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I. Properties of the Higgs boson 



First publications claiming the new-boson discovery by CMS and ATLAS at 2012 



Higgs-boson properties (PDG 2017) 

Signal Strengths 



Nothing new at least up to 600 GeV                    BIG GAP 

  

Thus we have ONE and only ONE new SCALAR 
resonance at 125.5 GeV:              h(125) 

  

Empirical situation

New physics?

W (80.4 GeV), Z (91.2 GeV)

H (125.9 GeV, PDG 2013)

600 GeV

GAP

IMPORTANT: No new physics!! If
there is any...

Four scalar light modes, a strong gap.

Natural: further spontaneous symmetry
breaking at f > v = 246GeV?
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So what is this new particle? 
 
 



II. The Higgs in the Minimal Standard Model  
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Interactors: 
Gauge bosons 

Matter: 
Quarks and leptons 

EWSBS: 
WBGB, new h boson… 

 The Standard Model Structure 

Gauge couplings 

Gauge invariant couplings Yukawa couplings 

Terra 
Incognita! 



The EWSBS in the Minimal Standard Model 

•  We introduce an ad hoc potential to induce the Higgs mechanism. 
•  We have 4 new degrees of freedom: 3 WBGB and one massive scalar (THE HIGGS  BOSON). 
•  Fermion masses are produced by the Yukawa couplings in a gauge invariant way. 
•  The theory is unitary and renormalizable. 
•  The dynamics producing the EWSB is gauge invariant but it is not a gauge interaction 
•   Light Higgs means weak interactions in the SBS 

•  The Higgs always appear in the combination h + v. 



  

  

Problems of the Minimal Standard Model 

•  Origin and nature of the Electroweak Symmetry Breaking 

•  Light scalars are unnatural because of the big radiative corrections to their 
masses. 

•  Vacuum (meta) stability. 
 
•  Origin and values of its many parameters 
  (masses, elements of the CKM and PMNS* matrices, couplings...) 
 
•  The strong CP problem 

•  Why is v <<  MP? 
 
•  Dark matter and dark energy? 

•  What about gravity? 

* Pontecorvo–Maki–Nakagawa–Sakata 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

So is the new Higgs like particle the MSM Higgs boson? 
 
Is it elementary or composite? 



The first conclusions after looking at the experimental data 
is that the new scalar resonance is compatible with the SM 
Higgs, hence the name of Higgs-like resonance. 
 
 
However, in  there is a lot of room for other possibilities,  
in particular for a strongly interacting scenario for the EWSBS. 
 
In the following we will concentrate in the compositeness 
(dynamical symmetry breaking)  scenario where the Higgs is a 
Goldstone boson (GB) associated to some global spontaneous 
symmetry breaking. 



III. Modeling a Strongly Interacting SBS 



For describing the physics of the SBS of the SM beyond the MSM 
under the hypothesis of compositeness at low energies we have 
to include:           
   
3 WBGB ωa  + one Higgs-like light scalar h. 
   
There are at least two possibilities: 

a)  Linear representation: (SMEFT) 
 
•   The ωa  and the h  fit in a left SU(2) doublet 
 
•  The Higgs always appear in the combination: h + v  
 
•   Higher symmetry 
 
•  Typical situation when h is a fundamental field 

•  EFT usually based in a cutoff Λ expansion:   O(d) / Λd-4    
      (d = operator dimension, d = 4,6,8…) 



 
b)  Non-linear representation: (HEFT) 

 
•  h is a SU(2) singlet and ωa are coordinates on a coset: 
                
                SU(2)L X SU(2)R  / SU(2)V = SU(2) = S3 

 
•  Lesser symmetry and more independent higher dimension effective 

operators  but less model depending 
 
•  Derivative expansion 
  
•  EWChL with F(h) insertions 
 
•   Appropriate for composite models of the SBS (h as a GB) 
 
•   Strongly interacting and consistent with the presence of the  GAP 

SM                         SMEFT                         HEFT      	

Alonso, Jenkins and Manohar  



Sometimes the difference is difficult to see if we use generalized coordinates. 
 
 
Important result in QFT: reparametrization invariance of S matrix elements 
 

Lehman-Symanzik-Zimmermann 

Field reparametrization: 

same S matrix elements  



       
In this work we consider the non-linear approach (HEFT) consistent with 
the GAP and therefore the Higgs will be a GB field associated to some 
global SSB from a global group  G to a subgroup H with the GB living 
in the coset manifold  M = G / H.  
	
. 
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Symmetry breaking pattern for compossite Higgs models 

II 

GW  = electroweak gauge group =  SU(2)L X U(1)Y   
S = maximal subgroup which commutes with  GW  generators 
S X GW  = explicitly broken subgroup 
I  =  W +, W - and Z would be GB (WBGB) 
II = Massless GB (h,…)  
III = massive pseudo GB (extra scalars) 

H = spontaneously unbroken subgroup containing custodial group HC = SU(2)L+R  = SU(2)C  

III 

I 

U(1)em   

WBGB  
Massless GB  

 pGB  

Pokorski 
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S

Simplest models (no extra GB but h and no pGB) 

II 

GW  = electroweak gauge group =  SU(2)L X U(1)Y   
S = maximal subgroup which commutes with  GW  generators 
S X GW  = explicitly broken subgroup 
I  =  W +, W - and Z would be GB (WBGB) 
II = Massless GB (h,…) 

H = spontaneously unbroken group containing HC = SU(2)L+R  = SU(2)C  

I 

WBGB  h boson (GB)  

GW 

U(1)em   

The scalar manifold M = G/H with dim(M) = 3 + 1 = 4 (3 WBGB and the h) 



 (Gauged)   NLSM   U  = WBGB Fields 

covariant derivatives 

 Therefore, our effective lagrangian for the EWSBS at low-energy is a 
 gauged NLSM based in the coset M = G /H (scalar field space) which has a h 
coordinate with fibre                                                                       

HEFT Lagrangian 

Alonso, Jenkins and Manohar  

SMEFT 

    GB space 
M = G /H metric  S3 =  metric  

If 



Alonso, Gavela, Merlo, Rigolin and Yepes 

     NLO-Lagrangian 
 (extended Appelquist-Longhitano including h)  



 NLO HEFT (4 derivatives) for VL
 VL elastic scattering   (V = W, Z) )  

                                                                                                               
           One-loop LO and NLO are the same order 
 
                      It is not consistent to use NLO HEFT  
                            without LO one-loop corrections! 

 LO ECLh (2 derivatives) 

However for VV scattering it is enough to consider the much simpler Lagrangian: 



Interesting particular cases: 
The Minimal Standar Model: 

Minimal Dilaton Model 

No Higgs Model 

Minimal Composite Higgs Model (maximally symmetric spaces) 

Old EWCL (ChPT)  

new scale 

Linear, renormalizable, unitary and weakly interacting 

Halyo, Goldberber, Grinstein, Skiba 

Agashe, Contino, Pomarol, Da Rold 

Alonso, Jenkins, Manohar  



Experimental limits on the HEFT parameters: 



1.0 
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The only modes at low energies (< 600 GeV) are the WBGB and the Higgs-like particle (most 
probably composite GB of some highier spontaneously broken symmetry with dim(G/H) = 4) 
 
Built an appropriate low-energy HEFT. 
 
Apply the Equivalence Theorem (go to high energies to decople gauge bosons) 
 
Compute the relevant scattering amplitudes at tree level and at the one-loop level 
(orders s and s2) (VV à VV, VV à hh, hh à hh, γγ à VV, VV à tt…)  
 
Unitarize the amplitudes to extrapolate to higher energies (generate resonances dynamically) 
 
Study the properties of  the emerging resonances in terms of the low-energy couplings  
(make predictions for other processes) 
 
Compare with next year LHC results when possible. 
 
Perform more accurate computations not using the ET or the Equivalent-W approximation, 
include other radiative corrections, the top quark, QCD corrections… to make the results 
realistic for comparison with data (MC) 

    A  program for the study a possible strongly interacting scenario 
    for the SBS at the LHC 



The EWSBS dynamics could be studied at the LHC through the 
High Energy Longitudinal Electroweak Boson Scattering   

The Equivalence Theorem 
         (for R gauges) 

At high energies the LCGB could become strongly interacting and the TC 
decouple from the  LC which become Goldstone Bosons 



The low-energy Effective Lagrangian for WLWL, ZLZL and hh 
one-loop scattering 



LO amplitudes: 
low-energy theorems 

Those are the generalization of the Weinberg low-energy theorems for pion scattering 
The amplitudes generically strongly interacting, grow with the energy and then they badly 
violate unitarity at some new physics scale: 
 
 
The only exception occurs for a = b = c = 1 which is the case of the MSM   
 
 Contino, Grojean, Moretti, Piccinini, Ratazzi 



All of these amplitudes violate badly unitarity at some point  
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New physics scale:   



IV. One-loop computations 



Electroweak Chiral Perturbation Theory with a light  
            Higgs-like boson up to one-loop for :  
             VV à VV, VV à hh, hh à hh, Vh à Vh…    (V=W, Z) 

•  Equivalence Theorem 

•  Landau Gauge (massless WBGB and no ghosts at this level) 

•  No fermions and g = g’ = 0 (custodial isospin) 

•  Dimensional regularization 

•  MS scheme for the NLO derivatives couplings bellow  
(no other renormalization is needed for vanishing h mass) 



FeynRules: Generates Feynman rules from the Lagrangian 
as an output produces the input for FeynArts. 
 
 
FeynArts: Obtains the Feynman diagrams to some given 
order. Introduces ”symbolically”  the vertices generated by 
FeynRules. 
 
 
FormCalc: Simplifies the output by FeynArts and generates 
an analytical output (and also a FORTRAN output for MC) 
 



One-loop Feynman diagrams for  



Electroweak Chiral Perturbation Theory with a light Higgs-like scalar 
up to one-loop 

                   ω ω         ω ω     (elastic scattering) 

Espriu, Yencho, Mescia, A.D., Delgado, Llanes-Estrada  

Aðs; t; uÞ ¼ s
v2

ð1 − a2Þ þ 4

v4
½2ar5ðμÞs2 þ ar4ðμÞðt2 þ u2Þ& þ 1

16π2v4

!
1

9
ð14a4 − 10a2 − 18a2bþ 9b2 þ 5Þs2

þ 13

18
ða2 − 1Þ2ðt2 þ u2Þ − 1

2
ð2a4 − 2a2 − 2a2bþ b2 þ 1Þs2 log−s

μ2
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12
ð1 − a2Þ2ðs2 − 3t2 − u2Þ log−t

μ2

þ 1

12
ð1 − a2Þ2ðs2 − t2 − 3u2Þ log−u

μ2

"
; ðA13Þ

while the inelastic ωω → hh amplitude is

Mðs; t; uÞ ¼ a2 − b
v2

sþ 2drðμÞ
v4

s2 þ erðμÞ
v4

ðt2 þ u2Þ þ ða2 − bÞ
576π2v4

#$
72 − 88a2 þ 16bþ 36ða2 − 1Þ log−s

μ2
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!
log
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μ2

þ log
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μ2
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− 3 log
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μ2

"
t2

þ ða2 − bÞ
!
26 − 9 log
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μ2

− 3 log
−t
μ2

"
u2
&
; ðA14Þ

and finally the hh → hh amplitude may be written as

Tðs; t; uÞ ¼ 2grðμÞ
v4

ðs2 þ t2 þ u2Þ þ 3ða2 − bÞ2

32π2v4

$
2ðs2 þ t2 þ u2Þ − s2 log

−s
μ2

− t2 log
−t
μ2

− u2 log
−u
μ2

%
: ðA15Þ

Apparently, Eqs. (A13), (A14), and (A15) depend on the
renormalization scale μ through the logarithmic terms. But
they also depend on this arbitrary μ through the renormal-
ized couplings a4 ' ' ' e.
However, in the absence of wave or mass renormaliza-

tion, the amplitudes must be observable, and hence μ
independent; then we may require that their total deriva-
tives with respect to log μ2 vanish. Integrating the resulting
(very simple) differential equations, we find the renorm-
alization-group evolution equations for the different cou-
plings that allow one to change the scale,

ar4ðμÞ¼ar4ðμ0Þ−
1

192π2
ð1−a2Þ2 logμ

2

μ20
;

ar5ðμÞ¼ar5ðμ0Þ−
1

768π2
½3ða2−bÞ2þ2ð1−a2Þ2&logμ

2

μ20
;

grðμÞ¼grðμ0Þ− 3

64π2
ða2−bÞ2 logμ

2

μ20
;

drðμÞ¼drðμ0Þþ
1

192π2
ða2−bÞ½ða2−bÞ−6ð1−a2Þ& logμ

2

μ20
;

erðμÞ¼eðμ0Þ− 1

48π2
ða2−bÞ2 logμ

2

μ20
: ðA16Þ

These equations are diagonal, so the scale evolution does
not mix the couplings at NLO in perturbation theory. The μ
invariance of all the amplitudes has been checked by
substituting the μ evolution of the renormalized couplings
in Eq. (A16) into their explicit expressions.

From a practical point of view, we have adopted the
values of ar4;…; er to be as quoted for each example in the
manuscript at a scale of μ ¼ 3 TeV. The dependence on μ
is shown in Fig. 28 for the I ¼ J ¼ 0 case, and it is seen to
be rather moderate. Indeed for a ¼ 0.95, the prefactor of
the first Eq. (A16), say, is ≃5 × 10−6, so that the scale
dependence is small.

µ=2TeV µ =3TeV µ=4TeV
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FIG. 28 (color online). The dependence on the renormalization
scale is absorbed throughout in the NLO coefficients. But
instead of varying them at fixed scale, we can also take the
coefficients as fixed (here a2 ¼ 1, b ¼ 2 and all the other NLO
parameters set to zero) and show the dependence on the election
of μ. We take for this example the absolute value of the isoscalar
amplitude (I ¼ J ¼ 0). There is no qualitative difference in
adopting one or another scale. So we have used μ ¼ 3 TeV
throughout the paper.
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Typical results  



One-loop Feynman diagrams for  



ω ω             h h  

Electroweak Chiral Perturbation Theory with a light  
Higgs-boson up to one-loop 
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while the inelastic ωω → hh amplitude is
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and finally the hh → hh amplitude may be written as

Tðs; t; uÞ ¼ 2grðμÞ
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Apparently, Eqs. (A13), (A14), and (A15) depend on the
renormalization scale μ through the logarithmic terms. But
they also depend on this arbitrary μ through the renormal-
ized couplings a4 ' ' ' e.
However, in the absence of wave or mass renormaliza-

tion, the amplitudes must be observable, and hence μ
independent; then we may require that their total deriva-
tives with respect to log μ2 vanish. Integrating the resulting
(very simple) differential equations, we find the renorm-
alization-group evolution equations for the different cou-
plings that allow one to change the scale,

ar4ðμÞ¼ar4ðμ0Þ−
1

192π2
ð1−a2Þ2 logμ

2

μ20
;

ar5ðμÞ¼ar5ðμ0Þ−
1

768π2
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2

μ20
;
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64π2
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drðμÞ¼drðμ0Þþ
1

192π2
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μ20
;

erðμÞ¼eðμ0Þ− 1

48π2
ða2−bÞ2 logμ

2

μ20
: ðA16Þ

These equations are diagonal, so the scale evolution does
not mix the couplings at NLO in perturbation theory. The μ
invariance of all the amplitudes has been checked by
substituting the μ evolution of the renormalized couplings
in Eq. (A16) into their explicit expressions.

From a practical point of view, we have adopted the
values of ar4;…; er to be as quoted for each example in the
manuscript at a scale of μ ¼ 3 TeV. The dependence on μ
is shown in Fig. 28 for the I ¼ J ¼ 0 case, and it is seen to
be rather moderate. Indeed for a ¼ 0.95, the prefactor of
the first Eq. (A16), say, is ≃5 × 10−6, so that the scale
dependence is small.
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FIG. 28 (color online). The dependence on the renormalization
scale is absorbed throughout in the NLO coefficients. But
instead of varying them at fixed scale, we can also take the
coefficients as fixed (here a2 ¼ 1, b ¼ 2 and all the other NLO
parameters set to zero) and show the dependence on the election
of μ. We take for this example the absolute value of the isoscalar
amplitude (I ¼ J ¼ 0). There is no qualitative difference in
adopting one or another scale. So we have used μ ¼ 3 TeV
throughout the paper.
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One-loop Feynman diagrams for  
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Electroweak Chiral Perturbation Theory (with a light Higgs-like scalar) up to 
one-loop 
                                     h h            h h    





Electroweak Chiral Perturbation Theory (with a light Higgs-like scalar) 
up to one-loop 
                                  ω h              ω h    



The scattering amplitudes need to fulfill a number of properties 
such as unitarity and analyticity to be physically acceptable, 
 
This is best seen in the partial waves:  ω ω                ω ω          

                 

custodial isospin amplitudes I = 0 ,1 ,2 

LO 
 
NLO  

exact elastic unitarity on the RC 

perturbative unitarity  
necessary  condition  

(not sufficient)  



3. Detailed partial waves

Evaluating the partial-wave projection integral in
Eq. (13) by substituting the renormalized amplitude
obtained in Eq. (A13) for ωω → ωω provides us with
K, D, E constants and BðμÞ functions.
For the scalar-isoscalar channelwith IJ ¼ 00, the results of

[19], in terms of the coefficients a, b, v instead of α, β, f, read

K00 ¼
1

16πv2
ð1 − a2Þ;

B00ðμÞ ¼
1

9216π3v4
½101ð1 − a2Þ2 þ 68ða2 − bÞ2

þ 768f7a4ðμÞ þ 11a5ðμÞgπ2&;

D00 ¼ −
1

4608π3v4
½7ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E00 ¼ −
1

1024π3v4
½4ð1 − a2Þ2 þ 3ða2 − bÞ2&: ðA17Þ

For the vector isovector IJ ¼ 11 amplitude,

K11 ¼
1

96πv2
ð1 − a2Þ;

B11ðμÞ ¼
1

110592π3v4
½8ð1 − a2Þ2 − 75ða2 − bÞ2

þ 4608fa4ðμÞ − 2a5ðμÞgπ2&;

D11 ¼
1

9216π3v4
½ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E11 ¼ −
1

9216π3v4
ð1 − a2Þ2: ðA18Þ

For the scalar isotensor IJ ¼ 20,

K20 ¼ − 1

32πv2
ð1 − a2Þ;

B20ðμÞ ¼
1

18432π3v4
½91ð1 − a2Þ2 þ 28ða2 − bÞ2

þ 3072f2a4ðμÞ þ a5ðμÞgπ2&;

D20 ¼ −
1

9216π3v4
½11ð1 − a2Þ2 þ 6ða2 − bÞ2&;

E20 ¼ −
1

1024π3v4
ð1 − a2Þ2; ðA19Þ

and for the tensor isoscalar IJ ¼ 02,

K02 ¼ 0;

B02ðμÞ ¼
1

921600π3v4
½320ð1 − a2Þ2 þ 77ða2 − bÞ2

þ 15360f2a4ðμÞ þ a5ðμÞgπ2&;

D02 ¼ −
1

46080π3v4
½10ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E02 ¼ 0: ðA20Þ

Next we quote a new calculation of the tensor-isotensor
I ¼ J ¼ 2 partial wave that to our knowledge has not been
reported in the literature.

