40%, 47%) (-40%) (-40%)	(-40%, 48%) (-40%, 48%) (-40%, 48%)
VBF (-100%,1880%) (-88%,170%) (-6.1%,5.3%) (-6.8%,6.7%) (-8.8%	(-6.2%, 5.9%) (-6.2%, 5.9%) (-6.2%, 5.9%)
WH (-100%,1880%) (-88%,170%) (-5.5%,4.2%) (-6.1%,5.6%) (-7.8%	(-5.8%, 5.1%) $(-5.8%, 5.1%)$
ZH (-100%,1880%) (-87%,170%) (-6.5%,5.9%) (-7.1%,7.1%) (-9.4%	7.9.9%) (-6.8%,6.7%) (-6.8%,6.7%)

This means potentially ~9% deviation ZH, H->ZZ*

PHYSICS IMPACT 2: AT LEPTON COLLIDERS

- Let's use current constraints on the top operators
 - Current constraints: (reconstruct the 95% allowed region in parameter space, neglecting correlation)

Operator	Top Fitter	RHCC tree	$\sigma_{t\bar{t}H}$ [33]
$C_{arphi tb}$		[-5.28, 5.28]	
$C^{(3)}_{\varphi Q}$	[-2.59, 1.50]		
$C^{(1)}_{\varphi Q}$	[-3.10, 3.10]		
$C_{arphi t}$	[-9.78, 8.18]		
C_{tW}	[-2.49, 2.49]		
C_{tB}	[-7.09, 4.68]		
$C_{t\varphi}$			[-6.5, 1.3]

Maltoni, Vryonidou, Zhang 16

The TopFitter 16

Alioli, Cirigliano, Dekens, de Vries, Mereghetti 17

• Possible deviations in Higgs channels at LC:

Even a LC below 350 GeV can probe top couplings

	$\gamma\gamma$	$\gamma { m Z}$	bb	WW^*	ZZ^*	au au	$\mu\mu$
ZH(+30%,-80%)	(-100%,1900%)	(-87%, 160%)	(-7.5%,7.5%)	(-8.3%,8.6%)	(-11%,11%)	(-8%, 8.3%)	(-8%,8.3%)
m ZH(-30%,+80%)	(-100%,1870%)	(-88%, 180%)	(-7.6%,7.1%)	(-8.1%, 7.9%)	(-10%, 11%)	(-7.6%, 7.3%)	(-7.6%,7.3%)
WWF(+30%,-80%)	(-100%,1880%)	(-88%, 170%)	(-5.7%,4.7%)	(-6.5%, 6.2%)	(-8.1%,8.3%)	(-5.9%,5.3%)	(-5.9%, 5.3%)
WWF(-30%,+80%)	(-100%,1880%)	(-88%, 170%)	(-5.7%,4.7%)	(-6.5%, 6.2%)	(-8.1%,8.3%)	(-5.9%,5.3%)	(-5.9%,5.3%)
ZZF(+30%,-80%)	(-100%,1810%)	(-88%, 170%)	(-9.9%, 8.2%)	(-10%,9.2%)	(-12%, 12%)	(-10%, 8.6%)	(-10%, 8.6%)
ZZF(-30%,+80%)	(-100%,1690%)	(-88%, 190%)	(-15%,12%)	(-15%, 13%)	(-17%, 16%)	(-15%,13%)	(-15%, 13%)

250 GeV, all operators allowed

PHYSICS IMPACT 2: AT LEPTON COLLIDERS

- Let's use current constraints on the top operators
 - Current constraints: (reconstruct the 95% allowed region in parameter space, neglecting correlation)

Alioli, Cirigliano, Dekens, de Vries, Mereghetti 17 <u>HCC tree $\sigma_{t\bar{t}H}$ [33]</u> 5.28,5.28] Maltoni, Vryonidou, Zhang 16 The TopFitter 16

• Possible deviations in Higgs channels at LC:

