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Introduction

Outline

SMEFT limits from high-energy dilepton tails

 

Application to neutral-current B-physics anomalies
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Indirect searches of New Physics
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The SM EFT allows to describe the low-energy effects of heavy New Physics

SM + heavy New Physics
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1 Introduction

Cubic and quartic self-interactions of the electroweak gauge bosons are present in the Stan-

dard Model (SM) due to the underlying non-abelian gauge symmetry, and are completely

fixed by the gauge couplings, namely, the electromagnetic coupling constant e and the

weak mixing angle s✓ ⌘ sin ✓W . This, however, is not the case in a general Beyond the

Standard Model (BSM) scenario. Therefore, processes that are sensitive to gauge boson

self-interactions are important tools used to search for nonstandard e↵ects.

In this work we focus on general BSM contributions to the cubic electroweak gauge

bosons interactions, employing the linear E↵ective Field Theory (EFT) framework, also

known as the Standard Model E↵ective Field Theory (SMEFT). In this model-independent

approach, the SM (with the Higgs embedded in an SU(2)L doublet) is extended by non-

renormalizable gauge-invariant operators with canonical dimensions D > 4 which encode

the e↵ects of some new physics with a mass scale ⇤ much larger than the electroweak scale.

The BSM e↵ects are thus organized as an expansion in 1/⇤, and the leading lepton-number-

conserving terms are O(⇤�2) generated by D = 6 operators in the SMEFT Lagrangian:

L
e↵ = LSM +

X

i

c(6)
i

⇤2
O

(6)
i

+
X

j

c(8)
j

⇤4
O

(8)
j

+ . . . . (1.1)

– 1 –

Precision measurements of SM processes can allow to test 
New Physics at scales not reachable by direct searches.

We can describe small deviations from the SM 
in an expansion of Energy over the mass scale of New Physics.
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Two broad strategies for looking for deviations from the SM

Deviations in on-shell* 
couplings between SM 
particles

1)

2) Deviations in the tails of 
differential distributions

ABSM / ASM ~ E2
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Z(W)-pole observables, Higgs couplings,..
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Λ ≳ 3 TeV
g* ~ 1
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(6)
i

(18)

⇠ �
1

2M2
V

✓
igHH

†
�
i
$
DµH + gq q̄L�µ�

i
qL

◆2

(19)

1

LEP-I:

At LHC these measurements are limited by systematic (incl. theory) 
uncertainties. 

Not much room for improvement beyond ~ (few) % level  
[few exceptions, e.g. mW ]

The relative deviation 
from the SM is:
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Deviations in the tails of 2 → 2  processes
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Ŝ = ↵iĉ
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p ~ 2 TeV

g* ~ 1
Λ ≳ 6 TeV
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[see e.g. Farina et al. 1609.08157]'Energy helps accuracy’
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Deviations in the tails of 2 → 2  processes
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(6)
i

(17)

�g1,z = �iĉ
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[see e.g. Farina et al. 1609.08157]'Energy helps accuracy’

Less precise measurements at high energy can be 
competitive with very precise ones at low energy.

We focus on operators 
whose interfering amplitude with the SM 
grows quadratically with the energy
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EFT validity
Any experimental limit in the 
EFT approach will be on the 
combination

Ellis, Sanz 1410.7703; 
Greljo et al. 1512.06135; 

Plehn et al. 1510.03443,1602.05202; 
Contino et al. 1604.06444; 

Falkowski et al. 1609.06312; 
…
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EFT validity
Any experimental limit in the 
EFT approach will be on the 
combination

Ellis, Sanz 1410.7703; 
Greljo et al. 1512.06135; 

Plehn et al. 1510.03443,1602.05202; 
Contino et al. 1604.06444; 

Falkowski et al. 1609.06312; 
…

Bad precision at high energy 
could mean that no scenario is 
being probed consistently with 
the EFT. 

Increasing the precision 
enlarges the size of the triangle, 
accessing more weakly coupled 
models.

