

SMEFT at high energies

Rick Sandeepan Gupta (IPPP Durham)

HEFT 2018, MITP, Mainz

LEP vs LHC

- Measuring Higgs properties is the most concrete particle physics goal of our times.
- Indirect deviations can constrain scale much higher than direct searches.
- Eg.: The S,T parameters at LEP constrain certain kinds of new Physics to scales higher than a few TeV. Much higher than LEP energies.

Can LHC compete with LEP ? Can LHC searches give us new information that LEP does not provide ?

• EFT techniques show that many anomalous Higgs interactions were already probed by LEP.

Only way to compete with LEP precision is by going to higher energies.

+ Anomalous Higgs interactions at dimension-6 level

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

+ Anomalous Higgs interactions at dimension-6 level

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$

$$\frac{h}{Higgs \text{ interactions to be directly measured for the first time at LHC.}$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

EFT techniques imply many of these Higgs deformations not independent from electroweak precision/TGC deformations already constrained by LEP.

• Same operators give both Higgs and EW deformations

+ Anomalous Higgs interactions not constrained by LEP

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

+ Anomalous Higgs interactions not constrained by LEP

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$

+ $\kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

Anomalous Higgs interactions already constrained by LEP

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

Anomalous Higgs interactions already constrained by LEP

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

EFT techniques imply many of these Higgs deformations not independent from electroweak precision/TGC deformations already constrained by LEP.

• Same operators give both Higgs and EW deformations

EW and Higgs Pseudo-observables

(1) Higgs observables (20):

 $hW^{+}_{\mu\nu} W^{-\mu\nu} \qquad hA_{\mu\nu}A^{\mu\nu}, \ hA_{\mu\nu}Z^{\mu\nu} \ hG_{\mu\nu}G^{\mu\nu} \ h^{2}\bar{f}f \ hZ_{\mu\nu} Z^{\mu\nu} \\ hW^{+\mu}W^{-}_{\mu}, \ h\bar{f}f, \ h^{3} \qquad hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

EW and Higgs Pseudo-observables

(1) Higgs observables (20):

 $hW^{+}_{\mu\nu} W^{-\mu\nu} \qquad hA_{\mu\nu}A^{\mu\nu}, \ hA_{\mu\nu}Z^{\mu\nu} \ hG_{\mu\nu}G^{\mu\nu} \ h^{2}\bar{f}f \ hZ_{\mu\nu} Z^{\mu\nu} \\ hW^{+\mu}W^{-}_{\mu}, \ h\bar{f}f, \ h^{3} \qquad hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

(2) Electorweak precision observables (9):

 $Z_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R} \qquad \qquad W^{+\mu}\bar{u}_{L}\gamma_{\mu}d_{L}$

These were measured very precisely at the W/Z-pole in W/Z decays.

EW and Higgs Pseudo-observables

(1) Higgs observables (20):

 $hW^{+}_{\mu\nu} W^{-\mu\nu} \qquad hA_{\mu\nu}A^{\mu\nu}, \ hA_{\mu\nu}Z^{\mu\nu} \ hG_{\mu\nu}G^{\mu\nu} \ h^{2}\bar{f}f \ hZ_{\mu\nu} Z^{\mu\nu} \\ hW^{+\mu}W^{-}_{\mu}, \ h\bar{f}f, \ h^{3} \qquad hZ_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R}$

These contain the physical Higgs probed for the first time at LHC in Higgs Production/decay

(2) Electorweak precision observables (9):

 $Z_{\mu}\bar{f}_{L,R}\gamma^{\mu}f_{L,R} \qquad \qquad W^{+\mu}\bar{u}_{L}\gamma_{\mu}d_{L}$

These were measured very precisely at the W/Z-pole in W/Z decays.