K22 ¼ 0;

B22ðμÞ ¼
1

921600π3v4
½71ð1 − a2Þ2 þ 77ða2 − bÞ2

þ 7680fa4ðμÞ þ 2a5ðμÞgπ2&;

D22 ¼ −
1

46080π3v4
½4ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E22 ¼ 0: ðA21Þ

This exhausts the list of elastic partial waves that are
nonvanishing at NLO in perturbation theory, since those
with angular momentum J ¼ 3 and higher start at Oðs3Þ
and are NNLO in the derivative counting. Needless to say,
they would be tiny at LHC energies.
We now give the equivalent results for the inelastic

channel coupling: ωω → hh, with partial waves MJ,
starting by the scalar one,

K0
0 ¼

ffiffiffi
3

p

32πv2
ða2 − bÞ;

B0
0ðμÞ ¼

ffiffiffi
3

p

16πv4

"
dðμÞ þ eðμÞ

3

#
þ

ffiffiffi
3

p

18432π3v4
ða2 − bÞ

× ½72ð1 − a2Þ þ ða2 − bÞ&;

D0
0 ¼ −

ffiffiffi
3

p
ða2 − bÞ2

9216π3v4
;

E0
0 ¼ −

ffiffiffi
3

p
ða2 − bÞð1 − a2Þ

512π3v4
; ðA22Þ

while for the tensor M2 channel

K0
2 ¼ 0;

B0
2ðμÞ ¼

eðμÞ
160

ffiffiffi
3

p
πv4

þ 83ða2 − bÞ2

307200
ffiffiffi
3

p
π3v4

;

D0
2 ¼ −

ða2 − bÞ2

7680
ffiffiffi
3

p
π3v4

;

E0
2 ¼ 0: ðA23Þ

At last we quote the elastic hh → hh channel amplitude.
The T0ðsÞ scalar partial wave is given by the set of constants

K00
0 ¼ 0;

B00
0ðμÞ ¼

10gðμÞ
96πv4

þ ða2 − bÞ2

96π3v4
;

D00
0 ¼ −

ða2 − bÞ2

512π3v4
;

E00
0 ¼ −

3ða2 − bÞ2

1024π3v4
; ðA24Þ
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3. Detailed partial waves

Evaluating the partial-wave projection integral in
Eq. (13) by substituting the renormalized amplitude
obtained in Eq. (A13) for ωω → ωω provides us with
K, D, E constants and BðμÞ functions.
For the scalar-isoscalar channelwith IJ ¼ 00, the results of

[19], in terms of the coefficients a, b, v instead of α, β, f, read

K00 ¼
1

16πv2
ð1 − a2Þ;

B00ðμÞ ¼
1

9216π3v4
½101ð1 − a2Þ2 þ 68ða2 − bÞ2

þ 768f7a4ðμÞ þ 11a5ðμÞgπ2&;

D00 ¼ −
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4608π3v4
½7ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E00 ¼ −
1

1024π3v4
½4ð1 − a2Þ2 þ 3ða2 − bÞ2&: ðA17Þ

For the vector isovector IJ ¼ 11 amplitude,

K11 ¼
1

96πv2
ð1 − a2Þ;

B11ðμÞ ¼
1

110592π3v4
½8ð1 − a2Þ2 − 75ða2 − bÞ2

þ 4608fa4ðμÞ − 2a5ðμÞgπ2&;

D11 ¼
1

9216π3v4
½ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E11 ¼ −
1

9216π3v4
ð1 − a2Þ2: ðA18Þ

For the scalar isotensor IJ ¼ 20,

K20 ¼ − 1

32πv2
ð1 − a2Þ;

B20ðμÞ ¼
1

18432π3v4
½91ð1 − a2Þ2 þ 28ða2 − bÞ2

þ 3072f2a4ðμÞ þ a5ðμÞgπ2&;

D20 ¼ −
1

9216π3v4
½11ð1 − a2Þ2 þ 6ða2 − bÞ2&;

E20 ¼ −
1

1024π3v4
ð1 − a2Þ2; ðA19Þ

and for the tensor isoscalar IJ ¼ 02,

K02 ¼ 0;

B02ðμÞ ¼
1

921600π3v4
½320ð1 − a2Þ2 þ 77ða2 − bÞ2

þ 15360f2a4ðμÞ þ a5ðμÞgπ2&;

D02 ¼ −
1

46080π3v4
½10ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E02 ¼ 0: ðA20Þ

Next we quote a new calculation of the tensor-isotensor
I ¼ J ¼ 2 partial wave that to our knowledge has not been
reported in the literature.

K22 ¼ 0;

B22ðμÞ ¼
1

921600π3v4
½71ð1 − a2Þ2 þ 77ða2 − bÞ2

þ 7680fa4ðμÞ þ 2a5ðμÞgπ2&;

D22 ¼ −
1

46080π3v4
½4ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E22 ¼ 0: ðA21Þ

This exhausts the list of elastic partial waves that are
nonvanishing at NLO in perturbation theory, since those
with angular momentum J ¼ 3 and higher start at Oðs3Þ
and are NNLO in the derivative counting. Needless to say,
they would be tiny at LHC energies.
We now give the equivalent results for the inelastic

channel coupling: ωω → hh, with partial waves MJ,
starting by the scalar one,

K0
0 ¼

ffiffiffi
3

p

32πv2
ða2 − bÞ;

B0
0ðμÞ ¼

ffiffiffi
3

p

16πv4

"
dðμÞ þ eðμÞ

3

#
þ

ffiffiffi
3

p

18432π3v4
ða2 − bÞ

× ½72ð1 − a2Þ þ ða2 − bÞ&;

D0
0 ¼ −

ffiffiffi
3

p
ða2 − bÞ2

9216π3v4
;

E0
0 ¼ −

ffiffiffi
3

p
ða2 − bÞð1 − a2Þ

512π3v4
; ðA22Þ

while for the tensor M2 channel

K0
2 ¼ 0;

B0
2ðμÞ ¼

eðμÞ
160

ffiffiffi
3

p
πv4

þ 83ða2 − bÞ2

307200
ffiffiffi
3

p
π3v4

;

D0
2 ¼ −

ða2 − bÞ2

7680
ffiffiffi
3

p
π3v4

;

E0
2 ¼ 0: ðA23Þ

At last we quote the elastic hh → hh channel amplitude.
The T0ðsÞ scalar partial wave is given by the set of constants

K00
0 ¼ 0;

B00
0ðμÞ ¼

10gðμÞ
96πv4

þ ða2 − bÞ2

96π3v4
;

D00
0 ¼ −

ða2 − bÞ2

512π3v4
;

E00
0 ¼ −

3ða2 − bÞ2

1024π3v4
; ðA24Þ
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3. Detailed partial waves

Evaluating the partial-wave projection integral in
Eq. (13) by substituting the renormalized amplitude
obtained in Eq. (A13) for ωω → ωω provides us with
K, D, E constants and BðμÞ functions.
For the scalar-isoscalar channelwith IJ ¼ 00, the results of

[19], in terms of the coefficients a, b, v instead of α, β, f, read

K00 ¼
1

16πv2
ð1 − a2Þ;

B00ðμÞ ¼
1

9216π3v4
½101ð1 − a2Þ2 þ 68ða2 − bÞ2

þ 768f7a4ðμÞ þ 11a5ðμÞgπ2&;

D00 ¼ −
1

4608π3v4
½7ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E00 ¼ −
1

1024π3v4
½4ð1 − a2Þ2 þ 3ða2 − bÞ2&: ðA17Þ

For the vector isovector IJ ¼ 11 amplitude,

K11 ¼
1

96πv2
ð1 − a2Þ;

B11ðμÞ ¼
1

110592π3v4
½8ð1 − a2Þ2 − 75ða2 − bÞ2

þ 4608fa4ðμÞ − 2a5ðμÞgπ2&;

D11 ¼
1

9216π3v4
½ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E11 ¼ −
1

9216π3v4
ð1 − a2Þ2: ðA18Þ

For the scalar isotensor IJ ¼ 20,

K20 ¼ − 1

32πv2
ð1 − a2Þ;

B20ðμÞ ¼
1

18432π3v4
½91ð1 − a2Þ2 þ 28ða2 − bÞ2

þ 3072f2a4ðμÞ þ a5ðμÞgπ2&;

D20 ¼ −
1

9216π3v4
½11ð1 − a2Þ2 þ 6ða2 − bÞ2&;

E20 ¼ −
1

1024π3v4
ð1 − a2Þ2; ðA19Þ

and for the tensor isoscalar IJ ¼ 02,

K02 ¼ 0;

B02ðμÞ ¼
1

921600π3v4
½320ð1 − a2Þ2 þ 77ða2 − bÞ2

þ 15360f2a4ðμÞ þ a5ðμÞgπ2&;

D02 ¼ −
1

46080π3v4
½10ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E02 ¼ 0: ðA20Þ

Next we quote a new calculation of the tensor-isotensor
I ¼ J ¼ 2 partial wave that to our knowledge has not been
reported in the literature.

K22 ¼ 0;

B22ðμÞ ¼
1

921600π3v4
½71ð1 − a2Þ2 þ 77ða2 − bÞ2

þ 7680fa4ðμÞ þ 2a5ðμÞgπ2&;

D22 ¼ −
1

46080π3v4
½4ð1 − a2Þ2 þ 3ða2 − bÞ2&;

E22 ¼ 0: ðA21Þ

This exhausts the list of elastic partial waves that are
nonvanishing at NLO in perturbation theory, since those
with angular momentum J ¼ 3 and higher start at Oðs3Þ
and are NNLO in the derivative counting. Needless to say,
they would be tiny at LHC energies.
We now give the equivalent results for the inelastic

channel coupling: ωω → hh, with partial waves MJ,
starting by the scalar one,

K0
0 ¼

ffiffiffi
3

p

32πv2
ða2 − bÞ;

B0
0ðμÞ ¼

ffiffiffi
3

p

16πv4

"
dðμÞ þ eðμÞ

3

#
þ

ffiffiffi
3

p

18432π3v4
ða2 − bÞ

× ½72ð1 − a2Þ þ ða2 − bÞ&;

D0
0 ¼ −

ffiffiffi
3

p
ða2 − bÞ2

9216π3v4
;

E0
0 ¼ −

ffiffiffi
3

p
ða2 − bÞð1 − a2Þ

512π3v4
; ðA22Þ

while for the tensor M2 channel

K0
2 ¼ 0;

B0
2ðμÞ ¼

eðμÞ
160

ffiffiffi
3

p
πv4

þ 83ða2 − bÞ2

307200
ffiffiffi
3

p
π3v4

;

D0
2 ¼ −

ða2 − bÞ2

7680
ffiffiffi
3

p
π3v4

;

E0
2 ¼ 0: ðA23Þ

At last we quote the elastic hh → hh channel amplitude.
The T0ðsÞ scalar partial wave is given by the set of constants

K00
0 ¼ 0;

B00
0ðμÞ ¼

10gðμÞ
96πv4

þ ða2 − bÞ2

96π3v4
;

D00
0 ¼ −

ða2 − bÞ2

512π3v4
;

E00
0 ¼ −

3ða2 − bÞ2

1024π3v4
; ðA24Þ
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V. Unitarization methods 



Properties of the partial waves 
 
•  IR, UV finite and µ independent 

•  Unitary 
 
•  Right low-energy limit matching the NLO results 

•  Proper analytical structure (right (R) and (L) cuts) 

•  No poles in the first Riemann sheet 

•  The poles in the second Riemann sheet can be understood as 
dynamically generated resonances 

•  Admit extensions for coupled channels (hh, γγ, or   t t) 
 

Perturbative one-loop amplitudes have L and R cut, no poles and are unitary only at low energies. 
 
Thus they must be complemented with dispersion relations to be physically 
acceptable!!! 



The Inverse Amplitude Method A.D. , Herrero, Truong, Pelaez… 

Now unitarity requires that on the right cut

ImFðsÞ ¼ FðsÞF†ðsÞ: ð23Þ

This equation produces a set of relations concerning the
different partial waves. For I ¼ 0 and either J ¼ 0 or J ¼ 2
we have

ImA0J ¼ jA0Jj2 þ jMJj2;
ImMJ ¼ A0JM%

J þMJT%
J;

ImTJ ¼ jMJj2 þ jTJj2: ð24Þ

These relations are not exactly respected by perturbation
theory, but are instead satisfied only to one less order in the
expansion than kept in constructing the amplitude. At the
one-loop level one has

Im Að1Þ
0J ¼ jAð0Þ

0J j2 þ jMð0Þ
J j2;

Im Mð1Þ
J ¼ Að0Þ

0J M
ð0Þ
J þMð0Þ

J Tð0Þ
J ;

Im Tð1Þ
J ¼ jMð0Þ

J j2 þ jTð0Þ
J j2:

For the remaining channels with I ¼ J ¼ 1 and I ¼ 2,
J ¼ 0 the ωω → ωω reaction is elastic and the unitarity
condition is just

ImAIJ ¼ jAIJj2; I ≠ 0; ð25Þ

and at the NLO perturbative level,

ImAð1Þ
IJ ¼ jAð0Þ

IJ j2; I ≠ 0: ð26Þ

There are in all nine independent one-loop perturbative
relations, which can also be obtained by applying the
Landau-Cutkosky cutting rules and directly checked in
each of the partial waves for the three reactions, providing a
very good, nontrivial check of our amplitudes.
Therefore the perturbative reaction matrix

FIJ ¼ Fð0Þ
IJ þ Fð1Þ

IJ þ & & & ð27Þ

fulfills

Im Fð1Þ
IJ ¼ Fð0Þ

IJ F
ð0Þ
IJ ð28Þ

since the Fð0Þ
IJ elements are real.

III. THE INVERSE AMPLITUDE METHOD
FOR MASSLESS PARTICLES

A. Derivation for one channel

The IAM [21] was developed for ordinary ChPT for
mesons [22,35], and it was also applied to the unitarization
of the one-loop WBGB scattering amplitudes, at the time

without a light Higgs resonance (see [36] and third
reference in [21]). Its standard derivation is valid for one
or several channels of particle pairs all of which have equal
mass. For different masses there are technical complica-
tions (such as overlapping left and right cuts) that have
hindered a rigorous derivation.
In the context where we wish to apply it, for energies

E ≫ MW;Mh, both masses can be taken as equal and
negligible. Yet for massless particles, the standard deriva-
tion is also problematic, since the dispersion relation is
thrice subtracted and the factors 1=s3 cause infrared
divergences.
Since it would be nice to have a derivation valid for

massless particles, we now address a twice-subtracted
dispersion relation that avoids infrared problems. The price
to pay is that, with chiral amplitudes, the large circle at
infinity to close the contour in the complex plane will give a
contribution that needs to be calculated. As we will see in
this section, this is feasible for elastic scattering of massless
particles.
We start by writing a twice-subtracted dispersion relation

(DR) for a generic elastic partial wave amplitude AðsÞ (we
suppress the I and J indices) that has both left- and right-
hand cuts as shown in Fig. 1,

AðsÞ ¼ Ksþ s2

π

Z
∞

0

ds0ImAðs0Þ
s02ðs0 − s − iϵÞ

þ s2

π

Z
0

−∞
ds0ImAðs0Þ

s02ðs0 − s − iϵÞ
: ð29Þ

An introduction to dispersion relations can be found in
Refs. [37,38]. To sum up, the derivation of Eq. (29) is based
on the Cauchy theorem and on the analyticity of AðsÞ for
Im s > 0 (first Riemann sheet), as well as on the analytic
properties of AðsÞ. Note that, according to Eq. (15), our
computations have a left cut (i.e., they are not analytic on
the real axis for s < 0). So, forward dispersion relations,

Λ

RCLC

Physical s
2

FIG. 1 (color online). Contour to apply Cauchy’s theorem in the
presence of a RC due to elastic intermediate states in the s
channel and a LC due to angular integration over t, u-channel
exchanges. In the massless limit M → 0, the contour encloses
only the upper half-plane. The radius of the large circle is Λ2.
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like those commonly introduced in textbooks, cannot
be used.
Because AðsÞ describes the scattering of Goldstone

bosons, there are two simplifying properties. The first is
that there is an Adler zero. In the massless limit this is
located at s ¼ 0 and guarantees Að0Þ ¼ 0. Accordingly, we
set the first subtraction constant to zero, and the first term is
linear in s. The second is that there are no (subthreshold,
bound-state) poles of AðsÞ in the first or physical Riemann
sheet (which does not make sense for Goldstone bosons
that interact with weak strength at low energies). So only
the two cuts contribute as written since AðsÞ is analytic
in the rest of the upper half-plane.
We will obtain a second dispersion relation for the partial-

wave amplitude expanded to NLO in the EChL, that is,
truncated up to order s2, ANLOðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ,
which has the generic form

Að0ÞðsÞ ¼ Ks;

Að1ÞðsÞ ¼
!
BðμÞ þD log

s
μ2

þ E log
−s
μ2

"
s2: ð30Þ

To derive the dispersion relation, we will first introduce
the auxiliary function

fðsÞ≡ ANLOðsÞ − Að0ÞðsÞ
s2

¼ Að1ÞðsÞ
s2

¼ BðμÞ þD log
s
μ2

þ E log
−s
μ2

: ð31Þ

Therefore fðsÞ is analytic in the whole complex plane
except for the LC and RC along the negative and positive
real axis, respectively. Cauchy’s theorem provides an
unsubtracted dispersion relation for fðsÞ,

fðsÞ ¼ 1

π

Z
Λ2

0

ds0Im fðs0Þ
s0 − s − iϵ

þ 1

π

Z
0

−Λ2

ds0Im fðs0Þ
s0 − s − iϵ

þ 1

2πi

Z

CΛ

ds0fðs0Þ
s0 − s

; ð32Þ

where CΛ is a circumference of radius Λ2 oriented
anticlockwise and Λ is an UV regulator which will be
sent to infinity at the end (see Fig. 1).
Returning to Eq. (31), we see that this dispersion relation

can easily be turned into one for ANLOðsÞ,

ANLOðsÞ ¼ Ksþ s2

π

Z
Λ2

0

ds0ImAð1Þðs0Þ
s02ðs0 − s − iϵÞ

þ s2

π

Z
0

−Λ2

ds0ImAð1Þðs0Þ
s02ðs0 − s − iϵÞ

þ s2

2πi

Z

CΛ

ds0Að1Þðs0Þ
s02ðs0 − sÞ

: ð33Þ

Comparing this dispersion relation for the NLO ampli-
tude with that for the exact amplitude AðsÞ in Eq. (29),
we notice that the difference is the contribution of the
circle at infinity, a term due to the divergent UV behavior
of ANLOðsÞ ∝ s2. Taking now Λ2 ≫ s beyond the region
where the amplitude is considered, the three integrals
may easily be computed,

s2

π

Z
Λ2

0

ds0ImAð1Þðs0Þ
s02ðs0 − s− iϵÞ

¼ s2E log
−s
Λ2

;

s2

π

Z
0

−Λ2

ds0ImAð1Þðs0Þ
s02ðs0 − s− iϵÞ

¼ s2D log
s
Λ2

;

s2

2πi

Z

C∞

ds0Að1Þðs0Þ
s02ðs0 − sÞ

¼ s2
!
BðμÞ þD log

Λ2

μ2
þE log

Λ2

μ2

"
;

