
MatchingTools: a Python library for symbolic

effective field theory calculations

Juan Carlos Criado,

University of Granada

April 16, 2018

Introduction

Matching

High-energy theoryy Integrate out fields with M > Λ

Effective theory with cutoff Λ

Removing redundancies

• Group theory identities.

• Integration by parts.

• Field redefinitions (EOMs for the light fields).

1

Tree-level matching

From an action:

S(φ,Φ) = −
∫

Φ†DΦ + Sint(φ,Φ)

Iterative solution of the EOMs (1/MΦ expansion):

Φ = D−1 δSin
δΦ†

(φ,Φ) −→ Φc(φ)

Effective action:

Seff(φ) = S (φ,Φc(φ))

2

Application: from general extensions of the SM to the SMEFT

Complete tree-level dictionary [1711.10391]

Extensions with new particles ←→ Dimension-6 SMEFT

We consider a general SM extension with:

• SU(3)× SU(2)× U(1)-invariance.

• SM fields + all new ones with contributions to the

dimension-6 SMEFT.

and integrate out all the new fields.

3

Application: from general extensions of the SM to the SMEFT

Size of the problem:

• 47 new fields (apart from the SM ones).

• The interaction Lagrangian contains hundreds of terms.

• After integration, before simplifying, thousands of terms.

MatchingTools helps reducing the possibility of errors and the

time of the calculations.

4

Outline

1 Overview Organization, basic tools,

matching, extras.

2 Toy example Integrating out a vector-like

quark in a toy model.

3 Application From general extensions of the

SM to the dim-6 SMEFT

4 Links Repository, installation.

5 Conclusions Future work, summary.

5

Overview

Organization of the library

matchingtools

.core The tools for defining a model and the basic

simbolic tensor algebraic operations.

.integration The classes to define heavy fields and the

function integrate.

.transformations The functions apply rules, simplify, ...

.output The class Writer, which provides methods

for representing results in plain text or LaTeX.

.extras Package with tools for SMEFT applications.

6

Core tools

Basic objects

• Lagrangians: sums of terms (operators).

• Operators: products of tensors with arbitrary index

contractions.

Basic operation

Search and replace a pattern in each term. Examples:

• Substitute heavy field by its EOM solution.

• Group theory identities (e.g. σaijσ
a
kl → 2δilδkj − δijδkl)

7

Encoding polynomials of tensors

Tensors (fields) with some indices:

tensor(index_label_1, index_label_2, ...)

Operators (products of tensors):

Op(tensor1(i1, i2, ...), tensor2(j1, ...), ...)

Lagrangians (and other sums of operators) as:

OpSum(operator_1, operator_2, ...)

8

Index labelling. Repeated indices

Repeated index labels

Non-negative integers repeated exactly twice inside each operator

to indicate contraction.

Lexample = φijψiabFjab + XmnY
nm

Lexample = OpSum(

Op(phi(0, 1), psi(0, 2, 3), F(1, 2, 3)),

Op(X(0, 1), Y(1, 0)))

9

Index labelling. Free indices

Free index labels

Negative integers. Used in substitution rules: match the ones in

the pattern with the ones in the replacement.

σaijσ
a
kl → 2δilδkj − δijδkl

SU2Fierz = (

Op(sigma(0, -1, -2), sigma(0, -3, -4)),

OpSum(

2 * Op(kdelta(-1, -4), kdelta(-3, -2)),

- Op(kdelta(-1, -2), kdelta(-3, -4))))

10

Derivatives

Notation for (covariant) derivatives:

D(vector_index_label, field(i1, i2, ...))

Example:

O = V µφiDµφi

O = Op(V(0), phi(1), D(0, phi(1)))

11

Tree-level matching using MatchingTools

Tree-level matching in any Lorentz invariant field theory.

Heavy fields

• Predefined: scalars, Dirac or Majorana fermions and vectors.

• Other kinds of heavy fields can be added by the user.

The user specifies (unrestricted in priciple):

• Order in 1/M for the solution of the EOMs.

• Max. dim. for the operators in the effective Lagrangian.

12

The extras subpackage

extras

.SU2 Common tensors and identities for SU(2).

.SU3 Common tensors and identities for SU(3).

.Lorentz Common tensors and identities for the

Lorentz group.

.SM The SM fields and their equations of motion.

.SM dim 6 basis Definition of a basis for the dimension-6

SMEFT [arXiv:1412.8480]. (Other

bases will be included soon in other modules)

13

Workflow

1. Define fields and coupling constants.

2. Define the interaction Lagrangian.

3. Specify which fields are heavy.

4. Integrate out the heavy fields.

5. Define substitution rules rewrite the effective Lagrangian and

apply them.

6. [Define LaTeX representation of the coupling constants and

Wilson coefficients and output to a .tex file].

14

Toy example

Example: integrating out a vector-like quark

Consider an extension of the SM with vector-like quark doublet Q

of hypercharge 7/6 and interaction Lagrangian:

Lint = −(yQ)i Q̄LφuRi + h.c.

When integrated out, it’ll give contributions to the effective

Lagrangian as ∼ ūRφ
† /D(φuR) ∼ ūRφ

†(/Dφ)uR + ūRφ
†φ(/DuR).