Limit consistent 
with EFT

This region is possibly excluded by same 
search, but using a ‘direct search’ approach.
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2 → 2 processes at high-pT

8

 

Diboson (and VH) production
Dilepton production

at high mℓℓ

In this talk I will focus on:

Constraints on 
qqHDμH operators. 

or anomalous triple-gauge couplings 
(aTGC)

Constraints on qqℓℓ 
four-fermion operators

See e.g. 1712.01310
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LEP-2  ff̅  data

Z / γ

e+

e- f̅

f e+

e- f̅

f

+

The Z (or γ) is off-shell

This bounds four-fermion operators

W and Y parameters of  
[Barbieri et al. hep-ph/0405040]

~ 10-3   precision from LEP

Assuming “universality" (i.e. only Z,W propagators are affected)

See [Falkowski et al. 1511.07434] for 
global fit of 4-lepton operators

Energy helps accuracy: electroweak precision tests at hadron colliders

Marco Farina,1, ⇤ Giuliano Panico,2, † Duccio Pappadopulo,3, ‡ Joshua
T. Ruderman,3, § Riccardo Torre,4, ¶ and Andrea Wulzer4, 5, 6, ⇤⇤

1
New High Energy Theory Center, Department of Physics, Rutgers University,

136 Frelinghuisen Road, Piscataway, NJ 08854, USA
2
IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain

3
Center for Cosmology and Particle Physics,

Department of Physics, New York University, New York, NY 10003, USA
4
Institut de Théorie des Phénomenes Physiques, EPFL, Lausanne, Switzerland

5
Theoretical Physics Department, CERN, Geneva, Switzerland

6
Dipartimento di Fisica e Astronomia, Universitá di Padova, Italy

We show that high energy measurements of Drell-Yan at the LHC can serve as electroweak
precision tests. Dimension-6 operators, from the Standard Model E↵ective Field Theory, modify the
high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton
invariant mass spectrum, from neutral current Drell-Yan at 8 TeV, have comparable sensitivity to
LEP. We propose measuring the transverse mass spectrum of charged current Drell-Yan, which can
surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new
precision frontier.

Introduction.— Hadron colliders are often viewed as
“discovery machines.” They have limited precision, due
to their messy QCD environments, but their high Cen-
ter of Mass (CoM) energies allow them to directly pro-
duce new, heavy, particles. Hadron colliders are of-
ten contrasted with less energetic lepton colliders, which
can reach high precision to indirectly probe new heavy
physics, as exemplified by LEP, which tested the elec-
troweak sector of the Standard Model (SM) with unprece-
dented per-mill accuracy [1].

The flaws in this argument are well known to practi-
tioners of E↵ective Field Theory (EFT). Probing heavy
new physics, described by a mass scale M , at energies
E ⌧ M , gives a correction to observables scaling as
(E/M)n, for some n � 0. For those observables with
n > 0, hadron colliders benefit from the high CoM en-
ergy [2–7]. Is the energy enhancement at hadron colliders
su�cient to beat the precision of lepton colliders?

We address this question by studying the e↵ect of “uni-
versal” new physics [8] on neutral and charged Drell-Yan
(DY) [9] processes: pp ! `+`� and pp ! `⌫. Uni-
versal theories include scenarios with new heavy vectors
that mix with SM ones [10–15], new electroweak charged
particles [16], and electroweak gauge boson composite-
ness [17]. The e↵ects of universal new physics on DY
process can be parameterized as modifications of elec-
troweak gauge boson propagators and encapsulated in
the “oblique parameters” [18]. At leading order in a
derivative expansion they correspond to Ŝ, T̂, W, and
Y [8], which modify the �, Z, and W propagators. The
e↵ects of Ŝ and T̂ on DY processes do not grow with en-
ergy, making it di�cult for the LHC to surpass stringent
constraints from LEP [1]. On the other hand, W and

Y, which are generated by the dimension-6 operators of
table I, give rise to e↵ects that grow with energy.

