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Wilsonian Effective Field Theories

Top down
6%SW[Light] :/DHeavy e%SUV[Light,Heavy]

Wilson: Heavy loops already included,
Light loops not yet included

Bottom Up

Construct Sy |Light| by writing down every local operator
consistent with symmetries of low energy theory, suppressed by
cutoft scale to the appropriate power

AL R <Boson Fermion 8M>
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In Cosmology always true because
we must have gravity

GR itself should be understood as an EFT with a Planck scale
physics - no problem quantizing gravity as a LEEFT,

see e.g. reviews by Donoghue, Burgess
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For example, we have no trouble computing loop corrections to
scalar and tensor fluctuations produced during inflation




Are all EF1s allowed?

With typical assumption that:
UV completion is Local, Causal, Poincare Invariant and Unitary

Answer: NO! Certain low energy eftective theories do not
admit well defined UV completions

More precise form of question: Are Wilson coefficients free
to take any O(1) value? Answer: NO!

Recent Recognition: Requirement that a given low
energy theory admits such a UV completion imposes an
(infinite) number of constraints on the form of the low
energy eftective theory

Positivity Constraints!



Low Energy Criteria

Commonly Imposed Ciriteria:

Causality cs(background) <1 | absence of caustics, strong

hyperbolicity

Problems: 1. Causality is difhcult in gravitational theories since the
speed of light is not invariant under field redefinitions of the
metric

9uv — Guv T Oéa,u,¢au¢

2. Caustics are ok - can arise in LEEFT of a UV theory without
caustics

3. Strong hyperbolicity is gauge dependent and field redefinition

dependent, while desirable for numerics unclear if important



Solution: Remove field redefinition ambiguities
by looking at the S-matrix

Look for asymptotic superluminalities:

We cannot send signals faster than what is allowed by asymptotic causal structure of the
spacetime Gao and Wald 2000

e.g. Camanho, Edelstein, Maldacena, Zhiboedov, "Causality Constraints on
Corrections to the Graviton Three-Point Coupling," arXiv:1407.5597
Massive Spin-2 Scattering and Asymptotic Superluminality

Hinterbichler. Joyce, Rosen arXiv:1708.05716

Amounts to demanding that the Eisenbud-Wigner

scattering time delay is positive
do(E)
dFE

T >0

d(E) is phase shift between scattered wave and unscattered



Solution: Remove field redefinition ambiguities
by looking at the S-matrix

Closely related are the requirements that the S-matrix is

I. Local (Polynomially (or exponentially) bounded in
momentum space) and
2. Causal (Analytic as a function of Mandelstam variables)

A precise definition of analyticity for the 2-2 scattering amplitude
at fixed momentum transfer ¢ was rigourously proven in the 50’s
and 60’s

although not too much progress ever made beyond this



Positivity Constraints

Signs of UV completion



Lets Start Simple:
Two-point function of a scalar field

Suppose we have a scalar operator O(z)

Relativistic Locality tells us that ......
O(2),0(y)] = 0

Unitarity (positivity) tells us that

(W|O(f)*[¢) >0 where O(f)




Kallen-L.ehmann Spectral
Representation

Together with Poincare invariance these imply:

OTO@OMI) = [ eI Gok

Z > p(1)
Go(k) = | d
o (k) k2 +m? — i€ Lmz 'uk2+,u—ie

Positive Spectral Density

>0
as a result of Unitarity plu) 2



Introduce the Complex Plane
To ssmplify a problem you should make 1t complex

Define complex momenta squared 7z = —k? + e
Pole Branch cut
Go(z) = £ - S (z) + Y /OO dp p()
m? — 2 am2 P (0= 2)

Physical region Two point function is an analytic
function with a pole and a branch cut

Discontinuity across branch cut is
positive definite

Re(z) VS N
L dYGo(0) _ (™ e
M' dZM B Am,2 Iu,uM_H



What does this tell us about EF17?

e.g. Suppose scalar field in EFT with tree level action .......