ð34Þ

so that the dispersion relation for ANLOðsÞ in Eq. (33)
reproduces Eq. (30),

ANLOðsÞ ¼ Ksþ
!
BðμÞ þD log

s
μ2

þ E log
−s
μ2

"
s2:

ð35Þ

This is a consistency check of the dispersion relation
and also shows its nice interplay with renormalized
chiral couplings; the integral over the large circle trades
the UV-cutoff scale Λ for the arbitrary renormalization
scale μ.
So far we have an elastic, exact, but not too useful,

dispersion relation for AðsÞ in Eq. (29) and another in
Eq. (33) for Að1ÞðsÞ which is known anyway from chiral
perturbation theory. The practical use of the technique
comes from its application to the following auxiliary
function:

wðsÞ≡ ½Að0ÞðsÞ&2

AðsÞ
: ð36Þ

This construction has the same analytic structure than AðsÞ
up to possible poles coming from zeros of AðsÞ, excluding
the Adler zero (canceled by the numerator). In addition,
wð0Þ ¼ 0, wðsÞ ¼ KsþOðs2Þ, and on the RC one has
ImwðsÞ ¼ −½Að0ÞðsÞ&2. Therefore, neglecting the possible
pole contribution,3 the twice-subtracted dispersion relation
for this function reads

3A more careful treatment in the massive case that includes
subthreshold poles found that their effect is very small, at the
permille level or less in the physical zone [39].
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For the remaining channels with I = J = 1 and I = 2, J = 0 the �� ⇥ �� reaction is
elastic and the unitarity condition is just

ImAIJ = |AIJ |2 I ⇤= 0 (5.22)

and at the NLO perturbative level,

ImA(1)
IJ = |A(0)

IJ |
2 I ⇤= 0 . (5.23)

There are in all eight independent one-loop perturbative relations, that can also be
obtained by applying the Landau-Cutkosky cutting rules and directly checked in each of
the partial waves for the three reactions, providing a very good, non-trivial check of our
amplitudes.

Therfore the perturvative reaction matrix:

FIJ = F (0)
IJ + F (1)

IJ + ... (5.24)

fulfills:
ImF (1)

IJ = F (0)
IJ F (0)

IJ (5.25)

since the F (0)
IJ elements are real. By using the Inverse Amplitude Method (IAM) it is now

possible to introduce the matrix:

F IAM
IJ = F (0)

IJ (F (0)
IJ � F (1)

IJ )�1F (0)
IJ . (5.26)

Now it is not di�cult to show that these matrices fulfill the exact unitariry relation:

ImF IAM
IJ = F IAM

IJ (F IAM
IJ )† (5.27)

The apllication of the IAM method is particulary simple in the cases where no cuopled
channeles are present (I ⇤= 0) since in this case:

AIAM
IJ (s) =

(A(0)
IJ (s))

2

A(0)
IJ (s)�A(1)

IJ (s)
(5.28)

and in this case we have elastic unitarity which , on the reight cut means:

ImAIAM
IJ = AIAM

IJ (AIAM
IJ )⇥ (5.29)

G(s) = A(0)
IJ (s)/AIJ(s) (5.30)

6 Summary and discussion

With the present experimental situation, the Electroweak Symmetry Breaking Sector might
be completely described by the Glashow-Weinberg-Salam Standard Model [24], with 3 lon-
gitudinal �L | zL bosons and the potential finding of its Higgs boson on the table. If Beyond
SM physics exists, the mutual couplings of these four bosons will separate from the SM.
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        The IAM method produces: 
 
Unitary amplitudes with the same low energy limit as the NLO,  the proper 
analytical structure which can have poles in the second Riemann sheet 
reproducing new resonances.  Extension to  coupled channels. 

RC 

inverse  
amplitude 

The effective-theory, partial-wave projected amplitudes satisfy on their right-hand cut (RC) uni-
tarity only perturbatively, reading ImA(1) = (A(0))2 with (0) and (1) denoting LO and NLO only,
respectively. This follows easily from their generic structure

A(0)(s) = Ks, A(1)(s) =

[

B(µ) +D log
s

µ2
+ E log

−s

µ2

]

s2 , (22)

and the field theory computation of the constants B,D and E.
A complex-s analysis of the elastic partial-wave scattering amplitude A(s) yields an exact, but

not too useful, dispersion relation for A(s), and that for A(1)(s) is not necessary because it is known
everywhere from perturbation theory. A useful technique is to apply a dispersive analysis to the
following auxiliary function,

w(s) ≡
(A(0)(s))2

A(s)
. (23)

This w(s) has the same analytic structure as A(s) but for poles (at the zeroes of A(s)) that have
been treated in the past [24] and concluded to be irrelevant for the physical region of s. Moreover,
w(0) = 0,w(s) = Ks+O(s2), and on the RC one has Imw(s) = −(A(0)(s))2. The twice-subtracted
dispersion relation for this function, sufficient for one-channel problems, reads

w(s) = Ks+
s2

π

∫ Λ2

0

ds′Imw(s′)

s′2(s′ − s− iϵ)
+

s2

π

∫ 0

−Λ2

ds′Imw(s′)

s′2(s′ − s− iϵ)
+

s2

2πi

∫

CΛ

ds′w(s′)

s′2(s′ − s)
, (24)

where Λ is a ultraviolet cutoff. With the definition of w(s) given in Eq. (23), one can compute the
elastic-RC integral exactly since Imw(s) = −K2s2 = Eπs2 there. This is dominant because it is the
nearest complex-plane singularity to the physical boundary which is the upper edge of the RC in the
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Because the left-hand cut (LC) integral cannot be obtained exactly, it is customarily computed in
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This approximate integral equation is solved by w(s) = A(0)(s) − A(1)(s). In the above derivation,
the only used approximations are the absence of poles in w(s) and the perturbative treatment of the
LC integral. Therefore, from the definition of the w(s) in Eq. (23) we get the partial-wave amplitude
in IAM as

A(s) ≃ AIAM(s) =
(A(0)(s))2

A(0)(s)−A(1)(s)
. (27)

This IAM amplitude has the proper analytic structure and makes poles on the second Riemann sheet
possible which correspond to dynamically generated resonances. Elastic unitarity is satisfied by con-
struction, and the amplitude is also scale independent. Furthermore, expanding at low energies, the
IAM amplitude coincides with the one in chiral perturbation theory up to NLO,

AIAM(s) = A(0)(s) +A(1)(s) +O(s3) . (28)
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and the field theory computation of the constants B,D and E.
A complex-s analysis of the elastic partial-wave scattering amplitude A(s) yields an exact, but

not too useful, dispersion relation for A(s), and that for A(1)(s) is not necessary because it is known
everywhere from perturbation theory. A useful technique is to apply a dispersive analysis to the
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(A(0)(s))2
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. (23)
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been treated in the past [24] and concluded to be irrelevant for the physical region of s. Moreover,
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where Λ is a ultraviolet cutoff. With the definition of w(s) given in Eq. (23), one can compute the
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This approximate integral equation is solved by w(s) = A(0)(s) − A(1)(s). In the above derivation,
the only used approximations are the absence of poles in w(s) and the perturbative treatment of the
LC integral. Therefore, from the definition of the w(s) in Eq. (23) we get the partial-wave amplitude
in IAM as
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This w(s) has the same analytic structure than A(s) but for poles (zeroes of A(s) safe the Adler
zero) that have been treated in the past and concluded to be irrelevant. Moreover w(0) = 0, w(s) =
Ks + O(s2) and on the right cut Imw(s) = �(A(0)

(s))2. The twice-subtracted dispersion relation
for this function, sufficient for one-channel problems reads
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The careful choice of w(s) in Eq. (28) makes possible to compute the elastic-RC integral exactly since
Imw(s) = �K2s2 = E⇡s2 there. This is dominant because it is the nearest complex-plane feature
to the physical zone (which is the upper lip of this cut, in the first Riemann sheet).

The LC integral cannot be obtained exactly, so it is customarily computed in perturbation theory:
its contribution for physical s is suppressed by |s0 � s| with s0 ⇠ t respect to the RC, so it is small
when perturbation theory deteriorates at t << 0. Then, it is a very reasonable approximation to take

Imw(s) ' �ImA(1)
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and this approximate integral equation is solved by w(s) ' A(0)

(s)�A(1)

(s). This is quite remarkable
since w(s) depends on the exact amplitude. Again, the only used approximations are the absence of
poles in the inverse amplitude and the perturbative treatment of the LC integral. It stands out that,
from the very definition of w(s), that we can write down the IAM amplitude as:

A(s) ' AIAM
(s) =

(A(0)

(s))2

A(0)

(s)�A(1)

(s)
. (32)

This IAM amplitude obtained from the ChPT expansion has the proper analytic structure which
makes poles on the second Riemann sheet possible (that can be understood as dynamically generated
resonances). It is also µ-invariant, depending only on the renormalized chiral constants a

4

, a
5

, e, d or
g that encode higher energy dynamics. And by construction it satisfies elastic unitarity, so that on the
RC,

ImAIAM
= AIAM

(AIAM
)

⇤ . (33)

Finally, if expanded at low energy, it coincides with the NLO-ChPT amplitude,

AIAM
(s) = ANLO

(s) +O(s3) (34)

Watson’s final state theorem [19] guarantees that the phase of the form factor for W ! !!
represented as the black blob in figure 2 is the same as the phase of the elastic !! scattering amplitude,
and any resonance poles of the amplitude also appear in the form factor at the same position of the
s-complex plane. Together with the normalization of the form factor FV (0) = 1 we find that the form
factor consistent with the IAM is given by

FV (s) = F
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=
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. (35)
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since w(s) depends on the exact amplitude. Again, the only used approximations are the absence of
poles in the inverse amplitude and the perturbative treatment of the LC integral. It stands out that,
from the very definition of w(s), that we can write down the IAM amplitude as:

A(s) ' AIAM
(s) =

(A(0)

(s))2

A(0)

(s)�A(1)

(s)
. (32)

This IAM amplitude obtained from the ChPT expansion has the proper analytic structure which
makes poles on the second Riemann sheet possible (that can be understood as dynamically generated
resonances). It is also µ-invariant, depending only on the renormalized chiral constants a

4

, a
5

, e, d or
g that encode higher energy dynamics. And by construction it satisfies elastic unitarity, so that on the
RC,

ImAIAM
= AIAM

(AIAM
)

⇤ . (33)

Finally, if expanded at low energy, it coincides with the NLO-ChPT amplitude,

AIAM
(s) = ANLO

(s) +O(s3) (34)

Watson’s final state theorem [19] guarantees that the phase of the form factor for W ! !!
represented as the black blob in figure 2 is the same as the phase of the elastic !! scattering amplitude,
and any resonance poles of the amplitude also appear in the form factor at the same position of the
s-complex plane. Together with the normalization of the form factor FV (0) = 1 we find that the form
factor consistent with the IAM is given by

FV (s) = F
11

(s)

=

1

1� A
(1)

11

(s)

A
(0)

11

(s)

. (35)

12

This w(s) has the same analytic structure than A(s) but for poles (zeroes of A(s) safe the Adler
zero) that have been treated in the past and concluded to be irrelevant. Moreover w(0) = 0, w(s) =
Ks + O(s2) and on the right cut Imw(s) = �(A(0)

(s))2. The twice-subtracted dispersion relation
for this function, sufficient for one-channel problems reads

w(s) = Ks+
s2

⇡

Z
⇤

2

0

ds0Imw(s0)

s02(s0 � s� i✏)
+

s2

⇡

Z
0

�⇤

2

ds0Imw(s0)

s02(s0 � s� i✏)
+

s2

2⇡i

Z

C1

ds0w(s0)

s02(s0 � s)
. (29)

The careful choice of w(s) in Eq. (28) makes possible to compute the elastic-RC integral exactly since
Imw(s) = �K2s2 = E⇡s2 there. This is dominant because it is the nearest complex-plane feature
to the physical zone (which is the upper lip of this cut, in the first Riemann sheet).

The LC integral cannot be obtained exactly, so it is customarily computed in perturbation theory:
its contribution for physical s is suppressed by |s0 � s| with s0 ⇠ t respect to the RC, so it is small
when perturbation theory deteriorates at t << 0. Then, it is a very reasonable approximation to take

Imw(s) ' �ImA(1)

(s). (30)

Then one obtains

w(s) ' Ks�Ds2 log
s

⇤

2

� Es2 log
�s

⇤

2

+

s2

2⇡i

Z

C
⇤

ds0w(s0)

s02(s0 � s)
, (31)

and this approximate integral equation is solved by w(s) ' A(0)
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Imw(s) = �K2s2 = E⇡s2 there. This is dominant because it is the nearest complex-plane feature
to the physical zone (which is the upper lip of this cut, in the first Riemann sheet).
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(s)�A(1)

(s). This is quite remarkable
since w(s) depends on the exact amplitude. Again, the only used approximations are the absence of
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This IAM amplitude obtained from the ChPT expansion has the proper analytic structure which
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This w(s) has the same analytic structure than A(s) but for poles (zeroes of A(s) safe the Adler
zero) that have been treated in the past and concluded to be irrelevant. Moreover w(0) = 0, w(s) =
Ks + O(s2) and on the right cut Imw(s) = �(A(0)
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The careful choice of w(s) in Eq. (28) makes possible to compute the elastic-RC integral exactly since
Imw(s) = �K2s2 = E⇡s2 there. This is dominant because it is the nearest complex-plane feature
to the physical zone (which is the upper lip of this cut, in the first Riemann sheet).

The LC integral cannot be obtained exactly, so it is customarily computed in perturbation theory:
its contribution for physical s is suppressed by |s0 � s| with s0 ⇠ t respect to the RC, so it is small
when perturbation theory deteriorates at t << 0. Then, it is a very reasonable approximation to take
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Z

C
⇤

ds0w(s0)

s02(s0 � s)
, (31)

and this approximate integral equation is solved by w(s) ' A(0)

(s)�A(1)

(s). This is quite remarkable
since w(s) depends on the exact amplitude. Again, the only used approximations are the absence of
poles in the inverse amplitude and the perturbative treatment of the LC integral. It stands out that,
from the very definition of w(s), that we can write down the IAM amplitude as:

A(s) ' AIAM
(s) =

(A(0)

(s))2

A(0)

(s)�A(1)

(s)
. (32)

This IAM amplitude obtained from the ChPT expansion has the proper analytic structure which
makes poles on the second Riemann sheet possible (that can be understood as dynamically generated
resonances). It is also µ-invariant, depending only on the renormalized chiral constants a

4

, a
5

, e, d or
g that encode higher energy dynamics. And by construction it satisfies elastic unitarity, so that on the
RC,

ImAIAM
= AIAM

(AIAM
)

⇤ . (33)

Finally, if expanded at low energy, it coincides with the NLO-ChPT amplitude,

AIAM
(s) = ANLO

(s) +O(s3) (34)

Watson’s final state theorem [19] guarantees that the phase of the form factor for W ! !!
represented as the black blob in figure 2 is the same as the phase of the elastic !! scattering amplitude,
and any resonance poles of the amplitude also appear in the form factor at the same position of the
s-complex plane. Together with the normalization of the form factor FV (0) = 1 we find that the form
factor consistent with the IAM is given by

FV (s) = F
11

(s)

=

1

1� A
(1)

11

(s)

A
(0)

11

(s)

. (35)
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The N/D (adapted) Method 

IV. THE N/D METHOD

A. Elastic ωω scattering

The IAM is a reliable unitarization method, but to assess
the systematic error introduced by approximating the left
cut in perturbation theory, it is recommendable to compare
with a different unitarization method applicable to the
one-loop results for the ωω and hh scattering amplitudes.
A well-known alternative that we consider here is the N/D
method. This can be applied in many different ways
depending on the problem at hand. When the ωω is purely
elastic ðJ ≠ 0Þ, the starting point is an ansatz for the
scattering partial waves, from which the method is named,

AðsÞ ¼ NðsÞ
DðsÞ

; ð47Þ

where the numerator function NðsÞ has only a LC and the
denominator function DðsÞ only a RC, so that AðsÞ has the
expected analytical structure. Therefore ImNðsÞ ¼ 0 on
the RC and ImDðsÞ ¼ 0 on the LC. In addition, elastic
unitarity, ImAðsÞ ¼ jAðsÞj2 requires ImDðsÞ ¼ −NðsÞ on
the RC, and we also have ImNðsÞ ¼ DðsÞImAðsÞ on the
LC. It is then possible in principle to write two coupled
dispersion relations for NðsÞ and DðsÞ. The normalization
Dð0Þ ¼ 1 may be chosen by making Nð0Þ ¼ Að0Þ, so

DðsÞ ¼ 1 − s
π

Z
∞

0

ds0Nðs0Þ
s0ðs0 − s − iϵÞ

; ð48Þ

NðsÞ ¼ s
π

Z
0

−∞
ds0Dðs0ÞImAðs0Þ
s0ðs0 − s − iϵÞ

: ð49Þ

More generally, one needs an n-times subtracted DR, which
is useful to input the particular low-energy dynamics to be
described,

DðsÞ ¼ 1þ h1sþ h2s2 þ % % % þ hn−1sn−1

− sn

π

Z
∞

0

ds0Nðs0Þ
s0nðs0 − s − iϵÞ

: ð50Þ

The coupled equations for NðsÞ and DðsÞ can be solved in
principle by using some recursive method. For example,
starting from some approximate N0ðsÞ function featuring a
LC (typically a tree-level result) we can obtain D0ðsÞ by
integration on the RC. Then a first approximation for the
partial wave would be A0ðsÞ ¼ N0ðsÞ=D0ðsÞ. To continue
the procedure one can now insert D0ðsÞ in the second
coupled equation to get the new N1ðsÞ yielding A1ðsÞ ¼
N1ðsÞ=D1ðsÞ and so on. Presumably in this way it should
be possible to approach as much as needed the real solution
for some given subtraction constants, provided the original
guess for N0ðsÞ is appropriate enough. Even more, in
many cases the simplest and crude approximation AðsÞ≃
N0ðsÞ=D0ðsÞ could be considered a sensible estimate of the

exact solution. For example, taking N0ðsÞ ¼ Að0ÞðsÞ and
regularizing the integrals with IR and UV cutoffs m2 and
Λ2, one gets

D0ðsÞ ¼ 1þ Að0ÞðsÞ
π

log
−s
Λ2

ð51Þ

so that

AðsÞ≃ Að0ÞðsÞ
1þ Að0ÞðsÞ

π log −s
Λ2

: ð52Þ

We do not find this approximation satisfactory though, at
least when compared with the inverse amplitude method in
Sec. III. In particular, because the equation for N has not
been iterated yet, the amplitude only has a RC but not a LC.
It is unitary and depending on the UV scale Λ and also
not compatible with the NLO result to order s2. The reason
for this is that we are not yet taking into account the
information coming from the NLO term Að1Þ containing the
one-loop effects and the chiral couplings. However, intro-
ducing these NLO effects in the N/D method is far from
trivial for various reasons.
For one, it is not obvious how to choose the starting

function N0ðsÞ: remember that the NLO partial waves have
the general form AðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þ % % %, with the
general form given in Eq. (15). Thus Að1ÞðsÞ contains a
logarithm with a LC and another one with a RC that, taken
independently, are scale dependent: the scale independence
of AðsÞ is achieved with the compensating dependence of
BðμÞ in Eq. (16). Thus a naive choice for N0ðsÞ featuring a
LC will not be in general μ invariant, and that makes the
N/D method less attractive.
To solve this problem we split Að1ÞðsÞ into two pieces,

one having only a RC and the other only a LC and both μ
independent, by adequately splitting the function BðμÞ,

ALðsÞ≡
!