(2) Triple and Quartic Gauge couplings (3+4):

$$g_{1}^{Z}c_{\theta_{W}}Z^{\mu}\left(W^{+\nu}\hat{W}_{\mu\nu}^{-}-W^{-\nu}\hat{W}_{\mu\nu}^{+}\right) \xrightarrow{Z^{\mu}Z^{\nu}W_{\mu}^{-}W_{\nu}^{+}} W_{\nu}^{-\mu}W_{\nu}^{+}W_{\nu}^{-\mu}W_{\mu}^{+}W_{\mu}^{-\mu}W_{\mu}^{-\mu}W_{\mu}^{+}W_{\mu}^{-\mu}W_{$$

Organizing principle: Effective Field Theory (EFT)

Only 18 independent operators generate above vertices:

$$\begin{aligned} \mathcal{O}_{H} &= \frac{1}{2} (\partial^{\mu} |H|^{2})^{2} \\ \mathcal{O}_{T} &= \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2} \\ \mathcal{O}_{6} &= \lambda |H|^{6} \\ \\ \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu} \\ \mathcal{O}_{B} &= \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu} \end{aligned}$$

$$\begin{split} \mathcal{O}_{BB} &= g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{GG} &= g_s^2 |H|^2 G_{\mu\nu}^A G^{A\mu\nu} \\ \mathcal{O}_{HW} &= ig(D^\mu H)^\dagger \sigma^a (D^\nu H) W^a_{\mu\nu} \\ \mathcal{O}_{HB} &= ig'(D^\mu H)^\dagger (D^\nu H) B_{\mu\nu} \\ \mathcal{O}_{3W} &= \frac{1}{3!} g \epsilon_{abc} W^{a\,\nu}_{\mu} W^b_{\nu\rho} W^{c\,\rho\mu} \end{split}$$

$\mathcal{O}_{y_u} = y_u H ^2 \bar{Q}_L \widetilde{H} u_R$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{Q}_L H d_R$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{L}_L H e_R$
$\mathcal{O}_R^u = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{u}_R \gamma^\mu u_R)$	$\mathcal{O}_R^d = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{d}_R \gamma^\mu d_R)$	$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$
$\mathcal{O}_L^q = (iH^\dagger \stackrel{\leftrightarrow}{D_\mu} H)(\bar{Q}_L \gamma^\mu Q_L)$		
$\mathcal{O}_L^{(3)q} = (iH^{\dagger}\sigma^a \overset{\leftrightarrow}{D_{\mu}}H)(\bar{Q}_L\sigma^a\gamma^{\mu}Q_L)$		

Correlations between observables

of contributing operators << # of vertices/pseudo-observables

18 EW and Higgs Operators

18 Operators

Many Vertices/pseudo-observables

 $\begin{array}{|c|c|} \mathcal{O}_{H} &= \frac{1}{2} (\partial^{\mu} |H|^{2})^{2} \\ \mathcal{O}_{T} &= \frac{1}{2} \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)^{2} \\ \mathcal{O}_{6} &= \lambda |H|^{6} \\ \hline \mathcal{O}_{W} &= \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overleftrightarrow{D}^{\mu} H \right) \\ \mathcal{O}_{B} &= \frac{ig'}{2} \left(H^{\dagger} \overleftrightarrow{D}^{\mu} H \right) \partial^{\mu} \end{array}$

$$\begin{split} & \mathcal{O}_{y_u} = y_u |H|^2 \bar{Q}_L \widetilde{H} u_R \\ & \mathcal{O}_R^u = (i H^\dagger \overset{\leftrightarrow}{D_\mu} H) (\bar{u}_R \gamma^\mu u_R) \\ & \mathcal{O}_L^u = (i H^\dagger \overset{\leftrightarrow}{D_\mu} H) (\bar{Q}_L \gamma^\mu Q_L) \\ & \mathcal{O}_L^{(3)\,q} = (i H^\dagger \sigma^a \overset{\leftrightarrow}{D_\mu} H) (\bar{Q}_L \sigma^a \gamma^\mu Q_L) \end{split}$$

At any given order Number of contributing operators << Number of vertices/pseudoobservables Correlations between different vertices/observables 17

 $h^2 \bar{f} f$

 $W^{+\mu} \bar{u}_L \gamma_\mu d_I$

More observables than operators !