2 3

S:/d4x0(x)[ —|—a1M2 | a2 573 -...|0(x)
Feynman propagator i1s
1
Go = 2 3
z+a1M2 | a2 773 ...
2 assuming no
/ a1 (a’2 - al) 2 subtractions
GO(Z) T M2 | M4 Z_I_O(Z )

Positivity Bounds: ayp > 0 and as > as



What about gravity?

It we repeat the same argument for gravity:

2T spin 2 part Spillyl O part
4 174
S = d4ngp R - A2 (RMVRM _ (5/3)R2) | e RQ)
+ : R.V.V R ti
A4ft.. V.V HL corrections

Positivity Bounds: a>0 b >0



S-matrix Positivity Constraints
Signs of UV completion



Crossing Symmetry

Identical scattering amplitudes for s and u channel
interactions (up to analytic continuation)

A
: p ¢ :
s+t+u=4m
s-channel
s = (p1 +P2)2
A+B—-C+D 5
3R R D t = (p1 — p3)
U — (pl — p4)2
AR R C
u-channel <o

A+D —-C+ B
_ —P4 —pP2
D



Forward Scattering Limit Amplitude
Analyticity

m(s) Complex s plane Physical scatterin§

region is § > 4m

' Re(s)
m?% 3m? 4m?*
crossing: u = 4m? — s
A > p(1)
0) = | b : d
A(s,0) . (a + bs) + s LmQ MMQ(M—S)

A qu/ s p(u)
4

m2 u? (:u _ U)



Unitarnty=Positivity

> ()

,O(S) — lITTL[A(& O)] _ \/S(S — 4m2)0'(5)

(s (s

Number of subtractions determined by Froissart bound:

o(s) < — (log(s/50))?

/'

Why it is crucial external scatterers are massive



Positivity Constraint

Recipe: Subtract pole, differentiate to remove subtraction
constants

A A

m?—s m?—u

b [ [

B(s,0) = A(s, 0)

O

p(p)
B(2m?.0) = 2M! d 0
om0 =201 [ >

M > 2

Adams et. al. 2006

dM

dsM




E.g. Assume Weakly Coupled UV Completion

Constraints can be applied directly on LEEFT
tree level scattering amplitudes

tree tree
A A

Btree(S’ O) _ Atree(S, O)

m?2—s m?—u

dM

dsM

O

Btree(2m270) _ 2M'/ d,LL ,O(IM)
A

2
th

Atn = threshold for new physics, i.e. cutoff of LEEFT

Adams et. al. 2006
Directly translates into constraints on Wilsonian action



Improved Positivity Bound

What if we can’t assume weakly coupled UV completion?

Consider exact amplitude MINUS calculable low energy
imaginary part
Calculate in LEEFT

82 2 A2 m U2 2 A2 m
A(s,0) = A(s,0) = *= [L | dufu2[3<ﬁ,§)>1 ‘ [L | dﬂlw[é(ﬁ,g]

N

(5,0) has the same analyticity properties as A(s, 0)

with a branch cut which starts at s = €>A*



Example: Positivity Bounds for P(X)

L
L= —2(00)° + 1 (00)" +

C
Ay = = AL (3 +17 + —4m)

Positivity bounds requires: ¢ > ()

P(X) models with ¢ < () cannot admit a local/Poincare
invariant UV completion

Adams et. al. 2006



DBI versus anti-DBI

LRI ~ —\/'1 + (09)?

Model relevant for inflation
(09)" = —¢” = —1

Model that naturally emerges as
probe brane in extra dimension

No obstructions to standard
UV completion (known so far)

Model relevant for dark energy with
screening in dense environments

(09)* = ¢'(r)? = 1

Model that naturally emerges as probe
brane in extra time dimension...