BðμÞ
Dþ E

þ log
s
μ2

"
Ds2;

ARðsÞ≡
!

BðμÞ
Dþ E

þ log
−s
μ2

"
Es2: ð53Þ

The cut structure is obviously as advertised, Að1ÞðsÞ ¼
ALðsÞ þ ARðsÞ is also trivially verified, and the scale-
independence follows from Eq. (16). In addition, on the
RC (the physical region), perturbative unitarity reads
ImAð1Þ ¼ ImAR ¼ ðAð0ÞÞ2. The split in Eq. (53) is not
usable in the IJ ¼ 11 channel in the particular parameter
case a2 ¼ b because of a coincidence4 in Eq. (A18) that

4It is known that in this elastic vector-isovector amplitude the
NLO amplitude on the physical cut is a polynomial due to
canceling logarithms, so the combination of chiral constants
ða4 − 2a5Þ in Eq. (A18) is μ invariant by itself.

UNITARITY, ANALYTICITY, DISPERSION RELATIONS, … PHYSICAL REVIEW D 91, 075017 (2015)

075017-9

IV. THE N/D METHOD

A. Elastic ωω scattering

The IAM is a reliable unitarization method, but to assess
the systematic error introduced by approximating the left
cut in perturbation theory, it is recommendable to compare
with a different unitarization method applicable to the
one-loop results for the ωω and hh scattering amplitudes.
A well-known alternative that we consider here is the N/D
method. This can be applied in many different ways
depending on the problem at hand. When the ωω is purely
elastic ðJ ≠ 0Þ, the starting point is an ansatz for the
scattering partial waves, from which the method is named,

AðsÞ ¼ NðsÞ
DðsÞ

; ð47Þ

where the numerator function NðsÞ has only a LC and the
denominator function DðsÞ only a RC, so that AðsÞ has the
expected analytical structure. Therefore ImNðsÞ ¼ 0 on
the RC and ImDðsÞ ¼ 0 on the LC. In addition, elastic
unitarity, ImAðsÞ ¼ jAðsÞj2 requires ImDðsÞ ¼ −NðsÞ on
the RC, and we also have ImNðsÞ ¼ DðsÞImAðsÞ on the
LC. It is then possible in principle to write two coupled
dispersion relations for NðsÞ and DðsÞ. The normalization
Dð0Þ ¼ 1 may be chosen by making Nð0Þ ¼ Að0Þ, so

DðsÞ ¼ 1 − s
π

Z
∞

0

ds0Nðs0Þ
s0ðs0 − s − iϵÞ

; ð48Þ

NðsÞ ¼ s
π

Z
0

−∞
ds0Dðs0ÞImAðs0Þ
s0ðs0 − s − iϵÞ

: ð49Þ

More generally, one needs an n-times subtracted DR, which
is useful to input the particular low-energy dynamics to be
described,

DðsÞ ¼ 1þ h1sþ h2s2 þ % % % þ hn−1sn−1

− sn

π

Z
∞

0

ds0Nðs0Þ
s0nðs0 − s − iϵÞ

: ð50Þ

The coupled equations for NðsÞ and DðsÞ can be solved in
principle by using some recursive method. For example,
starting from some approximate N0ðsÞ function featuring a
LC (typically a tree-level result) we can obtain D0ðsÞ by
integration on the RC. Then a first approximation for the
partial wave would be A0ðsÞ ¼ N0ðsÞ=D0ðsÞ. To continue
the procedure one can now insert D0ðsÞ in the second
coupled equation to get the new N1ðsÞ yielding A1ðsÞ ¼
N1ðsÞ=D1ðsÞ and so on. Presumably in this way it should
be possible to approach as much as needed the real solution
for some given subtraction constants, provided the original
guess for N0ðsÞ is appropriate enough. Even more, in
many cases the simplest and crude approximation AðsÞ≃
N0ðsÞ=D0ðsÞ could be considered a sensible estimate of the

exact solution. For example, taking N0ðsÞ ¼ Að0ÞðsÞ and
regularizing the integrals with IR and UV cutoffs m2 and
Λ2, one gets

D0ðsÞ ¼ 1þ Að0ÞðsÞ
π

log
−s
Λ2

ð51Þ

so that

AðsÞ≃ Að0ÞðsÞ
1þ Að0ÞðsÞ

π log −s
Λ2

: ð52Þ

We do not find this approximation satisfactory though, at
least when compared with the inverse amplitude method in
Sec. III. In particular, because the equation for N has not
been iterated yet, the amplitude only has a RC but not a LC.
It is unitary and depending on the UV scale Λ and also
not compatible with the NLO result to order s2. The reason
for this is that we are not yet taking into account the
information coming from the NLO term Að1Þ containing the
one-loop effects and the chiral couplings. However, intro-
ducing these NLO effects in the N/D method is far from
trivial for various reasons.
For one, it is not obvious how to choose the starting

function N0ðsÞ: remember that the NLO partial waves have
the general form AðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þ % % %, with the
general form given in Eq. (15). Thus Að1ÞðsÞ contains a
logarithm with a LC and another one with a RC that, taken
independently, are scale dependent: the scale independence
of AðsÞ is achieved with the compensating dependence of
BðμÞ in Eq. (16). Thus a naive choice for N0ðsÞ featuring a
LC will not be in general μ invariant, and that makes the
N/D method less attractive.
To solve this problem we split Að1ÞðsÞ into two pieces,

one having only a RC and the other only a LC and both μ
independent, by adequately splitting the function BðμÞ,

ALðsÞ≡
!

BðμÞ
Dþ E

þ log
s
μ2

"
Ds2;

ARðsÞ≡
!

BðμÞ
Dþ E

þ log
−s
μ2

"
Es2: ð53Þ

The cut structure is obviously as advertised, Að1ÞðsÞ ¼
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independence follows from Eq. (16). In addition, on the
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like those commonly introduced in textbooks, cannot
be used.
Because AðsÞ describes the scattering of Goldstone

bosons, there are two simplifying properties. The first is
that there is an Adler zero. In the massless limit this is
located at s ¼ 0 and guarantees Að0Þ ¼ 0. Accordingly, we
set the first subtraction constant to zero, and the first term is
linear in s. The second is that there are no (subthreshold,
bound-state) poles of AðsÞ in the first or physical Riemann
sheet (which does not make sense for Goldstone bosons
that interact with weak strength at low energies). So only
the two cuts contribute as written since AðsÞ is analytic
in the rest of the upper half-plane.
We will obtain a second dispersion relation for the partial-

wave amplitude expanded to NLO in the EChL, that is,
truncated up to order s2, ANLOðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ,
which has the generic form

Að0ÞðsÞ ¼ Ks;

Að1ÞðsÞ ¼
!
BðμÞ þD log

s
μ2

þ E log
−s
μ2

"
s2: ð30Þ

To derive the dispersion relation, we will first introduce
the auxiliary function

fðsÞ≡ ANLOðsÞ − Að0ÞðsÞ
s2

¼ Að1ÞðsÞ
s2

¼ BðμÞ þD log
s
μ2

þ E log
−s
μ2

: ð31Þ

Therefore fðsÞ is analytic in the whole complex plane
except for the LC and RC along the negative and positive
real axis, respectively. Cauchy’s theorem provides an
unsubtracted dispersion relation for fðsÞ,

fðsÞ ¼ 1

π

Z
Λ2

0

ds0Im fðs0Þ
s0 − s − iϵ

þ 1

π

Z
0

−Λ2

ds0Im fðs0Þ
s0 − s − iϵ

þ 1

2πi

Z

CΛ

ds0fðs0Þ
s0 − s

; ð32Þ

where CΛ is a circumference of radius Λ2 oriented
anticlockwise and Λ is an UV regulator which will be
sent to infinity at the end (see Fig. 1).
Returning to Eq. (31), we see that this dispersion relation

can easily be turned into one for ANLOðsÞ,

ANLOðsÞ ¼ Ksþ s2

π

Z
Λ2

0

ds0ImAð1Þðs0Þ
s02ðs0 − s − iϵÞ

þ s2

π

Z
0

−Λ2

ds0ImAð1Þðs0Þ
s02ðs0 − s − iϵÞ

þ s2

2πi

Z

CΛ

ds0Að1Þðs0Þ
s02ðs0 − sÞ

: ð33Þ

Comparing this dispersion relation for the NLO ampli-
tude with that for the exact amplitude AðsÞ in Eq. (29),
we notice that the difference is the contribution of the
circle at infinity, a term due to the divergent UV behavior
of ANLOðsÞ ∝ s2. Taking now Λ2 ≫ s beyond the region
where the amplitude is considered, the three integrals
may easily be computed,

s2

π

Z
Λ2

0

ds0ImAð1Þðs0Þ
s02ðs0 − s− iϵÞ

¼ s2E log
−s
Λ2

;

s2

π

Z
0

−Λ2

ds0ImAð1Þðs0Þ
s02ðs0 − s− iϵÞ

¼ s2D log
s
Λ2

;

s2

2πi

Z

C∞

ds0Að1Þðs0Þ
s02ðs0 − sÞ

¼ s2
!
BðμÞ þD log

Λ2

μ2
þE log

Λ2

μ2

"
;

ð34Þ

so that the dispersion relation for ANLOðsÞ in Eq. (33)
reproduces Eq. (30),

ANLOðsÞ ¼ Ksþ
!
BðμÞ þD log

s
μ2

þ E log
−s
μ2

"
s2:

ð35Þ

This is a consistency check of the dispersion relation
and also shows its nice interplay with renormalized
chiral couplings; the integral over the large circle trades
the UV-cutoff scale Λ for the arbitrary renormalization
scale μ.
So far we have an elastic, exact, but not too useful,

dispersion relation for AðsÞ in Eq. (29) and another in
Eq. (33) for Að1ÞðsÞ which is known anyway from chiral
perturbation theory. The practical use of the technique
comes from its application to the following auxiliary
function:

wðsÞ≡ ½Að0ÞðsÞ&2

AðsÞ
: ð36Þ

This construction has the same analytic structure than AðsÞ
up to possible poles coming from zeros of AðsÞ, excluding
the Adler zero (canceled by the numerator). In addition,
wð0Þ ¼ 0, wðsÞ ¼ KsþOðs2Þ, and on the RC one has
ImwðsÞ ¼ −½Að0ÞðsÞ&2. Therefore, neglecting the possible
pole contribution,3 the twice-subtracted dispersion relation
for this function reads

3A more careful treatment in the massive case that includes
subthreshold poles found that their effect is very small, at the
permille level or less in the physical zone [39].
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IV. THE N/D METHOD

A. Elastic ωω scattering

The IAM is a reliable unitarization method, but to assess
the systematic error introduced by approximating the left
cut in perturbation theory, it is recommendable to compare
with a different unitarization method applicable to the
one-loop results for the ωω and hh scattering amplitudes.
A well-known alternative that we consider here is the N/D
method. This can be applied in many different ways
depending on the problem at hand. When the ωω is purely
elastic ðJ ≠ 0Þ, the starting point is an ansatz for the
scattering partial waves, from which the method is named,

AðsÞ ¼ NðsÞ
DðsÞ

; ð47Þ

where the numerator function NðsÞ has only a LC and the
denominator function DðsÞ only a RC, so that AðsÞ has the
expected analytical structure. Therefore ImNðsÞ ¼ 0 on
the RC and ImDðsÞ ¼ 0 on the LC. In addition, elastic
unitarity, ImAðsÞ ¼ jAðsÞj2 requires ImDðsÞ ¼ −NðsÞ on
the RC, and we also have ImNðsÞ ¼ DðsÞImAðsÞ on the
LC. It is then possible in principle to write two coupled
dispersion relations for NðsÞ and DðsÞ. The normalization
Dð0Þ ¼ 1 may be chosen by making Nð0Þ ¼ Að0Þ, so

DðsÞ ¼ 1 − s
π

Z
∞

0

ds0Nðs0Þ
s0ðs0 − s − iϵÞ

; ð48Þ

NðsÞ ¼ s
π

Z
0

−∞
ds0Dðs0ÞImAðs0Þ
s0ðs0 − s − iϵÞ

: ð49Þ

More generally, one needs an n-times subtracted DR, which
is useful to input the particular low-energy dynamics to be
described,

DðsÞ ¼ 1þ h1sþ h2s2 þ % % % þ hn−1sn−1

− sn

π

Z
∞

0

ds0Nðs0Þ
s0nðs0 − s − iϵÞ

: ð50Þ

The coupled equations for NðsÞ and DðsÞ can be solved in
principle by using some recursive method. For example,
starting from some approximate N0ðsÞ function featuring a
LC (typically a tree-level result) we can obtain D0ðsÞ by
integration on the RC. Then a first approximation for the
partial wave would be A0ðsÞ ¼ N0ðsÞ=D0ðsÞ. To continue
the procedure one can now insert D0ðsÞ in the second
coupled equation to get the new N1ðsÞ yielding A1ðsÞ ¼
N1ðsÞ=D1ðsÞ and so on. Presumably in this way it should
be possible to approach as much as needed the real solution
for some given subtraction constants, provided the original
guess for N0ðsÞ is appropriate enough. Even more, in
many cases the simplest and crude approximation AðsÞ≃
N0ðsÞ=D0ðsÞ could be considered a sensible estimate of the

exact solution. For example, taking N0ðsÞ ¼ Að0ÞðsÞ and
regularizing the integrals with IR and UV cutoffs m2 and
Λ2, one gets

D0ðsÞ ¼ 1þ Að0ÞðsÞ
π

log
−s
Λ2

ð51Þ

so that

AðsÞ≃ Að0ÞðsÞ
1þ Að0ÞðsÞ

π log −s
Λ2

: ð52Þ

We do not find this approximation satisfactory though, at
least when compared with the inverse amplitude method in
Sec. III. In particular, because the equation for N has not
been iterated yet, the amplitude only has a RC but not a LC.
It is unitary and depending on the UV scale Λ and also
not compatible with the NLO result to order s2. The reason
for this is that we are not yet taking into account the
information coming from the NLO term Að1Þ containing the
one-loop effects and the chiral couplings. However, intro-
ducing these NLO effects in the N/D method is far from
trivial for various reasons.
For one, it is not obvious how to choose the starting

function N0ðsÞ: remember that the NLO partial waves have
the general form AðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þ % % %, with the
general form given in Eq. (15). Thus Að1ÞðsÞ contains a
logarithm with a LC and another one with a RC that, taken
independently, are scale dependent: the scale independence
of AðsÞ is achieved with the compensating dependence of
BðμÞ in Eq. (16). Thus a naive choice for N0ðsÞ featuring a
LC will not be in general μ invariant, and that makes the
N/D method less attractive.
To solve this problem we split Að1ÞðsÞ into two pieces,

one having only a RC and the other only a LC and both μ
independent, by adequately splitting the function BðμÞ,

ALðsÞ≡
!

BðμÞ
Dþ E

þ log
s
μ2

"
Ds2;

ARðsÞ≡
!

BðμÞ
Dþ E

þ log
−s
μ2

"
Es2: ð53Þ

The cut structure is obviously as advertised, Að1ÞðsÞ ¼
ALðsÞ þ ARðsÞ is also trivially verified, and the scale-
independence follows from Eq. (16). In addition, on the
RC (the physical region), perturbative unitarity reads
ImAð1Þ ¼ ImAR ¼ ðAð0ÞÞ2. The split in Eq. (53) is not
usable in the IJ ¼ 11 channel in the particular parameter
case a2 ¼ b because of a coincidence4 in Eq. (A18) that

4It is known that in this elastic vector-isovector amplitude the
NLO amplitude on the physical cut is a polynomial due to
canceling logarithms, so the combination of chiral constants
ða4 − 2a5Þ in Eq. (A18) is μ invariant by itself.
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the procedure one can now insert D0ðsÞ in the second
coupled equation to get the new N1ðsÞ yielding A1ðsÞ ¼
N1ðsÞ=D1ðsÞ and so on. Presumably in this way it should
be possible to approach as much as needed the real solution
for some given subtraction constants, provided the original
guess for N0ðsÞ is appropriate enough. Even more, in
many cases the simplest and crude approximation AðsÞ≃
N0ðsÞ=D0ðsÞ could be considered a sensible estimate of the

exact solution. For example, taking N0ðsÞ ¼ Að0ÞðsÞ and
regularizing the integrals with IR and UV cutoffs m2 and
Λ2, one gets

D0ðsÞ ¼ 1þ Að0ÞðsÞ
π
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Λ2
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so that

AðsÞ≃ Að0ÞðsÞ
1þ Að0ÞðsÞ

π log −s
Λ2

: ð52Þ

We do not find this approximation satisfactory though, at
least when compared with the inverse amplitude method in
Sec. III. In particular, because the equation for N has not
been iterated yet, the amplitude only has a RC but not a LC.
It is unitary and depending on the UV scale Λ and also
not compatible with the NLO result to order s2. The reason
for this is that we are not yet taking into account the
information coming from the NLO term Að1Þ containing the
one-loop effects and the chiral couplings. However, intro-
ducing these NLO effects in the N/D method is far from
trivial for various reasons.
For one, it is not obvious how to choose the starting

function N0ðsÞ: remember that the NLO partial waves have
the general form AðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þ % % %, with the
general form given in Eq. (15). Thus Að1ÞðsÞ contains a
logarithm with a LC and another one with a RC that, taken
independently, are scale dependent: the scale independence
of AðsÞ is achieved with the compensating dependence of
BðμÞ in Eq. (16). Thus a naive choice for N0ðsÞ featuring a
LC will not be in general μ invariant, and that makes the
N/D method less attractive.
To solve this problem we split Að1ÞðsÞ into two pieces,

one having only a RC and the other only a LC and both μ
independent, by adequately splitting the function BðμÞ,

ALðsÞ≡
!