If fixed with 350 run

	$\gamma\gamma$	$\gamma { m Z}$	bb	WW^*	ZZ^*	au au	$\mu\mu$
ZH(+30%,-80%)	(-17%,18%)	(-6.7%,6.4%)	(-3.4%,2.7%)	(-3.9%,3.3%)	(-4.4%,3.8%)	(-3%, 2.4%)	(-3%, 2.4%)
m ZH(-30%,+80%)	(-17%,19%)	(-7.3%,7.1%)	(-4%, 3.4%)	(-4.5%, 4%)	(-5%, 4.4%)	(-3.6%, 3%)	(-3.6%, 3%)
WWF(+30%,-80%)	(-17%,18%)	(-7.3%, 7%)	(-3.9%, 3.3%)	(-4.5%, 3.9%)	(-4.9%,4.4%)	(-3.6%, 2.9%)	(-3.6%, 2.9%)
WWF(-30%,+80%)	(-17%,18%)	(-7.3%, 7%)	(-3.9%, 3.3%)	(-4.5%, 3.9%)	(-4.9%,4.4%)	(-3.6%, 2.9%)	(-3.6%, 2.9%)
$\operatorname{ZZF}(+30\%,-80\%)$	(-17%,19%)	(-7.7%,7.4%)	(-4.3%,3.7%)	(-4.9%,4.3%)	(-5.3%,4.8%)	(-4%, 3.4%)	(-4%, 3.4%)
$\operatorname{ZZF}(-30\%,+80\%)$	(-17%,19%)	(-7.6%, 7.4%)	(-4.3%, 3.7%)	(-4.8%, 4.3%)	(-5.2%, 4.7%)	(-3.9%, 3.3%)	(-3.9%, 3.3%)

350 GeV, only $O_{t\phi}$ (the Yukawa) allowed

PHYSICS IMPACT 3: PROBING TOP COUPLINGS AT HL-LHC

- To estimate HL-LHC "sensitivities" to top-quark operators, we perform a "global fit" using HL projected Higgs measurements.
 - Other Higgs operators are fixed to 0.
 - Set S=T=0, which means $C_{\phi WB}$ and $C_{\phi D}=0$ in our scheme.
 - Projections follow [Maltoni, Pagani, Shivaji, Zhao 17]
 - Add bb ATL-PHYS-PUB-2014-011
 - and γZ
 ATL-PHYS-PUB-2014-006

	Category	ggF	VBF	WH	ZH	$t\bar{t}H$	Backgrounds	sys.
	ggF-like	3380	274	77	53	25	2110	283
	VBF-like	41	54	0.7	0.4	1.0	4.2	7.4
ZZ^*	WH-like	22	6.6	25	4.4	8.8	1.3	4.9
	ZH-like	0.0	0.0	0.01	4.4	1.3	0.06	0.41
	$t\bar{t}H$ -like	3.1	0.6	0.6	1.1	30	1.6	3.2
	ggF-like	$7.51 imes 10^4$	$5.66 imes 10^3$	0	0	0	$4.06 imes 10^6$	$2.5 imes 10^3$
	VBF-like	63.9	149	0	0	0	802	6.5
0/0/	WH-like	15.9	9.08	163	2.27	15.9	995	7.4
· Y Y	ZH-like	0	0	0	23.0	3.13	22.8	0.85
	$t\bar{t}H$ -like, 1 ℓ	6.75	0	11.3	4.5	200	428	6.9
	$t\bar{t}H$ -like, 2ℓ	0	0	0	0.38	18.5	48.3	0.98
	ggF-like, 0j	40850	990	0	0	0	366450	$9.5 imes 10^3$
WW^*	ggF-like, 1j	20050	2325	0	0	0	259610	$1.1 imes 10^4$
	VBF-like	90	500	0	0	0	1825	$1.6 imes10^2$
<u>_</u> +	VBF-like, lept.	0	147	0	0	0	190	10
1.1	VBF-like, semi-lept.	0	297	0	0	0	1610	21
+	ggF-like	1.51×10^4	1.25×10^3	450	270	180	5.64×10^6	630
$\mu \cdot \mu$	$t\bar{t}H$ -like	0	0	0	0	33	22	1.7

PHYSICS IMPACT 3: PROBING TOP COUPLINGS AT HL-LHC

• Individual "limits":