We find that neutral DY has comparable sensitivity
to W and Y as LEP, already at 8TeV. This sensitiv-
ity follows from the growth in energy, as well as the
percent-level precision achieved by LHC experiments [19–
25], Parton Distribution Function (PDF) determination,
and NNLO calculations [26–32]. We propose that the
LHC can carry out similar measurements in charged DY
(using the transverse mass spectrum), which with cur-
rent data is sensitive to W far beyond LEP. We project
the sensitivity of the 13 TeV LHC, and future hadron
colliders, and find spectacular reach to probe W and Y.
While we propose to use DY for electroweak preci-

sion tests, previous studies have shown DY can probe
4-fermion contact operators [33–37], the running of elec-
troweak gauge couplings [38, 39], and quantum e↵ects
from superpartners [40, 41].

universal form factor (L) contact operator (L0)

W � W
4m2

W
(D⇢W

a
µ⌫)

2 � g22W

2m2
W
JL

a
µJL

µ
a

Y � Y
4m2

W
(@⇢Bµ⌫)

2 � g21Y

2m2
W
JY µJY

µ

TABLE I. The parameters W and Y in their “universal” form

(left), and as products of currents related by the equation of

motion (right). We dropped corrections to trilinear gauge cou-

plings.

EWPT from DY.— The 4 parameters Ŝ, T̂, W, and Y
modify the SM neutral and charged vector boson propa-
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A very simple process. 

In full generality, at dim-6 
in the EFT expansion:

Extra local interactions

The main observable is the ℓℓ invariant mass distribution. 
Don’t even need a Lagrangian to describe it:

2

v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators
is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the propagating physical poles
(photon and Z boson), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
R

i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
tent). Therefore, consistently including those corrections

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

in the SM prediction is enough to achieve good theoreti-
cal accuracy. It is still useful to define the differential LFU
ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
the connection to flavour in Section 3, we limit our atten-
tion to the (L̄L)(L̄L) operators with muons given in the first
line of Eq. (1). For this purpose, it is useful to rearrange the
terms relevant to p p ! µ+µ� as:1

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

The CUµ and CDµ matrices carry the flavour structure of
the operators. Since the top quark does not appear in the
process under study we can neglect the corresponding terms.
Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

2

v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators
is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the propagating physical poles
(photon and Z boson), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
R

i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
tent). Therefore, consistently including those corrections

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

in the SM prediction is enough to achieve good theoreti-
cal accuracy. It is still useful to define the differential LFU
ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
the connection to flavour in Section 3, we limit our atten-
tion to the (L̄L)(L̄L) operators with muons given in the first
line of Eq. (1). For this purpose, it is useful to rearrange the
terms relevant to p p ! µ+µ� as:1

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

The CUµ and CDµ matrices carry the flavour structure of
the operators. Since the top quark does not appear in the
process under study we can neglect the corresponding terms.
Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

Local interactions, i.e. 
4-fermion operators.

[Greljo, D.M. 1704.09015]
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A very simple process. 

In full generality, at dim-6 
in the EFT expansion:

Extra local interactions

2

v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators
is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the propagating physical poles
(photon and Z boson), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
R

i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
tent). Therefore, consistently including those corrections

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

in the SM prediction is enough to achieve good theoreti-
cal accuracy. It is still useful to define the differential LFU
ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
the connection to flavour in Section 3, we limit our atten-
tion to the (L̄L)(L̄L) operators with muons given in the first
line of Eq. (1). For this purpose, it is useful to rearrange the
terms relevant to p p ! µ+µ� as:1

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

The CUµ and CDµ matrices carry the flavour structure of
the operators. Since the top quark does not appear in the
process under study we can neglect the corresponding terms.
Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

Convolute with parton lumi:

2

v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators
is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the propagating physical poles
(photon and Z boson), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
R

i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
tent). Therefore, consistently including those corrections

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

in the SM prediction is enough to achieve good theoreti-
cal accuracy. It is still useful to define the differential LFU
ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
the connection to flavour in Section 3, we limit our atten-
tion to the (L̄L)(L̄L) operators with muons given in the first
line of Eq. (1). For this purpose, it is useful to rearrange the
terms relevant to p p ! µ+µ� as:1
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v2 (ūi
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v2 (d̄i
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L)(µ̄Lgµ µL) , (6)