Known obstructions to
standard UV completion



Extension away from forward
scattering lhmait

So tar we have only used Optical Theorem in the forward
scattering limit, and not the full implications of Unitarity

S S —, ey VIR
A(s, 1) = 16m \// P N (20 + 1)Ps(cos 6)ag(s)
s —4m* —

‘(:()

9

Imap(s) = |ag(s)|” + - -

0 < |ag(s)?] <Imay(s) <1 for s> 4m”



Extension away from forward
scattering lhmait

S - /- , . /Y
HEY {3 ; (20 4+ 1)Pe(cost)ap(s)
Y 8§ — 4m~= —

r=0

Ima;(s) >0, s> 4m?

d" : 4 iy 0
—ImA(s,t) > () USIng Pl M
dt™ t=0

ImA(s,t) >0, 0<t<4m*, s> 4m”

dM 2M! /OO ImA(u,t)
dSM s A

2
— = d
B(2m* —t/2,t) 1 (0= 2m2 + t/2)M

m?2



Non-torward analyticity

Theorems!
Scattering amplitude A(s,?)
is an analytic function of s for fixed t in the range

0<t<4m?

and has an imaginary part bounded by Im(A(s,t)) < as’

which continues to imply a dispersion relation
with 2 subtractions!!



Non-torward analyticity

Scattering amplitude A(s,t)

is an analytic function of s for fixed t in the range 0 < t < 4m?

. 2.1 Im(A(u.t 2.1 Im(A(u.t
A(s.1) = poles + > 77;( (t) | u / 7;@( (1, 1)
T Je2p2 H (:u _ S) T Je2pA2 M (:LL _ U)

d—ImA(s, t)

> 0 < Am?
i 0<t<4dm

t=0




Non-torward analyticity

Defining 1 92 -
f(sa t) — 9 g2 (A(S7 t) o poles)
We derive
f(s,1) >0 s between cuts
0 <t<4m?
0J(s,1) | ’ f(s,t) >0
ot 2M?

107 f(s,t) 3 [(Of(s,t) 3
2 Ot2 'ZNP(é% 'mw%ﬂ&ﬂ>>o

M ~ el or Ay



.. J-p
Hehc1ty: ol P, S, Ay = Alp, S, \)

What about general spins?

In forward limit, dispersion relation holds for helicity amplitudes

Ay xoxan,(8,0) has dispersion relation with 2 subtractions

Also applies to INDEFINITE helicity

Constrains on the mass parameters
in massive gravity

Eg. see Cheung & Remmen, JHEP 1604 (2016)
for massive gravity

And for spin -1 Proca field, see Bonifacio,
Hinterbichler & Rosen PRD94 (2016)

C3 both in the forward scattering limit

-04 =02 0.0 0.2 0.4



Can we extend these results away
from the forward scattering limit?

Very non-trivial because of 2 things

1. Crossing Symmetry is very complicated
for general spin scattering

2. Discontinuity along left hand branch
cut is no longer positive definite

3. Scattering amplitude for general spin
have a significantly more complicated
analytic structure



Crossing Symmetry for Spins

s-channel u-channel

A+B—>C+D A+D—>C+ B

A definite helicity mode transforms non-trivially under crossing

’H-‘:Sl-lenllz('s*t) = (_1)091"”(“'_)")
S Sy S
' Z d 1,\1(7" - X)di{;\. (x)d ,H:l (x —71’) ( )\)’H\W ”M)( 0, t)

N AL

—2mn/t

\/ (8 — Am?)(u — 1m?2)

d: Wigner matrices siny =

Results from change of c.o.m. frame

T

No obvious positivity properties in the %‘—Q—%, Re(s)

2nd branch cut in helicity formalism -t m? e 4m? — ¢



Analyticity for Spins

[m(s)
A

In addition to usual scalar
poles and branch cuts
we have ........

1. Kinematic (unphysical) poles at s = 4m°

2. /stu branch cuts
3. For Boson-Fermion scattering +/—su branch cuts

Origin: non-analyticities of polarization vectors/spinors



Both Problems Solvable!