Operator	$C_{arphi t}$	$C^{(+)}_{arphi Q}$	$C^{(-)}_{\varphi Q}$	$C_{arphi tb}$	C_{tW}	C_{tB}	C_{tarphi}
$\mu_{EFT} = 125 \text{ GeV}$	2.5	1.3	3.2	9.5	0.2	0.07	0.9
$\mu_{EFT} = 1000 \text{ GeV}$	1.3	0.5	4.3	1.3	0.6	0.08	0.9
Current	9.0	5.1	5.1	5.3	2.5	5.9	3.9

• Chi square eigenvalues:

/	'-0.0251	0.0454	0.0189	0.00501	-0.429	-0.901	-0.0414
	0.0244	0.00927	-0.0187	-0.0579	-0.0441	-0.0257	0.997
	0.0722	-0.43	-0.147	0.0117	0.79	-0.404	0.0247
	0.366	-0.711	-0.368	-0.187	-0.411	0.143	-0.0346
	0.33	0.492	-0.462	-0.642	0.133	-0.0585	-0.0542
	-0.518	-0.257	0.367	-0.728	-0.00803	0.00986	-0.0205
l	0.695	-0.00499	0.703	-0.139	0.0516	-0.0297	-0.0103

$$\times \frac{1 \text{TeV}^2}{\Lambda^2} \begin{pmatrix} C_{\varphi t} \\ C_{\varphi Q} \\ C_{\varphi Q} \\ C_{\varphi tb} \\ C_{tW} \\ C_{tW} \\ C_{tB} \\ C_{t\varphi} \end{pmatrix} = \pm \begin{pmatrix} 0.0326 \\ 0.577 \\ 0.984 \\ 5.21 \\ 7.73 \\ 30.5 \\ 83.9 \end{pmatrix}$$

Loop-induced

NLO EW

26

PHYSICS IMPACT 3: PROBING TOP COUPLINGS AT HL-LHC

Eigenstates	Coefficients	Channels
1st	$C_{tB}(81\%)$	$gg \to H \to \gamma\gamma ~(84\%)$
2nd	$C_{tarphi}(99\%)$	$gg \rightarrow H \rightarrow WW^*, ZZ^*, \mu\mu \ (74\%)$
3rd	$C_{tW}(62\%), C^{(+)}_{arphi Q}(18\%)$	U~(87%)
4th	$C^{(+)}_{\varphi Q}(50\%), C_{tW}(17\%)$	$gg \to H \to \gamma Z \ (64\%)$
5th	$C_{\varphi tb}(41\%), C_{\varphi Q}^{(+)}(24\%), C_{\varphi Q}^{(-)}(21\%)$	$VBF \rightarrow ZZ^*, \tau\tau, \gamma\gamma ~(56\%)$
		$gg \to H \to \gamma Z \ (18\%)$
6th	$C_{\varphi tb}(53\%), C_{\varphi t}(27\%), C_{\varphi Q}^{(-)}(13\%)$	$gg \rightarrow H \rightarrow \mu\mu, ZZ * (48\%)$
		$VBF \rightarrow \tau \tau, ZZ^* $ (36%)
7th	$C^{(-)}_{\varphi Q}(49\%), C_{\varphi t}(48\%)$	$ggF, VBF \rightarrow WW^*(48\%)$
		$WH, ZH ightarrow \gamma\gamma(21\%)$

SENSITIVITY DECOMPOSITION

27

Improve the fit with differential distributions... [Maltoni, Pagani, Shivaji, Zhao 17] •