The CUµ and CDµ matrices carry the flavour structure of
the operators. Since the top quark does not appear in the
process under study we can neglect the corresponding terms.
Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22
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The main observable is the ℓℓ invariant mass distribution. 
Don’t even need a Lagrangian to describe it:
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v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
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is:
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L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)
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T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:
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eq`
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v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
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i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),
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p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
tent). Therefore, consistently including those corrections
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where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the propagating physical poles
(photon and Z boson), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
R

i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
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in the SM prediction is enough to achieve good theoreti-
cal accuracy. It is still useful to define the differential LFU
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which is a both theoretically and experimentally cleaner
observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
the connection to flavour in Section 3, we limit our atten-
tion to the (L̄L)(L̄L) operators with muons given in the first
line of Eq. (1). For this purpose, it is useful to rearrange the
terms relevant to p p ! µ+µ� as:1
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v2 (ūi
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L)(µ̄Lgµ µL)+
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v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

The CUµ and CDµ matrices carry the flavour structure of
the operators. Since the top quark does not appear in the
process under study we can neglect the corresponding terms.
Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

Local interactions, i.e. 
4-fermion operators.

[Greljo, D.M. 1704.09015]
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Just rescale the SM prediction with 
this factor and compare with the 
experimental results.
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observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
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the operators. Since the top quark does not appear in the
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Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
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Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass (m``) after selection, for data
and the SM background estimates as well as their ratio before and after marginalisation. Selected Z0

� signals with a
pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in log(m``) and the shaded
band in the lower panels illustrates the total systematic uncertainty, as explained in Sec. 7. The data points are
shown together with their statistical uncertainty.

A search for Z0
� signals as well as generic Z0 signals with widths from 1% to 12% is performed utilising

the LLR test described in Ref. [54]. This second approach is specifically sensitive to narrow Z0-like
signals, and is thus complimentary to the more general BH approach. To perform the LLR search, the
Histfactory [55] package, together with RooStats [56] and RooFit [57] packages are used. The p-value
for finding a Z0

� signal excess (at a given pole mass), as well as variable width generic Z0 excess (at a
given central mass and with a given width), more significant than the observed, is computed analytically,
using the test statistic q0. The test statistic q0 is based on the logarithm of the profile likelihood ratio �(µ).
The test statistic is modified for signal masses below 1.5 TeV to also quantify the significance of potential
deficits in the data. As in the BH search the SM background model is constructed using the modes of
marginalised posteriors of the nuisance parameters from the MCMC, and these nuisance parameters are
not included in the likelihood at this stage. Starting with mZ 0 of 150 GeV, multiple mass hypotheses are
tested in pole mass steps corresponding to the histogram bin width to compute the local p-values — that
is p-values corresponding to specific signal mass hypotheses. Simulated experiments (for mZ 0 > 1.5 TeV)
and asymptotic relations (for mZ 0 < 1.5 TeV) in Ref. [54] are used to estimate the global p-value, which
is the probability to find anywhere in the m`` distribution a Z0-like excess more significant than that
observed in the data.

10 Results

The data, scrutinised with the statistical tests described in the previous section, show no significant ex-
cesses. The LLR tests for a Z0

� find global p-values of 58%, 91% and 83% in the dielectron, dimuon,
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Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass (m``) after selection, for data
and the SM background estimates as well as their ratio before and after marginalisation. Selected Z0

� signals with a
pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in log(m``) and the shaded
band in the lower panels illustrates the total systematic uncertainty, as explained in Sec. 7. The data points are
shown together with their statistical uncertainty.

A search for Z0
� signals as well as generic Z0 signals with widths from 1% to 12% is performed utilising

the LLR test described in Ref. [54]. This second approach is specifically sensitive to narrow Z0-like
signals, and is thus complimentary to the more general BH approach. To perform the LLR search, the
Histfactory [55] package, together with RooStats [56] and RooFit [57] packages are used. The p-value
for finding a Z0

� signal excess (at a given pole mass), as well as variable width generic Z0 excess (at a
given central mass and with a given width), more significant than the observed, is computed analytically,
using the test statistic q0. The test statistic q0 is based on the logarithm of the profile likelihood ratio �(µ).
The test statistic is modified for signal masses below 1.5 TeV to also quantify the significance of potential
deficits in the data. As in the BH search the SM background model is constructed using the modes of
marginalised posteriors of the nuisance parameters from the MCMC, and these nuisance parameters are
not included in the likelihood at this stage. Starting with mZ 0 of 150 GeV, multiple mass hypotheses are
tested in pole mass steps corresponding to the histogram bin width to compute the local p-values — that
is p-values corresponding to specific signal mass hypotheses. Simulated experiments (for mZ 0 > 1.5 TeV)
and asymptotic relations (for mZ 0 < 1.5 TeV) in Ref. [54] are used to estimate the global p-value, which
is the probability to find anywhere in the m`` distribution a Z0-like excess more significant than that
observed in the data.