Problem 2 Solution

1. Kinematic (unphysical) poles at s = 4m”

2. +/stu branch cuts
3. For Boson-Fermion scattering 1/—su branch cuts

All kinematic singularities are factorizable or removable by
taking special linear combinations of helicity amplitudes
(known historically as regularized helicity amplitudes)



Iransversity Formalism

Problem 1 Solution Change of Basis

Helicity Transversity

p/V \
_ St 52 o S S2%
7_17_27_37_4 o u>\17'1 A2T2 T'T3A3 7'4)\47_[)‘1)‘2)‘3)‘4
)\1>\2)\3)\4

Crossing now 1-1 between s and u channel:

Hoaydapy pa(8:1) = (1) S (1 —=A1)

. Z d) \1(’-r - )(1 HA2 (X ’ul; l(X )dl 12 ( X)Hz\lu.-_:-,ul.kg(“’at)
N AL

T? (s,t,u) = et 2 TiXTY (u,t,s)

T1T2T3T4 —T1—T4—T3—T2

Nasty :(



Problem 2 Solution

Iransversity Formalism

Work with regularized transversity amplitudes

7-7;27374 (5,0) = (\/ _Su)g‘SSlJFSQ (7-71727374 (5,0) + Trimprsra (S, _‘9))

S = s(s — 4m?)
Example:

Tree level scalar fermion scattering; Lint = MEC VAPB ng

) . _ AS .V stu
TS omo(s,t,0) = T00 " = My (03)ur (1) = J—suv/S (_u e ) Orims NaSty :(

T o 0(s, t,u) = —2A5U 67y 1

710730



Analyticity
Punch line: The specific combinations:

7?{7-27-37-4 (57 9) — (\/ _Su)§SS1+SQ (7;1727374 (37 9) + 7;1727374 (57 _9))

Im(s) ..
- have the same analyticity structure

2 4m2

Re(s) Implies Dispersion Relation

m¢ 3m
1 dVs

f7'1’7'2(87t) — NS' dSNS’];jTQTlTQ(S?t)

f (U t) = l foo du AbSS7;'—1|_T27'17'2 (:U’a t) + i Jw dMAbSuﬁ_ll_Tm'sz (4m2 —t— t)
TR T Jamz  (p—2m2 +t/2 —v)Nstl 1 )0 (1 —2m? +1/2 + U)NSijlA '



(General Spin Positivity Bounds
7:'_1|—7'27'37'4 (37 ‘9) — ( V _Su)£SS1+SQ (7;'17'27'37'4 (57 '9) + 7;'17'27'37'4 (87 _9))

1 dVs
NS! dSNSﬁlTQTlTQ(‘%t)

f7'17'2 (37 t) —

Following Identical Steps to the Scalar Case:

Frims(0,1) > 0. No =2+ 25 +5) ++

% Ng + 1
%fTﬂ'z(Uat) | 2M2 leTQ(v7t) > 07

15_2][ (vt)'NS_l_l % Ng + 1
2&152 7172\ Y ! 2M2 (%leTQ (U,t) | 2M2 leTQ(/Uat)) > 07




Application Massive Spin 1

LEEFT of Heavy Higgs Mechanism

1 v 1 2 ag 4 ai %
EProca - _ZF’LLF# — §¢,u T A_35¢'LL T A_;;au¢v¢u¢
1 1 (874
5 (a3(6,0"0)? + a1(0u006")? + 56200507 6")
@
m2 2
na (a1 FEFYFOFS + co(F )
@
m? 2 72
-+ A—?b (Cl¢u¢ F ’LLFO{V + 02¢MF04£) 9 - w -
B A Ly = A;ﬁ F : g
Ay Ay

b = Dy = 66 T A, scon (2 (5) - (2)

¢



Application Massive Spin 1

Same action in Unitarv Gauge
Y & b, = Do = 0t + mA,

unitar 1 U 1 2 m4
£Pr0cay _ZFNF’LL — 5777, A A'LL + A4 (A A’u)
m4
A6 (asA A ot A0 AP + ag A A0, AFOP AY + as A, AFO AﬁgﬁAO‘)
m2 9 m4 5
" AT (W FYFJFIF] + ea(F,,)°) + AT (CLA,AY Py, + CoF2, Ay A”)



Iransversity Amplitudes

~

Transversity Polarizations: ¢ (p, Esinf + imcos 6,0, E cos F imsin )

§ =5 — 4m?
4 . m_6 m2 (Gm4 + x)