Bin [GeV]	Channel	r value	$O_{\varphi t}$	$O^+_{\varphi Q}$	$O^{\varphi Q}$	$O_{arphi tb}$	O_{tW}	O_{tB}	O_{tarphi}
0-50	VBF	0.22	-0.24	-0.22	0.47	0.0051	-0.19	-0.031	0.02
	WH	0.35	-0.15	-0.16	0.31	-0.0022	0.69	0.	-0.25
	ZH	0.34	-0.42	-0.0086	0.35	-0.0034	0.98	-0.1	0.024
50-100	VBF	0.37	-0.25	-0.22	0.47	0.0055	-0.045	0.0028	0.02
	WH	0.38	-0.15	-0.18	0.32	-0.0025	0.47	0.	-0.24
	ZH	0.38	-0.35	0.049	0.3	-0.0034	1.	-0.08	-0.003
100-150	VBF	0.23	-0.27	-0.22	0.5	0.0067	0.094	0.006	0.03
	WH	0.16	-0.15	-0.14	0.29	0.00061	0.11	0.	-0.19
	ZH	0.17	-0.13	0.2	0.25	-0.0034	0.99	0.0088	-0.074
150-200	VBF	0.1	-0.29	-0.24	0.55	0.0085	0.26	0.0032	0.043
	WH	0.062	-0.15	0.043	0.1	0.0067	-0.1	0.	-0.13
	ZH	0.066	-0.0019	0.5	0.094	-0.0034	0.85	0.064	-0.13
200-250	VBF	0.043	-0.32	-0.27	0.63	0.01	0.46	-0.0039	0.058
	WH	0.026	-0.15	0.42	-0.27	0.013	-0.12	0.	-0.069
	ZH	0.027	-0.075	0.97	-0.19	-0.0034	0.93	0.002	-0.11
250-300	VBF	0.018	-0.33	-0.36	0.73	0.013	0.73	-0.012	0.074
	WH	0.012	-0.15	1.1	-0.91	0.02	0.022	0.	-0.0069
	ZH	0.012	-0.18	1.6	-0.63	-0.0034	1.1	-0.096	-0.066
300-350	VBF	0.0087	-0.37	-0.5	0.93	0.015	0.85	-0.022	0.099
	WH	0.0063	-0.15	1.9	-1.7	0.026	0.22	0.	0.05
	ZH	0.0056	-0.26	2.5	-1.3	-0.0034	1.3	-0.19	-0.011
350-400	VBF	0.0038	-0.42	-0.66	1.2	0.016	1.	-0.04	0.12
	WH	0.0034	-0.15	3.1	-2.9	0.031	0.49	0.	0.11
	ZH	0.0033	-0.31	4.	-2.5	-0.0034	1.7	-0.35	0.059
400-450	VBF	0.002	-0.41	-0.96	1.4	0.02	1.8	-0.04	0.13
	WH	0.002	-0.15	4.6	-4.4	0.036	0.7	0.	0.15
	ZH	0.0017	-0.31	5.1	-3.4	-0.0034	1.7	-0.4	0.1
450-500	VBF	0.00098	-0.48	-1.2	1.7	0.021	1.9	-0.064	0.16
	WH	0.0014	-0.15	6.2	-6.	0.04	1.	0.	0.2
	ZH	0.0011	-0.24	6.5	-4.5	-0.0035	1.8	-0.45	0.15
500+	VBF	0.0014	-0.58	-2.5	3.	0.026	3.	-0.1	0.21
	WH	0.0024	-0.15	14.	-14.	0.051	1.9	0.	0.32
	ZH	0.0021	0.35	15.	-12.	-0.0035	2.4	-0.71	0.29

• Improve the fit with differential distributions... [Maltoni, Pagani, Shivaji, Zhao 17]