10 Results

The data, scrutinised with the statistical tests described in the previous section, show no significant ex-
cesses. The LLR tests for a Z0

� find global p-values of 58%, 91% and 83% in the dielectron, dimuon,
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v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators
is:

L
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c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
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L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)
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QCD and EW corrections are 
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reduce theory uncertainties in the 
SM prediction.

Tests of LFU are strongly 
motivated by the  
B-physics anomalies.

Differential LFU ratio
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Limits on 36 4-fermion operators








































































































Neglecting flavour-violation, in the Warsaw basis there are 
36 independent qqℓℓ (ℓ=e,μ) operators which interfere with 
the SM amplitude (i.e. vector-type) in pp→ℓ+ℓ-.

Having different chiralities and field content, they do not 
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Limits on 36 4-fermion operators

8

Ci ATLAS 36.1 fb�1 3000 fb�1

C(1)
Q1L2 [-5.73, 14.2] ⇥10�4 [-1.30, 1.51] ⇥10�4

C(3)
Q1L2 [-7.11, 2.84] ⇥10�4 [-5.25, 5.25] ⇥10�5

CuRL2 [-0.84, 1.61] ⇥10�3 [-2.00, 2.66] ⇥10�4

CuRµR [-0.52, 1.36] ⇥10�3 [-1.04, 1.08] ⇥10�4

CQ1µR
[-0.82, 1.27] ⇥10�3 [-2.25, 4.10] ⇥10�4

CdRL2 [-2.13, 1.61] ⇥10�3 [-8.98, 5.11] ⇥10�4

CdRµR [-2.31, 1.34] ⇥10�3 [-4.89, 3.33] ⇥10�4

C(1)
Q2L2 [-8.84, 7.35] ⇥10�3 [-3.83, 2.39] ⇥10�3

C(3)
Q2L2 [-9.75, 5.56] ⇥10�3 [-1.43, 1.15] ⇥10�3

CQ2µR
[-7.53, 8.67] ⇥10�3 [-2.58, 3.73] ⇥10�3

CsRL2 [-1.04 , 0.93] ⇥10�2 [-4.42, 3.33] ⇥10�3

CsRµR [-1.09 , 0.87] ⇥10�2 [-4.67, 2.73] ⇥10�3

CcRL2 [-1.33, 1.52] ⇥10�2 [-4.58, 6.54] ⇥10�3

CcRµR [-1.21, 1.62] ⇥10�2 [-3.48, 6.32] ⇥10�3

CbLL2 [-2.61, 2.07] ⇥10�2 [-11.1, 6.33] ⇥10�3

CbLµR [-2.28, 2.42] ⇥10�2 [-8.53, 10.0] ⇥10�3

CbRL2 [-2.41, 2.29] ⇥10�2 [-9.90, 8.68] ⇥10�3

CbRµR [-2.47, 2.23] ⇥10�2 [-10.5, 7.97] ⇥10�3

Ci ATLAS 36.1 fb�1 3000 fb�1

C(1)
Q1L1 [-0.0, 1.75] ⇥10�3 [-1.01, 1.13] ⇥10�4

C(3)
Q1L1 [-8.92, -0.54] ⇥10�4 [-3.99, 3.93] ⇥10�5

CuRL1 [-0.19, 1.92] ⇥10�3 [-1.56, 1.92] ⇥10�4

CuReR [0.15, 2.06] ⇥10�3 [-7.89, 8.23] ⇥10�5

CQ1eR
[-0.40, 1.37] ⇥10�3 [-1.8, 2.85] ⇥10�4

CdRL1 [-2.1, 1.04] ⇥10�3 [-7.59, 4.23] ⇥10�4

CdReR [-2.55, 0.46] ⇥10�3 [-3.37, 2.59] ⇥10�4

C(1)
Q2L1 [-6.62, 4.36] ⇥10�3 [-3.31, 1.92] ⇥10�3

C(3)
Q2L1 [-8.24, 2.05] ⇥10�3 [-8.87, 7.90] ⇥10�4

CQ2eR
[-4.67, 6.34] ⇥10�3 [-2.11, 3.30] ⇥10�3

CsRL1 [-7.4 , 5.9] ⇥10�3 [-3.96, 2.8] ⇥10�3

CsReR [-8.17, 5.06] ⇥10�3 [-3.82, 2.13] ⇥10�3

CcRL1 [-0.83, 1.13] ⇥10�2 [-3.74, 5.77] ⇥10�3

CcReR [-0.67, 1.27] ⇥10�2 [-2.59, 4.17] ⇥10�3

CbLL1 [-1.93, 1.19] ⇥10�2 [-8.62, 4.82] ⇥10�3

CbLeR [-1.47, 1.67] ⇥10�2 [-7.29, 8.99] ⇥10�3