764600 — 25252 (247;4(10 — 835 (a4 + Ch + 202) + 8 A6 (Cl T 202)) ’
b b s

oz —4m2(t — 4m? 1 m?
_+11_11 = 28282[ 154 ) (CLO — 5@(&4 — 4(01 + 202) + Cl))
) )

3 2 3 3
_|__ﬂ (a3 + a4 — 2a5) — m ot (—as — a4 + as + 501 + 202)

6 6 )
8A, Ay \2
2,22 2
N m*s°§(st — 4m-u) 1 u s —t
= dag — == (ag + Cy) + 2
Tor01 A;ls ¢ 2A3§ (a3 1) Aé C1
t 2t — 4m? t — 4m? m?s253(s — u)
+A—35(_a4 + a5) —1 Ai co + 2 Aé Co 2/\2 (ag + 4cq + Cl) .
T+ 25% 19, 51 32) 4+ Am2s(8t2 + 85 + 52 2m” 9 C
1111_/\—35[8@ + 5§ + 5%) + 4m~s(8t° + ts+s)] aO+A—i(Cl+ co — C9)

—I—m [§2(4m23 — 3tu) + 16m*t(t + §)(3s — 4m2)] (a3 + a4 — 2as) ,
@



Forward Limit Bounds

1 1
Indefinite Transversities: =gl tan). B = 0p A
8 1 m?
fosl_y = 1 (ao “aaz o cﬁ) s 18, (3.1
2
+ 4Aﬁ6 (a3 — 2a4 + 2a5 + C1 + 4C2) (Re[agay|Re[358+] — Re[a” oy JRe[5* 51])
¢
2 2
+ =5 (a3 + C1) (Jax P8P + |+ )
¢
8 2
+ —get (Jaol” + o) (1Bof + 8-I?)
¢
2
+ 8%(01 + 4¢o) (|04050 —a B’ - QIm[&ﬁ@—]Im[ﬁgﬁ—])
¢
Positivity Bounds:

ag > 0, c1 >0, ci+2c >0, and a3+ Ci >0



Beyond Forward Lamat

- daz + a4 — 2as

O fug| = 2B LT g p
¢
0 Ng + 1
%le’TQ 2M2 f7'17'2 > ()
Positivity Bounds:

3(&3 + A4 — 2&5) + 112ag % 0



Application Massive Spin 2

Unitary Gauge Massive Gravity

Einstein-Hilbert Mass Term
M m?
Lo —=|Rlg] Vg, h)
2 4
Parameterize mass V(@5 21021~ [0 + (1 = D[R] + (es + )[R][A]
term as + (dy 4+ 3 — 3¢1)[h*] + (d3 — > co)[h?]? + ..

4

Whel‘e [h] = ﬁ””hum [h2] = U“”huano‘ﬁhﬁw

ds

—d1/2—|—3/32—|—Ad, 622—361/2—|—1/4—|—AC



Application Massive Spin 2

Forward Limit

0? 352
2M1:2)1m6wfaﬁ|t:0 =7|04565|2 (AC (—6 + 9(31 — 4AC) — 6Ad)

176

+ ?agﬁg’i(avl 51/1 — aVQ/BVQ) Ac (3 — 3c1 + 4AC)

Positivity for general helicity implies: Ac =0

Beyond forward % Frim(0,1) o AL%OACZJFO (T—;) > 0
Ad = 0

These are precisely the tunings that raise the cutoft from

A5 — (m4MPlanck)1/5 AS — (77/7/2A]\4P1alr1(:k)1/3



Summary

For the 2-2 scattering amplitude for four particles
of difterent masses and spins

(bosons AND fermions)

SA,MA

R R

SBamB

We have been able to derive an infinite
number of conditions on s and t derivatives
of transversity scattering amplitude
which impose positive properties on
B b, combinations of coefficients in the EFT
Sc,m¢ Sp,Mp

Largest set of conditions we know 11 the case of Massive Spin 2, positivity
: : _ 2 1/3
EFT admits a local UV completion  the cutoff to Az = (m* Mpianck) /