Anomalous Higgs interactions already constrained by LEP

$$\mathcal{L}_{h}^{\text{primary}} = g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + g_{3h} h^{3} + g_{ff}^{h} \left(h \bar{f}_{L} f_{R} + h.c. \right)$$
$$+ \kappa_{GG} \frac{h}{v} G^{A \mu\nu} G_{\mu\nu}^{A} + \kappa_{\gamma\gamma} \frac{h}{v} A^{\mu\nu} A_{\mu\nu} + \kappa_{Z\gamma} t_{\theta_{W}} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} ,$$

$$\Delta \mathcal{L}_{h} = \delta g_{ZZ}^{h} \frac{v}{2c_{\theta_{W}}^{2}} h Z^{\mu} Z_{\mu} + g_{Zff}^{h} \frac{h}{2v} \left(Z_{\mu} J_{N}^{\mu} + h.c. \right) + g_{Wff'}^{h} \frac{h}{v} \left(W_{\mu}^{+} J_{C}^{\mu} + h.c. \right)$$

+ $\kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{v} Z^{\mu\nu} Z_{\mu\nu} ,$

Anomalous Higgs interactions already constrained by LEP

RSG, A. Pomarol and F. Riva (arxiv: 1405.0181)

+

If these predictions are not confirmed, one of our assumptions must have been wrong:

(1)h not part of a doublet.

(2) Scale of new physics not very high and dimension 8 operators cannot be ignored

+

If these predictions are not confirmed, one of our assumptions must have been wrong:

(1)h not part of a doublet.

(2) Scale of new physics not very high and dimension 8 operators cannot be ignored

Dim-6 correlation violations can be mapped to dim-8 Wilson coefficients

Bertuzzo, RSG and C. Grojean (in progress)

More observables than operators !

+ Anomalous Higgs interactions not constrained by LEP

A

 Anomalous Higgs interactions not constrained by LEP

Anomalous Higgs interactions not constrained by LEP

Anomalous Higgs interactions already constrained by LEP

Anomalous Higgs interactions already constrained by LEP

Ky125

1.2 1.15 1.1 1.05

• Only way to compete with LEP is to go to high energies.

• Rest of the talk: ZH production at high energies

ZH production at LHC

The following vertices in the unitary gauge contribute:

Banerjee, Englert, RSG and Spannowsky (work in progress)

q 、

W/Z

+ ZH production at LHC

The following vertices in the unitary gauge contribute:

$$\begin{split} \Delta \mathcal{L}_{6} &\supset \sum_{f} \delta g_{f}^{Z} Z_{\mu} \bar{f} \gamma^{\mu} f + \delta g_{ud}^{W} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \\ &+ g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + \delta g_{ZZ}^{h} h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta_{W}}^{2}} \\ &+ \sum_{g_{Zff}} \frac{g_{Lff}^{h}}{v} Z_{\mu} \bar{f} \gamma^{\mu} f + \frac{g_{Wud}^{h}}{v} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \quad \bar{q} \\ &+ \kappa_{Z\gamma} \frac{h}{v} A^{\mu\nu} Z_{\mu\nu} + \kappa_{WW} \frac{h}{v} W^{+\mu\nu} W_{\mu\nu}^{-} + \kappa_{ZZ} \frac{h}{2v} Z^{\mu\nu} Z_{\mu\nu} . \\ &+ M (ff \rightarrow Z_{L}h) = g_{f}^{Z} \frac{q \cdot J_{f}}{v} \frac{2m_{Z}}{\hat{s}} \left[1 + \frac{g_{Lff}^{h}}{g_{f}^{Z}} \frac{\hat{s}}{2m_{Z}^{2}} \right] \end{split}$$