We can then use the EOM of uR to write the result in terms of:

Oφu = ūRφ
†(/Dφ)uR ,

Ouφ = q̄Lφ̃uRφ
†φ.

15

Definition of the model and matching

phi = FieldBuilder(’phi’, 1, boson)

phic = FieldBuilder(’phic’, 1, boson)

uR = FieldBuilder(’uR’, 1.5, fermion)

uRc = FieldBuilder(’uRc’, 1.5, fermion)

QL = FieldBuilder(’QL’, 1.5, fermion)

QLc = FieldBuilder(’QLc’, 1.5, fermion)

QR = FieldBuilder(’QR’, 1.5, fermion)

QRc = FieldBuilder(’QRc’, 1.5, fermion)

yQ = TensorBuilder(’yQ’)

yQc = TensorBuilder(’yQc’)

Lint = -OpSum(

Op(yQ(0), QLc(1, 2, 3), phi(3), uR(1, 2, 0)),

Op(yQc(0), uRc(1, 2, 0), phic(3), QL(1, 2, 3)))

heavy_Q = VectorLikeFermion(

’Q’, ’QL’, ’QR’, ’QLc’, ’QRc’, 3, has_flavor=False)

Leff = integrate([heavy_Q], Lint, 6)

Leff_writer = Writer(Leff, {})

print(Leff_writer)

16

Rewriting operators and defining a basis

isigma2 = TensorBuilder("isigma2")

yu = TensorBuilder("yu"); yu_dagger = TensorBuilder("yu_dagger")

qL = FieldBuilder("qL", 1.5, fermion); qLc = FieldBuilder("qLc", 1.5, fermion)

rules_uR_eom = [

(Op(sigma4(0, -1, 1), D(0, uR(1, -2, -3))),

OpSum(Op(yu_dagger(-3, 0), isigma2(1, 2), phi(2), qL(-1, -2, 1, 0)))),

(Op(sigma4(0, 1, -1), D(0, uRc(1, -2, -3))),

OpSum(Op(yu(0, -3), isigma2(1, 2), phic(2), qLc(-1, -2, 1, 0))))]

Ophiu = flavor_tensor_op("Ophiu"); Ophiuc = flavor_tensor_op("Ophiuc")

Ouphi = flavor_tensor_op("Ouphi"); Ouphic = flavor_tensor_op("Ouphic")

rules_ops = [

(Op(uRc(0, 1, -1), phic(2), sigma4(3, 0, 4), D(3, phi(2)), uR(4, 1, -2)),

OpSum(Ophiu(-1, -2))),

(Op(uRc(0, 1, -2), D(3, phic(2)), sigma4(3, 0, 4), phi(2), uR(4, 1, -1)),

OpSum(Ophiuc(-1, -2))),

(Op(qLc(0, 1, 2, -1), isigma2(2, 3), phic(3), uR(0, 1, -2), phic(4), phi(4)),

OpSum(Ouphi(-1, -2))),

(Op(uRc(0, 1, -2), qL(0, 1, 2, -1), isigma2(2, 3), phi(3), phic(4), phi(4)),

OpSum(Ouphic(-1, -2)))]

Lfinal = apply_rules(Leff, rules_uR_eom + rules_ops, 1)

17

Outputting

Lfinal_writer = Writer(Lfinal, ["Ophiu", "Ophiuc", "Ouphi", "Ouphic"])

print(Lfinal_writer)

latex_structures = {

"yQ": "(y_Q)_{}", "yQc": "(y_Q)^*_{}",

"yu": "(y_u)_{{{}{}}}", "yu_dagger": "(y_u)^\dagger_{{{}{}}}",

"MQ": "M_Q"}

latex_ops = {

"Ophiu": r"(C_{{\phi u}})_{{{}{}}}",

"Ophiuc": r"(C_{{\phi u}})^*_{{{}{}}}",

"Ouphi": r"(C_{{u \phi}})_{{{}{}}}",

"Ouphic": r"(C_{{u \phi}})^*_{{{}{}}}"}

Lfinal_writer.write_latex(

"VLQ_example", latex_structures, latex_ops,

list(map(chr, range(ord(’i’), ord(’z’)))))

18

Output

The final LaTeX output of the program is:

19

An application to a complex case

From general extensions of the SM to the SMEFT

Complete tree-level dictionary [1711.10391]

Extensions with new particles ←→ Dimension-6 SMEFT

Size:

• ∼ 50 multiplets to integrate out.

• 1000− 10000 terms in some intermediate steps.

MatchingTools takes less than a minute in a i5 to do the

complete calculation.

20

UV/IR dictionary: bottom-up

...

21

UV/IR dictionary: top-down

+ fermions, vectors

22

Links and installation

Links and installation

GitHub repository:

https://github.com/jccriado/matchingtools

Available at PyPI:

pip install matchingtools

Documentation:

http://matchingtools.readthedocs.io/en/latest/

arXiv:1710.06445

23

Future work and conclusions

Conclusions

Future work:

• Include more application-specific tools in extras.

• Connection with other software.

With MatchingTools we can automatize the process of:

• Tree-level matching.

• Rewritting the effective Lagrangian in a chosen basis.

This lets us reduce the possibility of errors and the time it takes to

do the calculations.

24

	Overview
	Toy example
	An application to a complex case
	Links and installation
	Future work and conclusions