CbRL1 [-1.65, 1.49] ⇥10�2 [-8.86, 7.48] ⇥10�3

CbReR [-1.73, 1.40] ⇥10�2 [-9.38, 6.63] ⇥10�3

Table 1 One-parameter 2s limits from pp ! µ+µ�,e+e�.
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studied in details in Refs. [59,60]. We would like to point
out that similar limits would apply even for a relatively
light LQ (in the ⇠ TeV range). As an illustration, the fit to
low-energy anomalies in the model of Ref. [36] (where the
effect is loop-generated), requires large charm-muon-LQ
coupling, leading to a potentially observable c c̄ ! µ+µ�

production at high-pT . We also note that the single LQ pro-
duction at the LHC can constrain similar couplings [61].

4 Conclusions

In this work we discuss the contribution from flavour non-
universal new physics to the high-pT dilepton tails in pp!
`+`�, where ` = e,µ . In particular, we set the best up-to-
date limits on all 36 four-fermion operators in the SMEFT
which contribute to these processes by recasting the recent
13 TeV ATLAS analysis with 36.1 fb�1 of data, as well as
estimate the final sensitivity for the high-luminosity phase
at the LHC.

Recent results in rare semileptonic B meson decays
show some intriguing hints for possible violation of lepton-
flavour universality. It is particularly interesting to notice
that all the different anomalies can be coherently described
by a new physics contribution to the left-handed bL ! sLµ+

L µ�
L

contact interaction. In most flavour models, the flavour-
changing interactions are related (and usually suppressed
with respect) to the flavour diagonal ones. These, in turn,
are probed via the high-pT dimuon tail, allowing us to set
limits which are already probing interesting regions of pa-
rameter space of some models.

In particular, our limits exclude, or put in strong ten-
sion, scenarios which aim to describe the flavour anoma-
lies using MFV structure that directly relates the bsµµ
contact interaction to the ones involving first generation
quarks, tightly constrained from pp! µ+µ�. On the other
hand, scenarios with U(2)Q flavour symmetry predomi-
nantly coupled to the third generation quarks lead to milder
constraints. We also briefly discuss a few explicit examples
with heavy mediator states (colourless vectors and lepto-
quarks), and show a comparison of the limits obtained in
the EFT with those obtained directly in the model.

If these flavour anomalies will be confirmed with more
data, correlated signals at high-pT processes at LHC will
be crucial in order to decipher the responsible dynamics.
We show that the high energy dilepton tails can provide
very valuable information in this direction.
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Appendix A: dilepton cross section

The unpolarized partonic differential cross section follow-
ing from Eq. (2) is given by

dŝ
dt

=
1

48ps2 u2 �|FqL`L(s)|
2 + |FqR`R(s)|

2�

+
1

48ps2 t2 �|FqL`R(s)|
2 + |FqR`L(s)|

2� ,
(A.1)

where s, t, and u are the Mandelstam variables. The total
partonic cross section is