+ ZH production at LHC

The following vertices in the unitary gauge contribute:

$$\begin{split} \Delta \mathcal{L}_{6} &\supset \sum_{f} \delta g_{f}^{Z} Z_{\mu} \bar{f} \gamma^{\mu} f + \delta g_{ud}^{W} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \\ &+ g_{VV}^{h} h \left[W^{+\mu} W_{\mu}^{-} + \frac{1}{2c_{\theta_{W}}^{2}} Z^{\mu} Z_{\mu} \right] + \delta g_{ZZ}^{h} h \frac{Z^{\mu} Z_{\mu}}{2c_{\theta_{W}}^{2}} \\ &+ \sum_{g_{Zff}} \frac{h}{v} Z_{\mu} \bar{f} \gamma^{\mu} f + \frac{h}{g_{Wud}} \frac{h}{v} (W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + h.c.) \quad \bar{q} \\ &+ \sum_{h} \frac{h}{Leading effect from contact interaction at high energies.} \\ &= \text{Energy growth as there is no propagator.} \\ \mathcal{M}(ff \rightarrow Z_{L}h) = g_{f}^{Z} \frac{q \cdot J_{f}}{v} \frac{2m_{Z}}{\hat{s}} \left[1 + \frac{g_{Zff}^{h}}{g_{f}^{Z}} \frac{\hat{s}}{2m_{Z}^{2}} \right] \end{split}$$

ZH production at LHC

The following vertices in the unitary gauge contribute:

34

At high energies four directions in EFT space are isolated by high energy ZH production.

$$egin{array}{rcl} g^h_{Zu_Lu_L}&=&-rac{g}{c_{ heta_W}}rac{v^2}{\Lambda^2}(c_L^1-c_L^3)\ g^h_{Zd_Ld_L}&=&-rac{g}{c_{ heta_W}}rac{v^2}{\Lambda^2}(c_L^1+c_L^3)\ g^h_{Zu_uf_R}&=&-rac{g}{c_{ heta_W}}rac{v^2}{\Lambda^2}c_R^u\ g^h_{Zd_Rd_R}&=&-rac{g}{c_{ heta_W}}rac{v^2}{\Lambda^2}c_R^d \end{array}$$

q W/Z \bar{q} H

WARSAW BASIS

At high energies four directions in EFT space are isolated by high energy ZH production.

$$\begin{split} g^{h}_{Zu_{L}u_{L}} &= 2\delta g^{Z}_{Zu_{L}u_{L}} - 2\delta g^{Z}_{1} (g^{Z}_{f}c_{2\theta_{W}} + eQs_{2\theta_{W}}) + 2\delta\kappa_{\gamma}g'Y_{h}\frac{s_{\theta_{W}}}{c_{\theta_{W}}^{2}} \\ g^{h}_{Zd_{L}d_{L}} &= 2\delta g^{Z}_{Zd_{L}d_{L}} - 2\delta g^{Z}_{1} (g^{Z}_{f}c_{2\theta_{W}} + eQs_{2\theta_{W}}) + 2\delta\kappa_{\gamma}g'Y_{h}\frac{s_{\theta_{W}}}{c_{\theta_{W}}^{2}} \\ g^{h}_{Zu_{R}u_{R}} &= 2\delta g^{Z}_{Zu_{R}u_{R}} - 2\delta g^{Z}_{1} (g^{Z}_{f}c_{2\theta_{W}} + eQs_{2\theta_{W}}) + 2\delta\kappa_{\gamma}g'Y_{h}\frac{s_{\theta_{W}}}{c_{\theta_{W}}^{2}} \\ g^{h}_{Zd_{R}d_{R}} &= 2\delta g^{Z}_{Zd_{R}d_{R}} - 2\delta g^{Z}_{1} (g^{Z}_{f}c_{2\theta_{W}} + eQs_{2\theta_{W}}) + 2\delta\kappa_{\gamma}g'Y_{h}\frac{s_{\theta_{W}}}{c_{\theta_{W}}^{2}} \end{split}$$

CORRELATIONS (BSM PRIMARIES)

RSG, A. Pomarol and F. Riva (arxiv: 1405.0181)

At high energies four directions in EFT space are isolated by high energy ZH production.