BðμÞ
Dþ E

þ log
s
μ2

"
Ds2;

ARðsÞ≡
!

BðμÞ
Dþ E

þ log
−s
μ2

"
Es2: ð53Þ

The cut structure is obviously as advertised, Að1ÞðsÞ ¼
ALðsÞ þ ARðsÞ is also trivially verified, and the scale-
independence follows from Eq. (16). In addition, on the
RC (the physical region), perturbative unitarity reads
ImAð1Þ ¼ ImAR ¼ ðAð0ÞÞ2. The split in Eq. (53) is not
usable in the IJ ¼ 11 channel in the particular parameter
case a2 ¼ b because of a coincidence4 in Eq. (A18) that

4It is known that in this elastic vector-isovector amplitude the
NLO amplitude on the physical cut is a polynomial due to
canceling logarithms, so the combination of chiral constants
ða4 − 2a5Þ in Eq. (A18) is μ invariant by itself.
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A. Elastic ωω scattering

The IAM is a reliable unitarization method, but to assess
the systematic error introduced by approximating the left
cut in perturbation theory, it is recommendable to compare
with a different unitarization method applicable to the
one-loop results for the ωω and hh scattering amplitudes.
A well-known alternative that we consider here is the N/D
method. This can be applied in many different ways
depending on the problem at hand. When the ωω is purely
elastic ðJ ≠ 0Þ, the starting point is an ansatz for the
scattering partial waves, from which the method is named,
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DðsÞ
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the RC, and we also have ImNðsÞ ¼ DðsÞImAðsÞ on the
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Dð0Þ ¼ 1 may be chosen by making Nð0Þ ¼ Að0Þ, so
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: ð50Þ
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the procedure one can now insert D0ðsÞ in the second
coupled equation to get the new N1ðsÞ yielding A1ðsÞ ¼
N1ðsÞ=D1ðsÞ and so on. Presumably in this way it should
be possible to approach as much as needed the real solution
for some given subtraction constants, provided the original
guess for N0ðsÞ is appropriate enough. Even more, in
many cases the simplest and crude approximation AðsÞ≃
N0ðsÞ=D0ðsÞ could be considered a sensible estimate of the

exact solution. For example, taking N0ðsÞ ¼ Að0ÞðsÞ and
regularizing the integrals with IR and UV cutoffs m2 and
Λ2, one gets

D0ðsÞ ¼ 1þ Að0ÞðsÞ
π

log
−s
Λ2

ð51Þ

so that

AðsÞ≃ Að0ÞðsÞ
1þ Að0ÞðsÞ

π log −s
Λ2

: ð52Þ

We do not find this approximation satisfactory though, at
least when compared with the inverse amplitude method in
Sec. III. In particular, because the equation for N has not
been iterated yet, the amplitude only has a RC but not a LC.
It is unitary and depending on the UV scale Λ and also
not compatible with the NLO result to order s2. The reason
for this is that we are not yet taking into account the
information coming from the NLO term Að1Þ containing the
one-loop effects and the chiral couplings. However, intro-
ducing these NLO effects in the N/D method is far from
trivial for various reasons.
For one, it is not obvious how to choose the starting

function N0ðsÞ: remember that the NLO partial waves have
the general form AðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þ % % %, with the
general form given in Eq. (15). Thus Að1ÞðsÞ contains a
logarithm with a LC and another one with a RC that, taken
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RC (the physical region), perturbative unitarity reads
ImAð1Þ ¼ ImAR ¼ ðAð0ÞÞ2. The split in Eq. (53) is not
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Sec. III. In particular, because the equation for N has not
been iterated yet, the amplitude only has a RC but not a LC.
It is unitary and depending on the UV scale Λ and also
not compatible with the NLO result to order s2. The reason
for this is that we are not yet taking into account the
information coming from the NLO term Að1Þ containing the
one-loop effects and the chiral couplings. However, intro-
ducing these NLO effects in the N/D method is far from
trivial for various reasons.
For one, it is not obvious how to choose the starting

function N0ðsÞ: remember that the NLO partial waves have
the general form AðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þ % % %, with the
general form given in Eq. (15). Thus Að1ÞðsÞ contains a
logarithm with a LC and another one with a RC that, taken
independently, are scale dependent: the scale independence
of AðsÞ is achieved with the compensating dependence of
BðμÞ in Eq. (16). Thus a naive choice for N0ðsÞ featuring a
LC will not be in general μ invariant, and that makes the
N/D method less attractive.
To solve this problem we split Að1ÞðsÞ into two pieces,

one having only a RC and the other only a LC and both μ
independent, by adequately splitting the function BðμÞ,
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The cut structure is obviously as advertised, Að1ÞðsÞ ¼
ALðsÞ þ ARðsÞ is also trivially verified, and the scale-
independence follows from Eq. (16). In addition, on the
RC (the physical region), perturbative unitarity reads
ImAð1Þ ¼ ImAR ¼ ðAð0ÞÞ2. The split in Eq. (53) is not
usable in the IJ ¼ 11 channel in the particular parameter
case a2 ¼ b because of a coincidence4 in Eq. (A18) that

4It is known that in this elastic vector-isovector amplitude the
NLO amplitude on the physical cut is a polynomial due to
canceling logarithms, so the combination of chiral constants
ða4 − 2a5Þ in Eq. (A18) is μ invariant by itself.
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LC 

RC 

yields E ¼ −D. In all other circumstances the denominator
is finite and does not give any problems.
It is illustrative to express AL and AR in terms of an

auxiliary “loop” function

gðsÞ ¼ 1

π

!
BðμÞ
Dþ E

þ log
−s
μ2

"
: ð54Þ

This function, as the notation suggests, is μ independent
(as is easily checked). Furthermore, it is analytical on the
whole complex plane but for a RC. On this RC (i.e., for
s ¼ E2 þ iϵ) we have Im gðsÞ ¼ −1. Then,

ALðsÞ ¼ πgð−sÞDs2;

ARðsÞ ¼ πgðsÞEs2; ð55Þ

so that perturbatively

AðsÞ¼Að0ÞðsÞþALðsÞ− ½Að0ÞðsÞ&2gðsÞþOðs3Þ: ð56Þ

We have now the ingredients to apply the N/D method to
the NLO computation: the useful starting point is the
function

N0ðsÞ≡ Að0ÞðsÞ þ ALðsÞ: ð57Þ

Notice that this function contains the LC and information
about the chiral parameters, and additionally it is μ
independent.
The inconvenience now is that the UV behavior of the

integral for D0ðsÞ in Eq. (48) is even worse than with the
tree-level ansatz, since a term s2 is included in N0. To
obtain a UV-finite integral three subtractions are required,
at the prize of a chiral coupling of order s3 (see
Appendix C). Thus we can write

D0ðsÞ ¼ 1þ h1sþ h2s2 − s3

π

Z
∞

0

ds0½Að0ÞðsÞ þ ALðsÞ&
s03ðs0 − s − iϵÞ

:

ð58Þ

As further shown in Appendix C, the N/D partial wave in
this approximation can be written as

AðsÞ≃ AN=DðsÞ ¼ N0ðsÞ
D0ðsÞ

; ð59Þ

D0ðsÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

þ π
2
½ðgðsÞ&2Ds2: ð60Þ

By using the ALðsÞ and ARðsÞ definitions in Eq. (53) this
denominator can also be written as

D0ðsÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

þ 1

2
gðsÞ

ALð−sÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

− ALð−sÞARðsÞ
2ðAð0ÞÞ2

: ð61Þ

This amplitude in Eqs. (57), (59), and (61) has many
interesting properties. First it is UV finite, the IR diver-
gences have been removed, and it is μ independent. Second,
it has the right analytical structure, and it satisfies elastic
unitarity exactly,

ImAN=DðsÞ ¼ jAN=DðsÞj2 ð62Þ

on the RC. Finally it is compatible with the NLO
computation up to order s2 since

AN=DðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þOðs3Þ: ð63Þ

All these properties are shared with the inverse
amplitude method. In Eq. (94) below we show that this
amplitude converges to the IAM amplitude when-
ever AL ≪ Að0Þ.

B. Coupled ωω − hh channels

Just as for the IAM, it is possible to generalize the N/D
method to the multichannel case needed for the I ¼ 0
(J ¼ 0; 2) cases where the ωω state couples to the hh
channel. Following [40] we introduce two matrices, a
numerator one N and a denominator D, so that

FðsÞ ¼ ½DðsÞ&−1NðsÞ: ð64Þ

To generalize our previous result for the single channel
case, we start again from the perturbative expansion at
NLO, Eq. (44), Again the μ evolution of BðμÞ is given by
Eq. (16), now a matrix equation.
Thus we can introduce the μ-independent matrix

GðsÞ ¼ 1

π

!
BðμÞðDþ EÞ−1 þ log

−s
μ2

"
ð65Þ

and the (also μ-invariant) left and right matrices

FLðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

s
μ2

"
Ds2

¼ πGð−sÞDs2; ð66Þ

FRðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

−s
μ2

"
Es2

¼ πGðsÞEs2: ð67Þ

On the RC cut perturbative unitarity reads
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for some given subtraction constants, provided the original
guess for N0ðsÞ is appropriate enough. Even more, in
many cases the simplest and crude approximation AðsÞ≃
N0ðsÞ=D0ðsÞ could be considered a sensible estimate of the

exact solution. For example, taking N0ðsÞ ¼ Að0ÞðsÞ and
regularizing the integrals with IR and UV cutoffs m2 and
Λ2, one gets

D0ðsÞ ¼ 1þ Að0ÞðsÞ
π

log
−s
Λ2

ð51Þ

so that

AðsÞ≃ Að0ÞðsÞ
1þ Að0ÞðsÞ

π log −s
Λ2

: ð52Þ

We do not find this approximation satisfactory though, at
least when compared with the inverse amplitude method in
Sec. III. In particular, because the equation for N has not
been iterated yet, the amplitude only has a RC but not a LC.
It is unitary and depending on the UV scale Λ and also
not compatible with the NLO result to order s2. The reason
for this is that we are not yet taking into account the
information coming from the NLO term Að1Þ containing the
one-loop effects and the chiral couplings. However, intro-
ducing these NLO effects in the N/D method is far from
trivial for various reasons.
For one, it is not obvious how to choose the starting

function N0ðsÞ: remember that the NLO partial waves have
the general form AðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þ % % %, with the
general form given in Eq. (15). Thus Að1ÞðsÞ contains a
logarithm with a LC and another one with a RC that, taken
independently, are scale dependent: the scale independence
of AðsÞ is achieved with the compensating dependence of
BðμÞ in Eq. (16). Thus a naive choice for N0ðsÞ featuring a
LC will not be in general μ invariant, and that makes the
N/D method less attractive.
To solve this problem we split Að1ÞðsÞ into two pieces,

one having only a RC and the other only a LC and both μ
independent, by adequately splitting the function BðμÞ,

ALðsÞ≡
!

BðμÞ
Dþ E

þ log
s
μ2

"
Ds2;

ARðsÞ≡
!

BðμÞ
Dþ E

þ log
−s
μ2

"
Es2: ð53Þ

The cut structure is obviously as advertised, Að1ÞðsÞ ¼
ALðsÞ þ ARðsÞ is also trivially verified, and the scale-
independence follows from Eq. (16). In addition, on the
RC (the physical region), perturbative unitarity reads
ImAð1Þ ¼ ImAR ¼ ðAð0ÞÞ2. The split in Eq. (53) is not
usable in the IJ ¼ 11 channel in the particular parameter
case a2 ¼ b because of a coincidence4 in Eq. (A18) that

4It is known that in this elastic vector-isovector amplitude the
NLO amplitude on the physical cut is a polynomial due to
canceling logarithms, so the combination of chiral constants
ða4 − 2a5Þ in Eq. (A18) is μ invariant by itself.
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yields E ¼ −D. In all other circumstances the denominator
is finite and does not give any problems.
It is illustrative to express AL and AR in terms of an

auxiliary “loop” function

gðsÞ ¼ 1

π

!
BðμÞ
Dþ E

þ log
−s
μ2

"
: ð54Þ

This function, as the notation suggests, is μ independent
(as is easily checked). Furthermore, it is analytical on the
whole complex plane but for a RC. On this RC (i.e., for
s ¼ E2 þ iϵ) we have Im gðsÞ ¼ −1. Then,

ALðsÞ ¼ πgð−sÞDs2;

ARðsÞ ¼ πgðsÞEs2; ð55Þ

so that perturbatively

AðsÞ¼Að0ÞðsÞþALðsÞ− ½Að0ÞðsÞ&2gðsÞþOðs3Þ: ð56Þ

We have now the ingredients to apply the N/D method to
the NLO computation: the useful starting point is the
function

N0ðsÞ≡ Að0ÞðsÞ þ ALðsÞ: ð57Þ

Notice that this function contains the LC and information
about the chiral parameters, and additionally it is μ
independent.
The inconvenience now is that the UV behavior of the

integral for D0ðsÞ in Eq. (48) is even worse than with the
tree-level ansatz, since a term s2 is included in N0. To
obtain a UV-finite integral three subtractions are required,
at the prize of a chiral coupling of order s3 (see
Appendix C). Thus we can write

D0ðsÞ ¼ 1þ h1sþ h2s2 − s3

π

Z
∞

0

ds0½Að0ÞðsÞ þ ALðsÞ&
s03ðs0 − s − iϵÞ

:

ð58Þ

As further shown in Appendix C, the N/D partial wave in
this approximation can be written as

AðsÞ≃ AN=DðsÞ ¼ N0ðsÞ
D0ðsÞ

; ð59Þ

D0ðsÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

þ π
2
½ðgðsÞ&2Ds2: ð60Þ

By using the ALðsÞ and ARðsÞ definitions in Eq. (53) this
denominator can also be written as

D0ðsÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

þ 1

2
gðsÞ

ALð−sÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

− ALð−sÞARðsÞ
2ðAð0ÞÞ2

: ð61Þ

This amplitude in Eqs. (57), (59), and (61) has many
interesting properties. First it is UV finite, the IR diver-
gences have been removed, and it is μ independent. Second,
it has the right analytical structure, and it satisfies elastic
unitarity exactly,

ImAN=DðsÞ ¼ jAN=DðsÞj2 ð62Þ

on the RC. Finally it is compatible with the NLO
computation up to order s2 since

AN=DðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þOðs3Þ: ð63Þ

All these properties are shared with the inverse
amplitude method. In Eq. (94) below we show that this
amplitude converges to the IAM amplitude when-
ever AL ≪ Að0Þ.

B. Coupled ωω − hh channels

Just as for the IAM, it is possible to generalize the N/D
method to the multichannel case needed for the I ¼ 0
(J ¼ 0; 2) cases where the ωω state couples to the hh
channel. Following [40] we introduce two matrices, a
numerator one N and a denominator D, so that

FðsÞ ¼ ½DðsÞ&−1NðsÞ: ð64Þ

To generalize our previous result for the single channel
case, we start again from the perturbative expansion at
NLO, Eq. (44), Again the μ evolution of BðμÞ is given by
Eq. (16), now a matrix equation.
Thus we can introduce the μ-independent matrix

GðsÞ ¼ 1

π

!
BðμÞðDþ EÞ−1 þ log

−s
μ2

"
ð65Þ

and the (also μ-invariant) left and right matrices

FLðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

s
μ2

"
Ds2

¼ πGð−sÞDs2; ð66Þ

FRðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

−s
μ2

"
Es2

¼ πGðsÞEs2: ð67Þ

On the RC cut perturbative unitarity reads
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"
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and the (also μ-invariant) left and right matrices

FLðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

s
μ2

"
Ds2

¼ πGð−sÞDs2; ð66Þ

FRðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

−s
μ2

"
Es2
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On the RC cut perturbative unitarity reads
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ImFð1ÞðsÞ ¼ ImFRðsÞ ¼ Fð0ÞðsÞ2 ¼ K2s2; ð68Þ

which implies

E ¼ − 1

π
K2; ð69Þ

and therefore

FRðsÞ ¼ −GðsÞ½Fð0ÞðsÞ%2: ð70Þ

Now we can follow essentially the same steps that we took
in the single-channel case in Sec. IVA, taking into account
the matrix character of the different amplitudes and of
K;BðμÞ; D, and E. As in the case of the IAM, this produces
a sensible result because all particles involved, the WBGB
and the Higgs-like particle, are massless, and therefore we
are not overlapping the LC and the RC in any unitarized
partial wave. Then we get

FN=DðsÞ ¼ ½D0ðsÞ%−1N0ðsÞ; ð71Þ

where

N0ðsÞ ¼ Fð0ÞðsÞ þ FLðsÞ ð72Þ

and

D0ðsÞ ¼ 1 − FRðsÞ½Fð0ÞðsÞ%−1 þ π
2
½GðsÞ%2Ds2 ð73Þ

that can also be written as

D0ðsÞ ¼ 1 − FRðsÞ½Fð0ÞðsÞ%−1 þ 1

2
GðsÞFLð−sÞ

¼ 1 − FRðsÞ½Fð0ÞðsÞ%−1

− 1

2
FRðsÞ½Fð0ÞðsÞ%−2FLð−sÞ: ð74Þ

It is not difficult to check that these partial waves in
Eq. (71) fulfill exact elastic unitarity on the RC,

ImFN=D ¼ FN=DðFN=DÞ† ð75Þ

and also reproduce the low-energy expansion to NLO,

FN=DðsÞ ¼ Fð0ÞðsÞ þ Fð1ÞðsÞ þ ' ' ' : ð76Þ

Thus the FN=DðsÞ partial-wave amplitudes have all the
required properties including unitarity and analyticity.
They have a LC and RC, they can be extended to the
second Riemann sheet, and in some cases they have poles
there that could be understood as resonances.
Interesting cases where the N/D method has the

advantage are those in which K ¼ E ¼ 0 such as the
IJ ¼ 02; 22 waves. The vanishing of the leading-order

term proportional to K makes the IAM yield zero at this
order, and one needs the Next-to-Next-to-Leading Order
(NNLO) IAM or an approximation thereof, which we have
not developed here but see [27]. However, the N/D method
can be safely applied to these situations too, as it is very
easy to check since gðsÞ or GðsÞ is well defined even
for K ¼ E ¼ 0.