ŝ =
s

144p
�
|FqL`L (s)|

2 + |FqR`R (s)|
2 + |FqL`R (s)|

2 + |FqR`L (s)|
2� ,

(A.2)

while the hadronic cross section is obtained after convolut-
ing the partonic one with the corresponding parton lumi-
nosity functions

Lqq̄(t,µF) =
Z 1

t

dx
x

fq(x,µF) fq̄(t/x,µF) . (A.3)

In particular, the cross section in the dilepton invariant mass
bin

⇥
tbin

min,tbin
max

⇤
is given by

sbin(p p ! `+`�) = Â
q

Z tbin
max

tbin
min

dt 2Lqq̄(t,µF) ŝ(ts0) .

(A.4)

Appendix B: Operator limits

In Table 1 we show the present 2s limits on the 36 inde-
pendent four-fermion operators contributing to pp! `+`�

from the 13 TeV ATLAS analysis [11] with 36.1 fb�1 of
data, as well as projections for 3000 fb�1, where only one
operator is turned on at a time. The notation used is as in
Eq. (1) but the cutoff dependence has been reabsorbed as
Cx ⌘ v2

L 2 cx. In the case of operators involving bL quark, in-
stead, we keep only the combination of triplet and singlet
aligned with it, since the top quark does not enter in this
observable. In the Gaussian approximation we derived the
correlation matrix in the 36 coefficients and checked that
the only non-negligible correlation is the one among the
triplet and singlet (L̄L)(L̄L) operators with same fermion
content. This correlation is shown explicitly in the 2d fit of
Fig. 3.
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studied in details in Refs. [59,60]. We would like to point
out that similar limits would apply even for a relatively
light LQ (in the ⇠ TeV range). As an illustration, the fit to
low-energy anomalies in the model of Ref. [36] (where the
effect is loop-generated), requires large charm-muon-LQ
coupling, leading to a potentially observable c c̄ ! µ+µ�

production at high-pT . We also note that the single LQ pro-
duction at the LHC can constrain similar couplings [61].

4 Conclusions

In this work we discuss the contribution from flavour non-
universal new physics to the high-pT dilepton tails in pp!
`+`�, where ` = e,µ . In particular, we set the best up-to-
date limits on all 36 four-fermion operators in the SMEFT
which contribute to these processes by recasting the recent
13 TeV ATLAS analysis with 36.1 fb�1 of data, as well as
estimate the final sensitivity for the high-luminosity phase
at the LHC.

Recent results in rare semileptonic B meson decays
show some intriguing hints for possible violation of lepton-
flavour universality. It is particularly interesting to notice
that all the different anomalies can be coherently described
by a new physics contribution to the left-handed bL ! sLµ+

L µ�
L

contact interaction. In most flavour models, the flavour-
changing interactions are related (and usually suppressed
with respect) to the flavour diagonal ones. These, in turn,
are probed via the high-pT dimuon tail, allowing us to set
limits which are already probing interesting regions of pa-
rameter space of some models.

In particular, our limits exclude, or put in strong ten-
sion, scenarios which aim to describe the flavour anoma-
lies using MFV structure that directly relates the bsµµ
contact interaction to the ones involving first generation
quarks, tightly constrained from pp! µ+µ�. On the other
hand, scenarios with U(2)Q flavour symmetry predomi-
nantly coupled to the third generation quarks lead to milder
constraints. We also briefly discuss a few explicit examples
with heavy mediator states (colourless vectors and lepto-
quarks), and show a comparison of the limits obtained in
the EFT with those obtained directly in the model.

If these flavour anomalies will be confirmed with more
data, correlated signals at high-pT processes at LHC will
be crucial in order to decipher the responsible dynamics.
We show that the high energy dilepton tails can provide
very valuable information in this direction.
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200021-159720.