$$\begin{split} g^{h}_{Zu_{L}u_{L}} &= -\frac{g}{c_{\theta_{W}}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{W} + c_{HW} - c_{2W} - \frac{t_{\theta_{W}}^{2}}{3} (c_{B} + c_{HB} - c_{2B})) \\ g^{h}_{Zd_{L}d_{L}} &= -\frac{g}{c_{\theta_{W}}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{W} + c_{HW} - c_{2W} + \frac{t_{\theta_{W}}^{2}}{3} (c_{B} + c_{HB} - c_{2B})) \\ g^{h}_{Zu_{R}u_{R}} &= \frac{4gs_{\theta_{W}}^{2}}{3c_{\theta_{W}}^{3}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{B} + c_{HB} - c_{2B}) \\ g^{h}_{Zd_{R}d_{R}} &= -\frac{2gs_{\theta_{W}}^{2}}{3c_{\theta_{W}}^{3}} \frac{m_{W}^{2}}{\Lambda^{2}} (c_{B} + c_{HB} - c_{2B}) \end{split}$$

SILH BASIS (UNIVERSAL MODELS)

At high energies four directions in EFT space are isolated by high energy ZH production.

CORRELATIONS (UNIVERSAL MODELS)

At high energies four directions in EFT space are isolated by high energy ZH production.

$$g_{Zu_{L}u_{L}}^{h} = -\frac{g}{c_{\theta_{W}}} \left((c_{\theta_{W}}^{2} + \frac{s_{\theta_{W}}^{2}}{3}) \delta g_{1}^{Z} + W - \frac{t_{\theta_{W}}^{2}}{3} (\hat{S} - \delta \kappa_{\gamma} - Y) \right)$$

$$g_{Zu_{L}d_{L}}^{h} = -\frac{g}{c_{\theta_{W}}} \left((c_{\theta_{W}}^{2} - \frac{s_{\theta_{W}}^{2}}{3}) \delta g_{1}^{Z} + W + \frac{t_{\theta_{W}}^{2}}{3} (\hat{S} - \delta \kappa_{\gamma} - Y) \right)$$

$$g_{Zu_{R}u_{R}}^{h} = \frac{4gs_{\theta_{W}}^{2}}{3c_{\theta_{W}}^{3}} (\hat{S} - \delta \kappa_{\gamma} + c_{\theta_{W}}^{2} \delta g_{1}^{Z} - Y)$$

$$g_{Zd_{R}d_{R}}^{h} = -\frac{2gs_{\theta_{W}}^{2}}{3c_{\theta_{W}}^{3}} (\hat{S} - \delta \kappa_{\gamma} + c_{\theta_{W}}^{2} \delta g_{1}^{Z} - Y)$$
Franceschini,
Panico,Pomarol, Riva & Wulzer
arxiv: 1712,01310

ZH production: LHC vs LEP

These vertices can be thus measured in this process. For eg. At high energies:

$$\mathcal{M}(ff \to Z_L h) = g_f^Z \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right]$$
$$g_{Zu_L u_L}^h = -\frac{g}{c_{\theta_W}} \left((c_{\theta_W}^2 + \frac{s_{\theta_W}^2}{3}) \delta g_1^Z + W - \frac{t_{\theta_W}^2}{3} (\hat{S} + \delta \kappa_\gamma - Y) \right)$$
$$= \text{LEP constraint:} \qquad 5-10 \% \text{ level}, \qquad 0.2\% \text{ level}.$$

To be as sensitive as LEP, LHC needs to measure this process at 30 % level because of energy enhancement ZH production: LHC vs LEP

These vertices can be thus measured in this process. For eg. At high energies:

$$\mathcal{M}(ff \to Z_L h) = g_f^Z \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right]$$

$$g^h_{Zu_Lu_L} = -rac{g}{c_{ heta_W}} igg((c^2_{ heta_W}+rac{s^2_{ heta_W}}{3})\delta g^Z_1 + W - rac{t^2_{ heta_W}}{3}(\hat{S}-\delta\kappa_\gamma-Y)igg)$$

1 % level constraint possible ?

- LEP constraint: 5-10% level
- To be as sensitive as LEP, LHC needs to measure this process at 30 % level because of energy enhancement

Factor of 30

ZH production: LHC vs LEP

These vertices can be thus measured in this process. For eg. At high energies:

$$\mathcal{M}(ff \to Z_L h) = g_f^Z \frac{q \cdot J_f}{v} \frac{2m_Z}{\hat{s}} \left[1 + \frac{g_{Zff}^h}{g_f^Z} \frac{\hat{s}}{2m_Z^2} \right]$$

$$egin{aligned} g^h_{Zu_Lu_L} = & -rac{g}{c_{ heta_W}} \left((c^2_{ heta_W}+rac{s^2_{ heta_W}}{3})\delta g^Z_1 + W - rac{t^2_{ heta_W}}{3}(\hat{S}-\delta\kappa_\gamma-Y)
ight) \end{aligned}$$

1 % level constraint possible ?