V. OTHER UNITARIZATION METHODS,
A COMPARISON AMONG THEM,

AND THEIR RESONANCES

A. The K matrix and the improved K matrix

Finally we will briefly comment on some other unitar-
ization methods which have also been considered for the
scattering of the would-be GB in the context of the EWSBS
of the SM. One of the most popular unitarization proce-
dures is the so-called K matrix method [24] (see also [26]
for a recent review in the context of this work). The K
matrix is defined in terms of the S matrix as

S ¼ 1 − iK=2
1þ iK=2

: ð77Þ

With this parametrization S is unitary if and only if K is
Hermitian. Equation (77) can be inverted to give K in terms
of S,

K ¼ iðS − 1Þ
1þ ðS − 1Þ=2

: ð78Þ

In practice the S matrix is obtained in the form of some
expansion,

S ¼ 1þ Sð1Þ þ Sð2Þ þ ' ' ' : ð79Þ

However, the truncation of this series usually produces an
approximate S matrix which is not unitary. However, if we
truncate instead an expansion of K,

K ¼ Kð1Þ þ Kð2Þ þ ' ' ' ; ð80Þ

and introduce this (truncated) series into Eq. (77) to find a
new series for S,

S ¼ 1þ ~Sð1Þ þ ~Sð2Þ þ ' ' ' ; ð81Þ

this is exactly unitary at any order.
In terms of a partial-wave amplitude for some unspeci-

fied elastic process AðsÞ, this amounts to the following.
One starts from some approximate estimation A0ðsÞ real in
the physical region and therefore not unitary. Then one
defines the K matrix unitarized partial wave,
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In terms of a partial-wave amplitude for some unspeci-

fied elastic process AðsÞ, this amounts to the following.
One starts from some approximate estimation A0ðsÞ real in
the physical region and therefore not unitary. Then one
defines the K matrix unitarized partial wave,
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approximate real partial wave 
(typically tree level result)  

AK
0 ðsÞ ¼

A0ðsÞ
1 − iA0ðsÞ

: ð82Þ

Clearly, unitarity is satisfied again in the physical region,

Im AK
0 ¼ jAK

0 j2 ¼
A2
0

1þ A2
0

: ð83Þ

However, it is very important to stress that this K matrix
partial wave is not analytical (in the first Riemann sheet),
and consequently it is not a proper partial wave AðsÞ
compatible with microcausality. For example, even if A0ðsÞ
has a LC, the corresponding AKðsÞ does not show any RC,
and then it cannot define a second Riemann sheet. Most of
the criticisms on the unitarization methods appearing in the
literature are based in the fact that some of them (for
example, the IAM or the N/D) can produce resonances
(poles in the second Riemann sheet) but others (typically
the K matrix) cannot. However, it is obvious, from the
discussion above, that a discrepancy is coming from the
limitations (lack of proper analytic structure) of the K
matrix. The AK

0 ðsÞ partial wave is defined only in the
physical region and cannot be extended to the whole
complex plane.
So we insist here that this naive K matrix has no RC,

it cannot be extended to the second Riemann sheet, and
therefore it cannot produce poles that could be understood
as resonances. However, from our experience in unitariza-
tion methods in hadron physics, we know that such poles
frequently appear and describe well-known hadronic res-
onances [22,35]. The original K matrix method cannot
reproduce these hadronic resonances and should be con-
sidered as less appropriate than other methods that are, not
only unitary, but also analytical, as it is the case of the IAM
or N/D methods.
Nevertheless the K matrix method can be improved as

follows: we can introduce the analytical function

gðsÞ ¼ 1

π

!
Cþ log

−s
μ2

"
; ð84Þ

where C is an arbitrary constant and μ is also an arbitrary
scale. One interesting possibility is to define C as in
Eq. (54) so that gðsÞ becomes μ independent (which is
the one wewill be using in the rest of the paper). In any case
this function is analytical in the whole complex plane but
for a RC. In the physical region on this RC we have

gðsÞ ¼ 1

π

!
Cþ log

s
μ2

− iπ
"
; ð85Þ

and thus its imaginary part is simply

Im gðsÞ ¼ −1: ð86Þ

Therefore it is tempting to perform the formal substitution:
−i → gðsÞ in the K matrix method to get what we will call
the “improved K matrix” (IK) amplitude,

AIKðsÞ ¼ A0ðsÞ
1þ gðsÞA0ðsÞ

: ð87Þ

This new amplitude is not only unitary but also analytical
on the whole complex plane but for a RC that allows for
analytical continuation to the second Riemann sheet,
making possible the existence of poles as in the IAM or
N/D methods. To apply this improved K matrix method to
our ωω amplitudes, we can start by taking A0ðsÞ ¼ Að0ÞðsÞ
to get

AIKðsÞ ¼ Að0ÞðsÞ
1þ gðsÞAð0ÞðsÞ

: ð88Þ

Interestingly enough this amplitude may also be obtained
from the twice-subtracted N/D method by setting in
Eq. (50)

h1 ¼ h1ðμÞ ¼
BðμÞK

πðDþ EÞ
: ð89Þ

A more accurate result can be obtained by defining
A0ðsÞ ¼ Að0ÞðsÞ þ ALðsÞ which leads to

AIKðsÞ ¼ Að0ÞðsÞ þ ALðsÞ
1þ gðsÞ½Að0ÞðsÞ þ ALðsÞ&

ð90Þ

or

AIKðsÞ ¼ Að0ÞðsÞ þ ALðsÞ
1 − ARðsÞ

Að0Þ − ALðsÞARðsÞ
ðAð0ÞÞ2

: ð91Þ

This amplitude has the proper analytical behavior, is
unitary, and reproduces the NLO result up to order s2

since ARðsÞ ¼ −gðsÞðAð0ÞÞ2.
In addition, this improved K matrix method can also be

extended to the coupled-channel case, simply taking

FIKðsÞ ¼ ð1þGN0Þ−1N0; ð92Þ

where again

N0ðsÞ ¼ Fð0ÞðsÞ þ FLðsÞ ð93Þ

and G is defined in Eq. (65).

B. The large-N method

Finally another interesting way to improve the
unitarity behavior of the amplitudes is the so-called
large-N limit. It is based on the observation that our coset
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unitary, and reproduces the NLO result up to order s2

since ARðsÞ ¼ −gðsÞðAð0ÞÞ2.
In addition, this improved K matrix method can also be

extended to the coupled-channel case, simply taking

FIKðsÞ ¼ ð1þGN0Þ−1N0; ð92Þ

where again

N0ðsÞ ¼ Fð0ÞðsÞ þ FLðsÞ ð93Þ

and G is defined in Eq. (65).

B. The large-N method

Finally another interesting way to improve the
unitarity behavior of the amplitudes is the so-called
large-N limit. It is based on the observation that our coset
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AK
0 ðsÞ ¼

A0ðsÞ
1 − iA0ðsÞ

: ð82Þ

Clearly, unitarity is satisfied again in the physical region,

Im AK
0 ¼ jAK

0 j2 ¼
A2
0

1þ A2
0

: ð83Þ

However, it is very important to stress that this K matrix
partial wave is not analytical (in the first Riemann sheet),
and consequently it is not a proper partial wave AðsÞ
compatible with microcausality. For example, even if A0ðsÞ
has a LC, the corresponding AKðsÞ does not show any RC,
and then it cannot define a second Riemann sheet. Most of
the criticisms on the unitarization methods appearing in the
literature are based in the fact that some of them (for
example, the IAM or the N/D) can produce resonances
(poles in the second Riemann sheet) but others (typically
the K matrix) cannot. However, it is obvious, from the
discussion above, that a discrepancy is coming from the
limitations (lack of proper analytic structure) of the K
matrix. The AK

0 ðsÞ partial wave is defined only in the
physical region and cannot be extended to the whole
complex plane.
So we insist here that this naive K matrix has no RC,

it cannot be extended to the second Riemann sheet, and
therefore it cannot produce poles that could be understood
as resonances. However, from our experience in unitariza-
tion methods in hadron physics, we know that such poles
frequently appear and describe well-known hadronic res-
onances [22,35]. The original K matrix method cannot
reproduce these hadronic resonances and should be con-
sidered as less appropriate than other methods that are, not
only unitary, but also analytical, as it is the case of the IAM
or N/D methods.
Nevertheless the K matrix method can be improved as

follows: we can introduce the analytical function

gðsÞ ¼ 1

π

!
Cþ log

−s
μ2

"
; ð84Þ

where C is an arbitrary constant and μ is also an arbitrary
scale. One interesting possibility is to define C as in
Eq. (54) so that gðsÞ becomes μ independent (which is
the one wewill be using in the rest of the paper). In any case
this function is analytical in the whole complex plane but
for a RC. In the physical region on this RC we have

gðsÞ ¼ 1

π

!
Cþ log

s
μ2

− iπ
"
; ð85Þ

and thus its imaginary part is simply

Im gðsÞ ¼ −1: ð86Þ

Therefore it is tempting to perform the formal substitution:
−i → gðsÞ in the K matrix method to get what we will call
the “improved K matrix” (IK) amplitude,

AIKðsÞ ¼ A0ðsÞ
1þ gðsÞA0ðsÞ

: ð87Þ

This new amplitude is not only unitary but also analytical
on the whole complex plane but for a RC that allows for
analytical continuation to the second Riemann sheet,
making possible the existence of poles as in the IAM or
N/D methods. To apply this improved K matrix method to
our ωω amplitudes, we can start by taking A0ðsÞ ¼ Að0ÞðsÞ
to get

AIKðsÞ ¼ Að0ÞðsÞ
1þ gðsÞAð0ÞðsÞ

: ð88Þ

Interestingly enough this amplitude may also be obtained
from the twice-subtracted N/D method by setting in
Eq. (50)

h1 ¼ h1ðμÞ ¼
BðμÞK

πðDþ EÞ
: ð89Þ

A more accurate result can be obtained by defining
A0ðsÞ ¼ Að0ÞðsÞ þ ALðsÞ which leads to

AIKðsÞ ¼ Að0ÞðsÞ þ ALðsÞ
1þ gðsÞ½Að0ÞðsÞ þ ALðsÞ&
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or
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unitary, and reproduces the NLO result up to order s2

since ARðsÞ ¼ −gðsÞðAð0ÞÞ2.
In addition, this improved K matrix method can also be

extended to the coupled-channel case, simply taking
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and G is defined in Eq. (65).

B. The large-N method

Finally another interesting way to improve the
unitarity behavior of the amplitudes is the so-called
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yields E ¼ −D. In all other circumstances the denominator
is finite and does not give any problems.
It is illustrative to express AL and AR in terms of an

auxiliary “loop” function

gðsÞ ¼ 1

π

!
BðμÞ
Dþ E

þ log
−s
μ2

"
: ð54Þ

This function, as the notation suggests, is μ independent
(as is easily checked). Furthermore, it is analytical on the
whole complex plane but for a RC. On this RC (i.e., for
s ¼ E2 þ iϵ) we have Im gðsÞ ¼ −1. Then,

ALðsÞ ¼ πgð−sÞDs2;

ARðsÞ ¼ πgðsÞEs2; ð55Þ

so that perturbatively

AðsÞ¼Að0ÞðsÞþALðsÞ− ½Að0ÞðsÞ&2gðsÞþOðs3Þ: ð56Þ

We have now the ingredients to apply the N/D method to
the NLO computation: the useful starting point is the
function

N0ðsÞ≡ Að0ÞðsÞ þ ALðsÞ: ð57Þ

Notice that this function contains the LC and information
about the chiral parameters, and additionally it is μ
independent.
The inconvenience now is that the UV behavior of the

integral for D0ðsÞ in Eq. (48) is even worse than with the
tree-level ansatz, since a term s2 is included in N0. To
obtain a UV-finite integral three subtractions are required,
at the prize of a chiral coupling of order s3 (see
Appendix C). Thus we can write

D0ðsÞ ¼ 1þ h1sþ h2s2 − s3

π

Z
∞

0

ds0½Að0ÞðsÞ þ ALðsÞ&
s03ðs0 − s − iϵÞ

:

ð58Þ

As further shown in Appendix C, the N/D partial wave in
this approximation can be written as

AðsÞ≃ AN=DðsÞ ¼ N0ðsÞ
D0ðsÞ

; ð59Þ

D0ðsÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

þ π
2
½ðgðsÞ&2Ds2: ð60Þ

By using the ALðsÞ and ARðsÞ definitions in Eq. (53) this
denominator can also be written as

D0ðsÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

þ 1

2
gðsÞ

ALð−sÞ ¼ 1 − ARðsÞ
Að0ÞðsÞ

− ALð−sÞARðsÞ
2ðAð0ÞÞ2

: ð61Þ

This amplitude in Eqs. (57), (59), and (61) has many
interesting properties. First it is UV finite, the IR diver-
gences have been removed, and it is μ independent. Second,
it has the right analytical structure, and it satisfies elastic
unitarity exactly,

ImAN=DðsÞ ¼ jAN=DðsÞj2 ð62Þ

on the RC. Finally it is compatible with the NLO
computation up to order s2 since

AN=DðsÞ ¼ Að0ÞðsÞ þ Að1ÞðsÞ þOðs3Þ: ð63Þ

All these properties are shared with the inverse
amplitude method. In Eq. (94) below we show that this
amplitude converges to the IAM amplitude when-
ever AL ≪ Að0Þ.

B. Coupled ωω − hh channels

Just as for the IAM, it is possible to generalize the N/D
method to the multichannel case needed for the I ¼ 0
(J ¼ 0; 2) cases where the ωω state couples to the hh
channel. Following [40] we introduce two matrices, a
numerator one N and a denominator D, so that

FðsÞ ¼ ½DðsÞ&−1NðsÞ: ð64Þ

To generalize our previous result for the single channel
case, we start again from the perturbative expansion at
NLO, Eq. (44), Again the μ evolution of BðμÞ is given by
Eq. (16), now a matrix equation.
Thus we can introduce the μ-independent matrix

GðsÞ ¼ 1

π

!
BðμÞðDþ EÞ−1 þ log

−s
μ2

"
ð65Þ

and the (also μ-invariant) left and right matrices

FLðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

s
μ2

"
Ds2

¼ πGð−sÞDs2; ð66Þ

FRðsÞ ¼
!
BðμÞðDþ EÞ−1 þ log

−s
μ2

"
Es2

¼ πGðsÞEs2: ð67Þ

On the RC cut perturbative unitarity reads
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Summary of the various unitarization methods  (IAM, N/D and IK matrix) 

All the partial waves are: 
•  IR, UV finite and µ independent 
•  Unitary  
•  Right low energy limit matching the effective theory 
•  Proper analytical structure (cuts and poles) 
•  The poles in the second Riemann sheet can be 

understood as dynamically generated resonances 
•  Admit extensions for coupled channels 
•  (hh, γγ, or   t anti t) 

space for the EWSBS is SUð2ÞL × SUð2ÞR=SUð2ÞLþR ¼
SOð4Þ=SOð3Þ ¼ S3. This suggests considering a generali-
zation to SOðN þ 1Þ=SOðNÞ ¼ SN and computing the
WBGB scattering amplitudes in the nonperturbative
large-N limit. These amplitudes were studied in detail in
[41] for the case of the minimal SM, and one of their main
properties is their unitarity up to NLO corrections in the
1=N expansion.
However, there is a limitation to the 1=N expansion as

applied as a unitarization method: all channels happen to be
1=N suppressed with respect to the IJ ¼ 00. Therefore this
approximation is not appropriate to describe models in
which other channels could be relevant, for example, those
showing vector-meson dominance (such as composite
Higgs bosons with low-energy W0 and Z0 resonances).
Thus we will not consider this approach here, but we have
shown an example of its use in [18].

C. Summary of the various unitarization methods

It has now become clear that of the several unitarization
methods considered above, three stand out as acceptable:
the IAM in Sec. III, the version of the N/D method obtained
here in Sec. IV, and the IK method from Sec. VA. Let us
gather their expressions for the elastic channels, writing
them all in terms of Að0Þ, AL, AR from Eq. (53) and gðsÞ
from Eq. (54), for easy comparison:

AIAMðsÞ ¼ ½Að0ÞðsÞ&2

Að0ÞðsÞ − Að1ÞðsÞ

¼ Að0ÞðsÞ þ ALðsÞ
1 − ARðsÞ

Að0ÞðsÞ − ð ALðsÞ
Að0ÞðsÞÞ

2 þ gðsÞALðsÞ
;

AN=DðsÞ ¼ Að0ÞðsÞ þ ALðsÞ
1 − ARðsÞ

Að0ÞðsÞ þ
1
2 gðsÞALð−sÞ

;

AIKðsÞ ¼ Að0ÞðsÞ þ ALðsÞ
1 − ARðsÞ

Að0ÞðsÞ þ gðsÞALðsÞ
: ð94Þ

All three amplitudes are IR and UV finite, are μ indepen-
dent, are unitary, have the proper analytical structure, can
be generalized to the coupled-channel case [see the
corresponding formulas in Eqs. (45), (71), and (92)],
and reproduce the NLO predictions of EWChPT. This
attribute means that they differ from each other only at
Oðs3Þ,

ANLOðsÞ ¼ A0ðsÞ þ Að1ÞðsÞ ¼ AIAMðsÞ þOðs3Þ

¼ AN=DðsÞ þOðs3Þ ¼ AIKðsÞ þOðs3Þ: ð95Þ

Thus these three unitarization methods each provide a
consistent UV completion of the low-energy chiral ampli-
tudes. Unfortunately, as energy grows, their predictions will
start differing. Then, which of them is a better description

of reality? In principle all of them are consistent but their
domain of applicability will be different.
First notice that the IAM method is the only one that

does not really require the splitting of Að1Þ into AL and
AR [or the use of the gðsÞ or GðsÞ function]. This
splitting is in fact in some way arbitrary, since we
can always add and subtract a quadratic term Cs2 to AL
and AR, respectively, without changing their fundamen-
tal properties. Notice also that the splitting is not
possible at all whenever DþE¼ 0 (as in the I¼ J¼ 1
channel for the particular parameter choice a ¼ b) and
the N/D and IK methods cannot be constructed for that
case. Hence, for the vector-isovector channel, the IAM is
most appropriate. Since for Dþ E small, AL ∼ AR, the
three methods are not expected to be equivalent, and we
see that there are sound theoretical reasons to choose the
IAM over the other two.
Conversely the IAM method cannot be applied in the

cases where K ¼ E ¼ 0 which happens in the J ¼ 2
channels (because they start at NLO in the effective theory,
so K ¼ 0, and then perturbative unitarity forces E ¼ K2

that also vanishes). In that case the IAM is not usable, and
the N/D method comes to the fore.
In Sec. VI we will provide numerical results for the

various situations to illustrate how the three unitarization
methods work in the different channels and to try a
comparison when all are applicable. For a brief summary,
see Table I.