Bin [GeV]	Channel	r value	$O_{\varphi t}$	$O^+_{arphi Q}$	$O^{\varphi Q}$	$O_{arphi tb}$	O_{tW}	O_{tB}	O_{tarphi}								
0-50	VBF	0.22	-0.24	-0.22	0.47	0.0051	-0.19	-0.031	0.02								
	WH	0.35	-0.15	-0.16	0.31	-0.0											
	ZH	0.34	-0.42	-0.0086	0.35	-0.0	(-0.02)	251 0.0	454	0.0189	0.00501	-0.429	-0.901	-0.0411		$(C_{\omega t})$	
50-100	VBF	0.37	-0.25	-0.22	0.47	0.0	0.026	61 0 0	105	_0_0208	2 _0 0508	_0.0465	_0 0949	0.006		$C^{\mu\nu}$	
	WH	0.38	-0.15	-0.18	0.32	-0.0	0.020	0.0	100 -	-0.0200	5 -0.0098	-0.0400	-0.0242	0.990		$C_{\varphi Q}$	
	ZH	0.38	-0.35	0.049	0.3	-0.0	0.073	31 - 0	.438	-0.147	0.0128	0.786	-0.403	0.0273	$1 \mathrm{TeV}^2$	$C_{\varphi Q}$	
100-150	VBF	0.23	-0.27	-0.22	0.5	0.0	0.38	6 - 0	.676	-0.387	-0.24	-0.407	0.141	-0.0411	$\times \frac{116V}{10}$	C_{oth}	
	WH	0.16	-0.15	-0.14	0.29	0.0	0.00	<u> </u>	FFA	0 550	0 524	0.157	0.0000	0.0507	Λ^2	$C \varphi_{l0}$	
	ZH	0.17	-0.13	0.2	0.25	-0.0	-0.2	08 -0	.554	0.552	0.534	-0.157	0.0666	0.0507		C_{tW}	
150-200	VBF	0.1	-0.29	-0.24	0.55	0.0	-0.01	101 0.	123	-0.636	0.759	-0.0519	0.0207	0.0294		C_{tB}	
	WH	0.062	-0.15	0.043	0.1	0.0	0.87	ν <u>ο</u> Ο .	166	0 3/15	0 278	0 0530	_0.033	0.00077		C	
	ZH	0.066	-0.0019	0.5	0.094	-0.0	0.01	3 0.	100	0.040	0.210	0.0009	-0.000	0.00011 /		$\langle U_{t\varphi} \rangle$	
200-250	VBF	0.043	-0.32	-0.27	0.63	0.0			0.0	0325			(0.0326)				
	WH	0.026	-0.15	0.42	-0.27	0.0				560			0 577				
	ZH	0.027	-0.075	0.97	-0.19	-0.0				.909			0.577				
250-300	VBF	0.018	-0.33	-0.36	0.73	0.0			0.	965			0.984				
	WH	0.012	-0.15	1.1	-0.91	0.0		= +	- 1	97	compare	ed with	5 21	from inclu	isive measu	rements	
	ZH	0.012	-0.18	1.6	-0.63	-0.0					, compare		0.21	moni men	ISIVE IIICasu	.1011101105	•
300-350	VBF	0.0087	-0.37	-0.5	0.93	0.0			6	.28			7.73				
	WH	0.0063	-0.15	1.9	-1.7	0.0			1	7.8			30.5				
	ZH	0.0056	-0.26	2.5	-1.3	-0.0			1 9				02.0				
350-400	VBF	0.0038	-0.42	-0.66	1.2	0.0			1 3	0.0			03.9				
	WH	0.0034	-0.15	3.1	-2.9	0.0										(!	57
	ZH	0.0033	-0.31	4.	-2.5	-0.0034	1.7	-0.35	0.059								
400-450	VBF	0.002	-0.41	-0.96	1.4	0.02	1.8	-0.04	0.13		GDP	impr	hoved	by a fr	actor o	$f \sim 0$	2
	WH	0.002	-0.15	4.6	-4.4	0.036	0.7	0.	0.15		UDI	IIIIpi	oveu	Dyald		1.0.	0
	ZH	0.0017	-0.31	5.1	-3.4	-0.0034	1.7	-0.4	0.1								
450-500	VBF	0.00098	-0.48	-1.2	1.7	0.021	1.9	-0.064	0.16								
	WH	0.0014	-0.15	6.2	-6.	0.04	1.	0.	0.2								
	ZH	0.0011	-0.24	6.5	-4.5	-0.0035	1.8	-0.45	0.15								
500+	VBF	0.0014	-0.58	-2.5	3.	0.026	3.	-0.1	0.21								
	WH	0.0024	-0.15	14.	-14.	0.051	1.9	0.	0.32								
	ZH	0.0021	0.35	15.	-12.	-0.0035	2.4	-0.71	0.29								

Comparison of sensitivity, current direct limits with HL-LHC

CONCLUSION

CONCLUSION

• We compute NLO EW corrections from dim-6 top operators to major Higgs processes:

- LHC: VBF, WH, ZH
- LC: ZH, VBF
- Decay: γγ, γΖ, WW*, ZZ*, bb, ττ, μμ
- and in principle many other non-Higgs processes
- Implemented in MG5_aMC@NLO: a first step towards automated SMEFT@NLO in EW
- Using these results we find <u>Higgs measurements are sensitive to top operators</u>
 - Loop-induced processes (in SM) affected by O(1)-O(10), while others by ~10% due to NLO EW corrections. Will matter at HL-LHC and LC.
- We derive projected "constraints" on top operator coefficients using loop effects. They could range from *O(0.01) to O(10)*, if Λ=1TeV.

CONCLUSION

- Treating the dim-6 top-quark sector and the Higgs/EW sector separately will not continue to be a good approximation. A global approach with loop effects is desirable.
- Our implementation provides an automatic and realistic simulation tool for this purpose.

BACKUPS

H DECAY

channel	$\mu_{\rm EFT}$ [GeV]	$O_{\varphi W}$	$O_{arphi B}$	$O_{arphi t}$	$O^+_{arphi Q}$	$O^{arphi Q}$	$O_{arphi tb}$	O_{tW}	O_{tB}	O_{tarphi}
H ightarrow bb	125	0	0	-0.15	-0.06	0.24	-1.13	-0.28	0	-0.18
H ightarrow bb	1000			0.79	0.54	-1.25	-8.16	0.34	0	0.29
$H ightarrow \mu \mu, au au$	125	0	0	-0.15	0.001	0.15	0	0	0	-0.27
$H ightarrow \mu \mu, au au$	1000			0.79	0.002	-0.79	0	0	0	0.68
$H ightarrow \gamma \gamma$	125	-1378	-4806	-3.37	5.86	2.64	0	-56.4	-117.9	3.45
$H ightarrow \gamma \gamma$	1000			6.95	16.2	-2.52	0	14.0	101.3	3.45
$H \rightarrow Z\gamma$	125	-1437	1437	0.512	2.20	2.74	0	-39.5	14.0	0.723
$H ightarrow Z\gamma$	1000			4.35	6.04	0.830	0	33.9	-51.6	0.723
$H \rightarrow Zll$	125	2.79	-8.67	-0.541	-0.098	0.556	-0.004	0.188	-0.062	0.082
$H \rightarrow Zll$	1000			0.334	0.738	-1.253	-0.055	0.048	0.333	0.082
$H \rightarrow W l \nu$	125	-9.00		-0.146	-0.235	0.382	0.004	-0.134	0.	-0.033
H ightarrow W l u	1000			0.794	0.627	-1.421	-0.047	0.326	0.	-0.033

LOOP/TREE DISCRIMINATION

- We have set Higgs operators to ZERO. What if we have not? i.e. in a real global fit, how do we discriminate tree-level contributions from OH and loop-level contributions from Ot?
 - RG correction is not useful here: observable-independent.
 - Finite correction is the key. This is why we think mu_{EFT}=125 GeV better reflects the "sensitivity" of a real fit.
 - Consider O_{tB} that mixes into $O_{\phi B}$. Suppose we want to distinguish the two only using Higgs processes ($\gamma\gamma$, γZ , WW^* , ZZ^* , all 10%)

 $C_{\varphi B} + 0.021 C_{tB} = \pm 0.0022 \ (\Lambda/1 \text{TeV})^2 ,$ $C_{tB} - 0.021 C_{\varphi B} = \pm 6.7 \ (\Lambda/1 \text{TeV})^2 ,$

 $C_{\varphi B} - 0.045 C_{tB} = \pm 0.0022 \ (\Lambda/1 \text{TeV})^2 ,$ $C_{tB} + 0.045 C_{\varphi B} = \pm \infty (\Lambda/1 \text{TeV})^2 ,$

With finite corrections

With RG logs only

LOOP/TREE DISCRIMINATION

Figure 9. Comparison of logarithmic and finite terms in the Higgs transverse momentum distribution in ZH and WH production for the different operators. The lower panels show the ratio of the finite over the logarithmic terms.

DISTRIBUTIONS ARE CRUCIAL