- LEP constraint: 5-10% level
- To be as sensitive as LEP, LHC needs to measure this process at 30 % level because of energy enhancement

Factor of 30

Can 30 % accuracy be achieved in high energy bins for this process ?

ZH production at LHC

Use of subjet techniques for boosted h->bb required to remove 100 times larger Zbb background.

Banerjee, Englert, RSG and Spannowsky (work in progress)

43

Four channels:

- $\blacksquare ZH \longrightarrow G^0 H$
- WH—G⁺H
- $\blacksquare WZ \longrightarrow G^+G^0$

$$\Phi = \left(egin{array}{c} G^+ \ (v+H)+iG^0 \ \sqrt{2} \end{array}
ight)$$

- These different final states are connected by more than nomenclature.
- At high energies longitudinal W/Z production dominates.
- Using goldstone boson equivalence theorem one can compute amplitudes for various components of Higgs doublet in the unbroken phase.
- Full SU(2) symmetry manifest

Four channels:

- $\blacksquare ZH \longrightarrow G^0 H$
- WH—G⁺H
- $\blacksquare WZ \longrightarrow G^+G^0$

$$\Phi = \left(egin{array}{c} G^+ \ H+iG^0 \ \sqrt{2} \end{array}
ight)$$

- These different final states are connected by more than nomenclature.
- At high energies longitudinal W/Z production dominates.
- Using goldstone boson equivalence theorem one can compute amplitudes for various components of Higgs doublet in the unbroken phase.
- Full SU(2) symmetry manifest

our channels	Amplitude	High-energy primaries
	$\bar{u}_L d_L \rightarrow W_L Z_L W_L h$	$\sqrt{2}a_a^{(3)}$
■ $ZH \rightarrow G^0 H$		• <i>y</i>
∎ WH—→G ⁺ H	$ar{u}_L u_L o W_L W_L \ ar{d}_L d_L o Z_T h$	$a_q^{(1)} + a_q^{(3)}$
∎ WW──G+ G-	$\bar{d}_L d_L \to W_L W_L$	$a_{a}^{(1)} - a_{a}^{(3)}$
$WZ \longrightarrow G^+G^0$	$ar{u}_L u_L o Z_L h$	~~ <i>q</i> ~~ <i>q</i>
	$\bar{f}_R f_R o W_L W_L, Z_L h$	a_f
	1	

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies

our channels:	Amplitude	High-energy primaries
	$\bar{u}_L d_L \rightarrow W_L Z_L, W_L h$	$g^h_{Zd_Ld_L} - g^h_{Zu_Lu_L}$
∎ ZH→G ⁰ H		$\sqrt{2}$
∎ WH—G ⁺ H	$\bar{u}_L u_L \to W_L W_L$	$g^h_{Zd_Id_I}$
	$a_L a_L \to Z_L n$	
∎ WW→G+ G-	$d_L d_L o W_L W_L$	g^h_{Zurur}
∎ WZ → G ⁺ G ⁰	$\bar{u}_L u_L o Z_L h$	
	$\bar{f}_R f_R o W_L W_L, Z_L h$	$g^h_{Zf_Rf_R}$
nd WV processos	,	

HV and VV processes amplitude connected by symmetry. They constrain the same set of observables at high energies

(work in progress)

- Can LHC compete with LEP ? Can LHC searches give us new information that LEP does not provide ?
- EFT techniques show that many anomalous Higgs interactions were already probed by LEP.
- Only way to compete with LEP precision is by going to higher energies.
- ZH production promising example channel. We perform collider analysis for Z(ll)H(bb) final state using subjet techniques.
- ZH, WH, WZ, WW intimately related by symmetry. Probe same plane in EFT space at high energies.