D. Resonances

As already mentioned, one of the more interesting
properties of the IAM, N/D, and IK partial waves is the
possibility of finding poles in the second Riemann sheet
under the real axis. This interest arises because these poles
have the simple dynamical resonances we can use, at least
when they lie close enough to the real axis in the complex
s plane.
For the amplitudes considered here the nontrivial

analytical behavior is coming exclusively from the logs
which are defined in the first Riemann sheet as usual
[logðzÞ ¼ logðjzjÞ þ i argðzÞ with the argðzÞ cut lying
along the negative real axis]. To find a pole in the second
Riemann sheet, an option is to extend all the logarithms to
it, through the simple equation

logIIð−zÞ ¼ logðjzjÞ þ i½argðzÞ − π& ð96Þ

TABLE I. Unitarization methods usable in each IJ channel. See
Sec. VI.

IJ 00 02 11 20 22

Method of choice Any N/D IK IAM Any N/D IK
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But: 
•  They have different contributions from the LC 
•  They can be different at high energies 
•  N/D and IK requires R/L splitting not possible when 
      D + E = 0. This is the  case of the vector channel when a2 = b (QCD like models). 
•  IAM is not defined for K = E  = 0. (J = 2). 
 
Whenever E + D is not close to 0,  AL <<  AR   and the three methods produce similar results. 
IAM can be applied in this case too so  it becomes the method of choice provided K is different  
from zero  
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The IAM, N/D and IIK produce similar resuls qualitatively and 
 in many times also quantitatively, at least in the scalar channels  
 
This is not the case of the naive K matrix because it is not analitical 
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VI. Resonances 



Strongly interacting systems are expected to have resonances! 
 
They can be included explicitly in the effective theory 
 (Ecker, Gasser, Pich, de Rafael) 

 
 
 

assuming dominance of the first resonance 

For QCD this approximation works very well phenomenologically 
 
Thus the chiral parameters carry information about the resonances (mass, width and coupling) 
 
Therefore one could try another approach. By unitarizating the effective theory results to higher 
energies in a way compatible with unitarity and analiticity, one can obtain amplitudes which may 
show poles in the second Riemann sheet. Those poles can be understood as dinamically generated 
Resonances. Their location and residues (mass, width and coupling) are a function of the low-energy 
couplings. 
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dynamically generated resonances, is relatated with the resonance 
parameters as:   
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M = M(a, b, a4(µ), a4(µ), d(µ), e(µ), g(µ);µ) (102)
� = �(a, b, a4(µ), a5(µ), d(µ), e(µ), g(µ);µ).

These functions trivially fulfill the observable renormalization group equations

dM

dµ
=

@M

@µ
+

@M

@a4

da4
dµ

+

@M

@a5

da5
dµ

+ ... = 0 (103)

d�

dµ
=

@�

@µ
+

@�

@a4

da4
dµ

+

@�

@a5

da5
dµ

+ ... = 0.

If we set a scale and fix the chiral couplings at that scale µ0, so that a4 = a4(µ0), a5 = a5(µ0), ..., the resonance
position becomes a function of the chiral couplings evaluated at this scale only,

M = M(a, b, a4, a4, d, e, g) (104)
� = �(a, b, a4, a5, d, e, g) .

When there is channel coupling, the amplitude matrix elements Fij(s) correspond to different reactions having the
same quantum numbers IJ . Obviously if there is a resonance at some point sR in any of them, it should appear also
at the same point in the rest of the matrix elements. In other words, the Fij(s) are all different as analytical functions
but all of them have the same resonances at the same points since physically these resonances can be produced in any
of the j ! i reactions.

This property is guaranteed for the three unitarization methods now at hand. This is because in all of them we
need to invert some matrix. Thus the unitarized amplitudes Fij(s) for some given I and J contain always a common
denominator which is a determinant depending on the unitarization method. The roots of this determinant in the
second Riemann sheet will define the pole position for all the different processes simultaneously.

Once we have obtained the unitarized amplitude Fij(s) by using some coupled unitarization method, and extended
it to the corresponding second Riemann sheet F II

ij (s), we can find the position of any pole (resonance) in the quadrant
below the physical region. In the next sections we will study numerically the different channels as a function of the a
and b parameters and the renormalized chiral couplings for the three unitarization methods considered here and we
will compare the results obtained.

E. Spurious resonances

In addition to the bona-fide resonances in the second Riemann sheet, for certain sets of parameters a given unita-
rization method can yield a pole in the complex s plane that lies on the first Riemann sheet. As recalled below in
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All three amplitudes are IR and UV finite, µ independent, unitary, have the proper analytical structure, can be
generalized to the coupled-channel case [see the corresponding formulae in Eqs. (45), (71) and (92)] and they reproduce
the NLO predictions of EWChPT. This attribute means that they differ from each other only at O(s3),

ANLO
(s) = A0

(s) +A(1)
(s) = AIAM

(s) +O(s3) = AN/D
(s) +O(s3) = AIK

(s) +O(s3) . (95)

Thus these three unitarization methods each provide a consistent UV completion of the low energy chiral amplitudes.
Unfortunately, as energy grows their predictions will start differing. Then, which of them is a better description of
reality? In principle all of them are consistent but their domain of applicability will be different.

First notice that the IAM method is the only one that does not really require the splitting of A(1) into AL and AR

(or the use of the g(s) or G(s) function). This splitting is in fact in some way arbitrary, since we can always add and
subtract a quadratic term Cs2 to AL and AR respectively without changing their fundamental properties. Notice also
that the splitting is not possible at all whenever D+E = 0 (as in the I = J = 1 channel for the particular parameter
choice a = b) and the N/D and IK methods cannot be constructed for that case. Hence, for the vector-isovector
channel, the IAM is most appropriate. Since for D + E small, AL ⇠ AR, the three methods are not expected to be
equivalent, and we see that there are sound theoretical reasons to choose the IAM over the other two.

Conversely the IAM method cannot be applied in the cases where K = E = 0 which happens in the J = 2 channels
(because they start at NLO in the effective theory, so K = 0, and then perturbative unitarity forces E = K2 that
also vanishes). In that case the IAM is not usable and the N/D method comes to the fore.

In section VI we will provide numerical results for the various situations to illustrate how the three unitarization
methods work in the different channels and to try a comparison when all are applicable. For a brief summary, see
table I.

IJ 00 02 11 20 22

Method
of

choice
Any N/D

IK IAM Any N/D
IK

TABLE I: Unitarization methods usable in each IJ channel. See section VI.

D. Resonances

As already mentioned, one of the more interesting properties of the IAM, N/D and IK partial waves is the possibility
of finding poles in the second Riemann sheet under the real axis. This interest arises because these poles have the
we can use the simple of dynamical resonances, at least when they lie close enough to the real axis in the complex s
plane.

For the amplitudes considered here the non trivial analytical behavior is coming exclusively from the logs which are
defined in the first Riemann sheet as usual (log(z) = log(|z|) + i arg(z) with the arg(z) cut lying along the negative
real axis). To find a pole in the second Riemann sheet, an option is to extend all the logarithms to it, through the
simple equation

log

II
(�z) = log(|z|) + i[arg(z)� ⇡] (96)

and then find zeroes of the denominators of the amplitudes AII or F II for coupled channels. This is the strategy that
we followed in [18].

An alternative is to observe that given some analytical elastic amplitude A(s) = AI
(s) representing the physical

(first) Riemann sheet, the second Riemann sheet in the quadrant under the physical region can be obtained as (see
for example [41]):

AII
(s) =

A(s)

1� 2iA(s)
. (97)

Therefore resonances under the real, physical s axis (the right cut) are located at points sR solving the resonance
equation

A(sR) +
i

2

= 0 (98)
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so that the extension of the logarithms is unnecessary.
The mass M and width � > 0 of the resonance can be extracted from its position, sR = M2 � i�M . Equivalently

we have sR = |sR|e�i✓ with ✓ > 0 and tan ✓ = � = �/M . The resonance equation (98) obviously takes a different
form for each of the unitarization methods, which we now show in turn. For the IAM method,

A(0)
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(sR)� 2i[A(0)
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2
= 0 (99)

whilst for the N/D method we find
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These resonance equations are all µ independent through cancellation of their explicit and implicit (through the
renormalized chiral parameters) dependence on µ. As expected they are different, but decreasingly so in the limit
AL(sR) ⌧ 1, since A(1)

(sR) = AR(sR) +AL(sR).
If we find a solution sR for some given channel IJ and some given unitarization method X = IAM, N/D, IK in

the appropriate region M,� > 0 this solution will be a µ invariant function of the a, b and the renormalized chiral
parameters, i.e.

M = M(a, b, a4(µ), a4(µ), d(µ), e(µ), g(µ);µ) (102)
� = �(a, b, a4(µ), a5(µ), d(µ), e(µ), g(µ);µ).

These functions trivially fulfill the observable renormalization group equations
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If we set a scale and fix the chiral couplings at that scale µ0, so that a4 = a4(µ0), a5 = a5(µ0), ..., the resonance
position becomes a function of the chiral couplings evaluated at this scale only,

M = M(a, b, a4, a4, d, e, g) (104)
� = �(a, b, a4, a5, d, e, g) .

When there is channel coupling, the amplitude matrix elements Fij(s) correspond to different reactions having the
same quantum numbers IJ . Obviously if there is a resonance at some point sR in any of them, it should appear also
at the same point in the rest of the matrix elements. In other words, the Fij(s) are all different as analytical functions
but all of them have the same resonances at the same points since physically these resonances can be produced in any
of the j ! i reactions.

This property is guaranteed for the three unitarization methods now at hand. This is because in all of them we
need to invert some matrix. Thus the unitarized amplitudes Fij(s) for some given I and J contain always a common
denominator which is a determinant depending on the unitarization method. The roots of this determinant in the
second Riemann sheet will define the pole position for all the different processes simultaneously.

Once we have obtained the unitarized amplitude Fij(s) by using some coupled unitarization method, and extended
it to the corresponding second Riemann sheet F II

ij (s), we can find the position of any pole (resonance) in the quadrant
below the physical region. In the next sections we will study numerically the different channels as a function of the a
and b parameters and the renormalized chiral couplings for the three unitarization methods considered here and we
will compare the results obtained.

E. Spurious resonances

In addition to the bona-fide resonances in the second Riemann sheet, for certain sets of parameters a given unita-
rization method can yield a pole in the complex s plane that lies on the first Riemann sheet. As recalled below in
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we have sR = |sR|e�i✓ with ✓ > 0 and tan ✓ = � = �/M . The resonance equation (98) obviously takes a different
form for each of the unitarization methods, which we now show in turn. For the IAM method,

A(0)
(sR)�A(1)

(sR)� 2i[A(0)
(sR)]

2
= 0 (99)

whilst for the N/D method we find

A(0)
(sR)�AR(sR) +

1

2

g(sR)A
(0)

(sR)AL(�sR)� 2iA(0)
(sR)[A

(0)
(sR) +AL(sR)] = 0 (100)

and for the IK method,

A(0)
(sR)�AR(sR) + g(sR)A

(0)
(sR)AL(sR)� 2iA(0)

(sR)[A
(0)

(sR) +AL(sR)] = 0. (101)

These resonance equations are all µ independent through cancellation of their explicit and implicit (through the
renormalized chiral parameters) dependence on µ. As expected they are different, but decreasingly so in the limit
AL(sR) ⌧ 1, since A(1)

(sR) = AR(sR) +AL(sR).
If we find a solution sR for some given channel IJ and some given unitarization method X = IAM, N/D, IK in

the appropriate region M,� > 0 this solution will be a µ invariant function of the a, b and the renormalized chiral
parameters, i.e.

M = M(a, b, a4(µ), a4(µ), d(µ), e(µ), g(µ);µ) (102)
� = �(a, b, a4(µ), a5(µ), d(µ), e(µ), g(µ);µ).

These functions trivially fulfill the observable renormalization group equations
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If we set a scale and fix the chiral couplings at that scale µ0, so that a4 = a4(µ0), a5 = a5(µ0), ..., the resonance
position becomes a function of the chiral couplings evaluated at this scale only,

M = M(a, b, a4, a4, d, e, g) (104)
� = �(a, b, a4, a5, d, e, g) .

When there is channel coupling, the amplitude matrix elements Fij(s) correspond to different reactions having the
same quantum numbers IJ . Obviously if there is a resonance at some point sR in any of them, it should appear also
at the same point in the rest of the matrix elements. In other words, the Fij(s) are all different as analytical functions
but all of them have the same resonances at the same points since physically these resonances can be produced in any
of the j ! i reactions.

This property is guaranteed for the three unitarization methods now at hand. This is because in all of them we
need to invert some matrix. Thus the unitarized amplitudes Fij(s) for some given I and J contain always a common
denominator which is a determinant depending on the unitarization method. The roots of this determinant in the
second Riemann sheet will define the pole position for all the different processes simultaneously.

Once we have obtained the unitarized amplitude Fij(s) by using some coupled unitarization method, and extended
it to the corresponding second Riemann sheet F II

ij (s), we can find the position of any pole (resonance) in the quadrant
below the physical region. In the next sections we will study numerically the different channels as a function of the a
and b parameters and the renormalized chiral couplings for the three unitarization methods considered here and we
will compare the results obtained.

E. Spurious resonances

In addition to the bona-fide resonances in the second Riemann sheet, for certain sets of parameters a given unita-
rization method can yield a pole in the complex s plane that lies on the first Riemann sheet. As recalled below in

74 R e s o n a n ce s

We have to find means to extend – to co n t in u e – our knowledge of the
amplitude ‘u n d e r t he cu t ’. It is clear that perturbation theory would be
of no help here. Nevertheless, there is a way to get under the cut.

Let us recall the unitarity condition:

− = i �

A(s + iϵ, t) −A(s− iϵ, t) = i

∫
d4k

(2π)2
δ
(
m2

3 − k2
)
δ
(
m2

4 − (p1 + p2 − k)2
)

·A(p1, p2, k)A∗(p5, p6, k). (3.1)

Since each of the block amplitudes A, A∗ depends in fact on two invariants,
it is convenient to rewrite the integral in terms of the Lorentz invariant
momentum transfers,

A(s + iϵ, t) − A(s− iϵ, t)

=
∫ ∫

dt1 dt2K(s, t1, t2) ·A(s + iϵ, t1)A(s− iϵ, t2), (3.2)

where we have introduced K as the corresponding Jacobian transforma-
tion factor.

Now take A(s− iϵ) to the r.h.s. and try to look upon (3.2) as an integral
equation for A(s + iϵ, t) with the kernel

∫
dt2K(s, t1, t2)A(s− iϵ, t2) and

an inhomogeneity A(s− iϵ, t). Imagine that we learned how to calculate
the integrals and managed to solve the equation. What would have been
the gain? We would have expressed the analytic function on the u p p e r
side of the cut, A(+), in terms of that on the l o w e r side of the cut:

A(s + iϵ) = F (A(s− iϵ))
+

−A

A
(3.3)

Till now we kept s real and used iϵ to separate the points at the two
sides of the cut. Let us now give an imaginary part to s itself, a negative
one to be definite. Then the argument of A(s− iϵ) would simply move
onto the lower half-plane of the physical sheet, while the ‘upper’ function
A(s + iϵ) whose argument is tightly linked with that of A(s− iϵ), will
cross the cut and occur on the lower half-plane too, but on another –
u n p hys ica l – sheet!

Under such continuation the relation (3.3) has acquired a new mean-
ing: the value of the amplitude at a given point on the unphysical sheet is

74 R e s o n a n ce s

We have to find means to extend – to co n t in u e – our knowledge of the
amplitude ‘u n d e r t he cu t ’. It is clear that perturbation theory would be
of no help here. Nevertheless, there is a way to get under the cut.

Let us recall the unitarity condition:

− = i �

A(s + iϵ, t) −A(s− iϵ, t) = i

∫
d4k

(2π)2
δ
(
m2

3 − k2
)
δ
(
m2

4 − (p1 + p2 − k)2
)

·A(p1, p2, k)A∗(p5, p6, k). (3.1)

Since each of the block amplitudes A, A∗ depends in fact on two invariants,
it is convenient to rewrite the integral in terms of the Lorentz invariant
momentum transfers,

A(s + iϵ, t) − A(s− iϵ, t)

=
∫ ∫

dt1 dt2K(s, t1, t2) ·A(s + iϵ, t1)A(s− iϵ, t2), (3.2)

where we have introduced K as the corresponding Jacobian transforma-
tion factor.

Now take A(s− iϵ) to the r.h.s. and try to look upon (3.2) as an integral
equation for A(s + iϵ, t) with the kernel

∫
dt2K(s, t1, t2)A(s− iϵ, t2) and

an inhomogeneity A(s− iϵ, t). Imagine that we learned how to calculate
the integrals and managed to solve the equation. What would have been
the gain? We would have expressed the analytic function on the u p p e r
side of the cut, A(+), in terms of that on the l o w e r side of the cut:

A(s + iϵ) = F (A(s− iϵ))
+

−A

A
(3.3)

Till now we kept s real and used iϵ to separate the points at the two
sides of the cut. Let us now give an imaginary part to s itself, a negative
one to be definite. Then the argument of A(s− iϵ) would simply move
onto the lower half-plane of the physical sheet, while the ‘upper’ function
A(s + iϵ) whose argument is tightly linked with that of A(s− iϵ), will
cross the cut and occur on the lower half-plane too, but on another –
u n p hys ica l – sheet!

Under such continuation the relation (3.3) has acquired a new mean-
ing: the value of the amplitude at a given point on the unphysical sheet is

By using the Schwarz reflexion principle 

IAM 

Gribov 





! 



Resonance spectrum (elastic case) 

Espriu, Yencho, Mescia  

a = b = 1 

a = 0.9 ; b=a2 



Narrow resonances:  

Amplitude phase ishift in the physical region 

Mass  

Width  
IAM 

17

so that the extension of the logarithms is unnecessary.
The mass M and width � > 0 of the resonance can be extracted from its position, sR = M2 � i�M . Equivalently

we have sR = |sR|e�i✓ with ✓ > 0 and tan ✓ = � = �/M . The resonance equation (98) obviously takes a different
form for each of the unitarization methods, which we now show in turn. For the IAM method,
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These resonance equations are all µ independent through cancellation of their explicit and implicit (through the
renormalized chiral parameters) dependence on µ. As expected they are different, but decreasingly so in the limit
AL(sR) ⌧ 1, since A(1)

(sR) = AR(sR) +AL(sR).
If we find a solution sR for some given channel IJ and some given unitarization method X = IAM, N/D, IK in

the appropriate region M,� > 0 this solution will be a µ invariant function of the a, b and the renormalized chiral
parameters, i.e.

M = M(a, b, a4(µ), a4(µ), d(µ), e(µ), g(µ);µ) (102)
� = �(a, b, a4(µ), a5(µ), d(µ), e(µ), g(µ);µ).
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If we set a scale and fix the chiral couplings at that scale µ0, so that a4 = a4(µ0), a5 = a5(µ0), ..., the resonance
position becomes a function of the chiral couplings evaluated at this scale only,
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same quantum numbers IJ . Obviously if there is a resonance at some point sR in any of them, it should appear also
at the same point in the rest of the matrix elements. In other words, the Fij(s) are all different as analytical functions
but all of them have the same resonances at the same points since physically these resonances can be produced in any
of the j ! i reactions.

This property is guaranteed for the three unitarization methods now at hand. This is because in all of them we
need to invert some matrix. Thus the unitarized amplitudes Fij(s) for some given I and J contain always a common
denominator which is a determinant depending on the unitarization method. The roots of this determinant in the
second Riemann sheet will define the pole position for all the different processes simultaneously.

Once we have obtained the unitarized amplitude Fij(s) by using some coupled unitarization method, and extended
it to the corresponding second Riemann sheet F II

ij (s), we can find the position of any pole (resonance) in the quadrant
below the physical region. In the next sections we will study numerically the different channels as a function of the a
and b parameters and the renormalized chiral couplings for the three unitarization methods considered here and we
will compare the results obtained.

E. Spurious resonances

In addition to the bona-fide resonances in the second Riemann sheet, for certain sets of parameters a given unita-
rization method can yield a pole in the complex s plane that lies on the first Riemann sheet. As recalled below in



Scalar resonances I = J = 0 

Vector resonances I = J = 1 

Isotensor resonances I = 2, J = 0 

Mass and width of different resonances in terms of the couplings a, b, a4 and a5  



Curvature of the GB space and resonances: 
Maximally symmetric spaces (constant curvature): 

SM, flat space:  

MCHM, M = S4  (positive curvature):  

Hyperbolic, M = H4  (negative curvature):  

curvature 

low energy theorem 
broad scalar resonance I = 0, J = 0 
(enhanced ZZ and W+ W- production)   

broad isotensor resonance I = 2, J = 0 
(enhanced  W+W+ production)   
  

ghost 

uper bound 

low energy theorem 

curvature 



VV and Vh scattering at the LHC:  

In addition we have the process:  

with
gW =

α

4π sin θ2W
, gZ =

α[1 + (1− 4 sin θ2W )2]

16π sin θ2W cos θ2W
, (4)

α being the fine-structure constant and θW the Weinberg angle. The δ-function δ(s − x+x−E2
tot) can

be easily obtained from s = (p1 + p2)2, p1 = x+pe+ , p2 = x−pe− and E2
tot = (pe+ + pe−)

2 in the
center-of-mass frame and neglecting the lepton masses.

Noticing that x± are the lepton momentum fractions carried by the initial vector bosons under the
effectiveW approximation, and they do not appear in the vector-vector scattering cross section σ̂ for
fixed s, one can factorize the cross section σ̂ outside the integrations over x+ and x−.

We may then perform the integrations over the energy fractions analytically. Once the x− inte-
gration has been carried out thanks to the δ-function, the lower limit of the x+ integration becomes
x+ ≥ r with r defined as r ≡ s/E2

tot , and we obtain a simple closed formula in terms of the ratio r,

dσ

ds
=

2

s
g1g2 [2(r − 1)− (r + 1) log r] σ̂(s), (5)

where the product g1g2 is equal to g2W (g2Z) if the initial vector mesons areWLWL(ZLZL) and gW gZ
if they are WLZL. When s → E2

tot, r → 1, we obtain a strong end-point suppression (because it
is unlikely that the vector boson takes a large momentum fraction of the lepton). Moreover vector
bosons at high energy are nearly transversely polarized because of the strong Lorentz contraction.

The boson-boson cross section σ̂ can be calculated using standard formula for 2 → 2 cross sec-
tions given the scattering amplitude A. It is convenient to obtain it in the center-of-mass frame of the
vector boson pair,

d σ̂

d cos θ
=

S

32πs
|A(s, cos θ)|2 , (6)

where θ is the scattering angle. Then we convert it to a (longitudinal) reference-frame invariant cross
section via the Mandelstam variables as cos θ = 1+ 2 t/s when masses for all particles are neglected
(and for

√
s ≫ MW we can consider massless particles consistently with our use of the ET). The

symmetry factor S in Eq. (6) accounts for the identical particles in the final state, and it takes the
value of 1/2 for the ZLZL case and 1 for theW+

L W−
L case.

2.2 Hadron colliders

In the LHC context, the diagram in Fig. 1 represents the production in elementary quark-quark colli-
sions, so the parton distribution functions (pdfs) of Eq. (3) (also related to the luminosity functions for
VL splitting from quarks) describe the probability of finding a longitudinal boson splitting collinearly
from a quark/antiquark. The only difference is in the auxiliary coupling gZ of Eq. (4), because of
the different isospin and hypercharges for the up and down-type quarks. This changes the respective
coefficient of sin θ2W as follows,

guZ =
α[1 + (1− 8

3 sin θ
2
W )2]

16π sin θ2W cos θ2W
, gdZ =

α[1 + (1− 4
3 sin θ

2
W )2]

16π sin θ2W cos θ2W
. (7)

Now we can construct the wanted pdf for the vector boson in the proton by convolving the one in
the quark with the pdf of the quark on the proton itself. This is [14]

F p
WL

(x) ≡
∫ 1

x

dy

y

∑

i

fi(y)× F qi
WL

(

x

y

)

. (8)
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Figure 2: Tree-level GB production via the annihilation of a ud̄ quark into a gaugeW+ boson. Strong
rescattering in the final state appears through the form factor FV (s) represented by the thick blob.

However, this is again only the parton-level process. In the LHC environment, we need to take
the parton distribution functions into account, and here a pair of ud̄ fermions are more readily avail-
able than WLWL. It turns out that this process is dominant as will be shown numerically below in
Section 4.

Convolving Eq. (11) with the pdfs f(x) as described earlier in Section 2.2, we obtain the proton-
proton inclusive cross section to produce a pair of GBs as

dσ

ds
(pp → w+z +X) =

∫ 1

0
dxu

∫ 1

0
dxd̄ δ

(

s− xuxd̄E
2
tot
)

σ̂(ud̄ → w+z)f(xu)f(xd̄) , (13)

To conclude this section, let us note that in the limit of vanishing hypercharge g′ = 0, custodial
symmetry predicts a few relations

dσ̂(ud → w+z)

dΩCM
=

dσ̂(uu → w+w−)

dΩCM

=
dσ̂(dd → w+w−)

dΩCM

=
dσ̂(e+e− → w+w−)

dΩCM
, (14)

so that our numerical computation for the reaction in Eq. (11) can be immediately used to estimate
several others.

4 Numerical results and discussion

4.1 Parameters

The Weinberg angle in Eq. (4) corresponds to the tree-level radiation of a gauge boson, so it can be
taken [18,19] as sin2 θW = 0.231 (at the next order one should use theMS value at theMZ pole, but
this higher precision is irrelevant for us). Likewise, we take α(MZ) ≃ 1/129. With this, the auxiliary
couplings in Eq. (4) are determined to be about gW ≃ 2.67 × 10−3 and gZ = 8.73 × 10−4.

Once the generic parameters have been fixed, we can obtain the pertinent gauge boson–parton
distribution functions in the effective boson approximation. The ones for the e+e− collisions, FWL

and FZL
from Eq. (3), are shown as the dashed and dotted curves in Fig. 3, and those appropriate for

a 6.5 TeV proton beam (the LHC run II operates at 13 TeV in center-of-mass energy) are shown as
solid and dot-dashed curves in the same figure. One can clearly see that, at the same energy, it is more

6

The y variable swipes the momentum fraction of the emitting quark in the proton, distributed accord-
ing to fi(y), and that quark propagator is 1/y. The flavor index i traverses ten quark/antiquark flavors
(u, d, s, c, b and their antiquarks). The only flavor dependence other than fi is in the emission cou-
pling for the Z boson in Eq. (7). Finally, x is the momentum fraction of the vector boson inside the
proton, and takes values in the interval x ∈ (MW /Eproton, 1). The Z-boson is treated in the same
way, replacingMW withMZ and writing down an equation analogous to Eq. (8).

For the pdf of the quark fi(x) we resort to the well-known and widely used CTEQ set; we take
their last issue, the CJ12 distributions with maximum nuclear and Q2 corrections [16]. We have
checked that using other corrections has a very little impact on the cross section estimates.

3 Cross section from intermediate gauge boson production

In this section we provide a quick estimate for the cross section σ(pp → W +X → wz +X) where
the GB pair ww is (through ET) interchangeable forWLWL, and we take into account the rescattering
of the final state bosons (which makes the calculation not totally trivial).

The reason for choosing the wz channel for the illustration is because the ATLAS excess is possi-
bly seen (if not a misidentification) in the chargedWZ dijet spectrum.

The leading tree-level amplitude for the process must come then from the annihilation of the
lightest qq̄ pair with total unit charge, namely ud → W+ → w+z, and is given by

T (s, θ,φ) =
g2

2
√
2
sin θe−iφ, (9)

This amplitude is purely J = 1 corresponding to a negative helicity u and a positive helicity d.
The rescattering of the final w+z would-be GBs can be taken into account easily by introducing

the vector form factor FV (s) of Eq. (29) below in agreement with Watson’s final state theorem. This
form factor, the thick blob in the Feynman diagram of Fig. 2, compactly encodes all the strong GB
dynamics in this channel, eventually including a vector resonance. As it was shown in Ref. [10, 17]
it is possible to use the IAM method (see Appendix A) to obtain this form factor in terms of the
I = J = 1 partial wave as obtained from the one-loop effective theory to find:

FV (s) = F11(s) =

[

1−
A(1)

11 (s)

A(0)
11 (s)

]−1

. (10)

where A(0)
11 (s) and A

(1)
11 (s) are the tree-level and one-loop contributions to the partial wave.

The unpolarized center-of-mass cross section is then

dσ̂(ud → w+z)

dΩCM
=

1

64π2s

(

1

4

)(

g4

8

)

| FV (s) |2 sin2 θ . (11)

Note that an identical formula can be used for the reaction du → W− → w−z, and that we are
neglecting masses and Cabbibo–Kobayashi–Maskawa mixing. In principle these subprocesses are
formally suppressed with respect to the pure GB elastic scattering in this channel (longitudinal gauge
boson fusion) whose amplitude is given by

T (ww → ww) = 96π cos θA11(s) , (12)

where we have truncated at the J = 1 partial wave, and A11(s) is the J = I = 1 partial wave for ww
elastic scattering (see Appendix A). It is of order O(1) instead of O(α) found in Eq. (9).
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bly seen (if not a misidentification) in the chargedWZ dijet spectrum.

The leading tree-level amplitude for the process must come then from the annihilation of the
lightest qq̄ pair with total unit charge, namely ud → W+ → w+z, and is given by

T (s, θ,φ) =
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sin θe−iφ, (9)

This amplitude is purely J = 1 corresponding to a negative helicity u and a positive helicity d.
The rescattering of the final w+z would-be GBs can be taken into account easily by introducing

the vector form factor FV (s) of Eq. (29) below in agreement with Watson’s final state theorem. This
form factor, the thick blob in the Feynman diagram of Fig. 2, compactly encodes all the strong GB
dynamics in this channel, eventually including a vector resonance. As it was shown in Ref. [10, 17]
it is possible to use the IAM method (see Appendix A) to obtain this form factor in terms of the
I = J = 1 partial wave as obtained from the one-loop effective theory to find:
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11 (s) are the tree-level and one-loop contributions to the partial wave.
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Note that an identical formula can be used for the reaction du → W− → w−z, and that we are
neglecting masses and Cabbibo–Kobayashi–Maskawa mixing. In principle these subprocesses are
formally suppressed with respect to the pure GB elastic scattering in this channel (longitudinal gauge
boson fusion) whose amplitude is given by

T (ww → ww) = 96π cos θA11(s) , (12)

where we have truncated at the J = 1 partial wave, and A11(s) is the J = I = 1 partial wave for ww
elastic scattering (see Appendix A). It is of order O(1) instead of O(α) found in Eq. (9).
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Figure 3: WL and ZL parton distribution functions in the proton (solid and dot-dashed curves), em-
ploying the simple low-x formula Eq. (8) at a 6.5 TeV proton energy, and the electron (dashed and
dotted curves), using Eq. (3).

likely to split a vector boson from the proton at low x, and less likely at moderately high x (since the
quark pdfs in the proton typically fall off as (1− x)3).

Moving now to the parameters of the effective Lagrangian density in Eq. (1), the concurrent con-
straints on the value of a from CMS and ATLAS [20] indicate, at 2σ, that a ∈ (0.88, 1.3), that
is, around the Standard Model value 1, so that the leading order (LO) interaction strengths in the
IJ = 00, 11 and 20 channels, being proportional to ±(1− a2), are small and do not produce elastic-
ωω dynamically-generated states easily (inelastic ωω−hh are much more unconstrained as observed
in Ref. [1]).

We resort to the NLO couplings to induce resonances in the unitarization process, taking as a first
set a = 1.05, b = 1, a4 = 1.25 × 10−4 at a scale µ = 3 TeV, and as a second set a = 0.9, b = a2,
a4 = 7 × 10−4 (also at µ = 3 TeV), with all other couplings set to zero. The first set produces an
exemplary narrow isotensor resonance at around 2 TeV 1 and the second set produces a narrow vector-
isovector resonance (akin to a W ′ or a Higgs-composite model ρ [21]) and a broad scalar-isoscalar
one, both of which are around 2 TeV. Theses exemplary resonances can be clearly seen in the moduli
of the amplitudes shown in Fig. 4 (for explicit expressions of these amplitudes, we refer to Ref. [1]).

From the parameter space of the effective field theory reported in Ref. [1] we have chosen these
two sets because the resonances generated have a mass close to 2 TeV, so they would be clear candi-
dates to explain the putative ATLAS resonances.

4.2 Estimate of the cross sections

First, let us see what the effective boson approximation of Section 2 produces for the case of an
isotensor resonance. In Fig. 5, we show the differential cross section for the production of a pair of
W+

L W−
L in both electron-positron and proton-proton collisions. We have summed up the individual

cross sections with W+
L W−

L and ZLZL in the initial state. We use the parameter set that generates
1Note that for this set a > 1 and the QCD-like repulsive nature of the isotensor channel is reversed, so an isotensor pole

is possible, while an isovector one becomes more difficult and violates causality in much of parameter space, see Fig. 22 of
Ref. [1].
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Figure 2: Tree-level GB production via the annihilation of a ud̄ quark into a gaugeW+ boson. Strong
rescattering in the final state appears through the form factor FV (s) represented by the thick blob.

However, this is again only the parton-level process. In the LHC environment, we need to take
the parton distribution functions into account, and here a pair of ud̄ fermions are more readily avail-
able than WLWL. It turns out that this process is dominant as will be shown numerically below in
Section 4.

Convolving Eq. (11) with the pdfs f(x) as described earlier in Section 2.2, we obtain the proton-
proton inclusive cross section to produce a pair of GBs as

dσ

ds
(pp → w+z +X) =

∫ 1

0
dxu

∫ 1

0
dxd̄ δ

(

s− xuxd̄E
2
tot
)

σ̂(ud̄ → w+z)f(xu)f(xd̄) , (13)

To conclude this section, let us note that in the limit of vanishing hypercharge g′ = 0, custodial
symmetry predicts a few relations

dσ̂(ud → w+z)

dΩCM
=

dσ̂(uu → w+w−)

dΩCM

=
dσ̂(dd → w+w−)

dΩCM

=
dσ̂(e+e− → w+w−)

dΩCM
, (14)

so that our numerical computation for the reaction in Eq. (11) can be immediately used to estimate
several others.

4 Numerical results and discussion

4.1 Parameters

The Weinberg angle in Eq. (4) corresponds to the tree-level radiation of a gauge boson, so it can be
taken [18,19] as sin2 θW = 0.231 (at the next order one should use theMS value at theMZ pole, but
this higher precision is irrelevant for us). Likewise, we take α(MZ) ≃ 1/129. With this, the auxiliary
couplings in Eq. (4) are determined to be about gW ≃ 2.67 × 10−3 and gZ = 8.73 × 10−4.

Once the generic parameters have been fixed, we can obtain the pertinent gauge boson–parton
distribution functions in the effective boson approximation. The ones for the e+e− collisions, FWL

and FZL
from Eq. (3), are shown as the dashed and dotted curves in Fig. 3, and those appropriate for

a 6.5 TeV proton beam (the LHC run II operates at 13 TeV in center-of-mass energy) are shown as
solid and dot-dashed curves in the same figure. One can clearly see that, at the same energy, it is more
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VII. Conclusions:  
The Higgs boson found at CERN in 2012 has the same quantum numbers and a 
behaviour compatible with the MSM Higgs. 

However assuming only custodial symmetry, the existence of the Higgs-like light 
boson and the huge gap, makes it possible to write a HEFT, containing the 
SMEFT and SM as particular cases.  

By using this Lagrangian at the one-loop level, complemented with dispersion 
relations and the ET, it possible to study the scattering of the longitudinal 
components of the EWGB related with the underlying unknown EWSBS 
dynamics in terms of a small number of  parameters. 

In the parameter space, ZLZL , WLWL and WLh  scattering is generically strongly 
interacting, gives rise to new resonant states in many cases and also to other 
processes which are suppressed in the MSM as γγ à ZLZL and WLWL and ZLZL , 
WLWL à t t . 

Thus strongly interacting VLVL scattering would be a signal of new physics BSM. 
Much more work is needed for making realistic predictions. 

                          Wait for more LHC data to see! 