Appendix A: dilepton cross section

The unpolarized partonic differential cross section follow-
ing from Eq. (2) is given by

dŝ
dt

=
1

48ps2 u2 �|FqL`L(s)|
2 + |FqR`R(s)|

2�

+
1

48ps2 t2 �|FqL`R(s)|
2 + |FqR`L(s)|

2� ,
(A.1)

where s, t, and u are the Mandelstam variables. The total
partonic cross section is

ŝ =
s

144p
�
|FqL`L (s)|

2 + |FqR`R (s)|
2 + |FqL`R (s)|

2 + |FqR`L (s)|
2� ,

(A.2)

while the hadronic cross section is obtained after convolut-
ing the partonic one with the corresponding parton lumi-
nosity functions

Lqq̄(t,µF) =
Z 1

t

dx
x

fq(x,µF) fq̄(t/x,µF) . (A.3)

In particular, the cross section in the dilepton invariant mass
bin

⇥
tbin

min,tbin
max

⇤
is given by

sbin(p p ! `+`�) = Â
q

Z tbin
max

tbin
min

dt 2Lqq̄(t,µF) ŝ(ts0) .

(A.4)

Appendix B: Operator limits

In Table 1 we show the present 2s limits on the 36 inde-
pendent four-fermion operators contributing to pp! `+`�

from the 13 TeV ATLAS analysis [11] with 36.1 fb�1 of
data, as well as projections for 3000 fb�1, where only one
operator is turned on at a time. The notation used is as in
Eq. (1) but the cutoff dependence has been reabsorbed as
Cx ⌘ v2

L 2 cx. In the case of operators involving bL quark, in-
stead, we keep only the combination of triplet and singlet
aligned with it, since the top quark does not enter in this
observable. In the Gaussian approximation we derived the
correlation matrix in the 36 coefficients and checked that
the only non-negligible correlation is the one among the
triplet and singlet (L̄L)(L̄L) operators with same fermion
content. This correlation is shown explicitly in the 2d fit of
Fig. 3.
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FIG. 2. Projected 95% CL exclusions in the W-Y plane. Left: exclusion from neutral (purple) and charged (green) DY

from LHC measurements at various luminosities and energies, compared to LEP bounds (gray). Right: projected reach from

a 100TeV collider (notice the change of scale).

and transverse lepton mass (for charged DY) bins and
compared with the observations using a �2 test. The
value of the cross section in each bin can be written as
� = �SM (1 +

P
p apCp +

P
pq bpqCpCq), C = {W,Y},

and ap, bpq are numbers that vary bin-by-bin. The coef-
ficients ap represent the interference between the SM and
the new physics, which is the leading e↵ect in our case.
The SM cross section, �SM , is computed at NNLO QCD
using FEWZ [29–32, 43, 44]. The NNPDF2.3@NNLO
PDF [45, 46], with ↵s = 0.119, is employed for the cen-
tral value predictions at 8 and 13TeV, and to quantify
PDF uncertainties. We use NNPDF3.0@NNLO [47] for
100TeV projections. The QCD scale and PDF uncertain-
ties are included following Ref. [39]. The photon PDF is
not a significant source of uncertainty, because it was
recently determined with high precision [48].

Run-1 limits on W and Y from neutral DY are ob-
tained using the di↵erential cross section measurements
performed by ATLAS [25] and CMS [23], including the
full correlation matrix of experimental uncertainties. The
left panel of Fig. 1 shows the comparison of the ATLAS
and CMS measurements with our theoretical predictions
for the cross section in each bin in the SM (W = Y = 0)
hypothesis. Theoretical uncertainties from PDF and
scale uncertainty are displayed as a shaded band, while
the black error bars represent experimental uncertain-
ties. Our predictions reproduce observations, under the
SM hypothesis, over the whole invariant mass range. We
also notice that statistical errors are by far dominant at
high mass, the theoretical and systematical uncertain-
ties being one order of magnitude smaller, around 2%.
The right panel of Fig. 1 shows the 95% exclusion con-
tours obtained with ATLAS and CMS data in the W-Y

plane. The constraint from LEP and from other low-
energy measurements [42] is displayed as a grey region
(marginalizing over Ŝ and T̂). Run-1 limits from neutral
DY are already competitive with LEP constraints.
We project neutral/charged DY reach at 13 TeV and

at a future 100 TeV collider. We also project the reach
of 8 TeV for charged DY (di↵erential cross section mea-
surements are presently unavailable at high transverse
mass). In order to estimate experimental uncertainties,
we include fully correlated (�c) and uncorrelated (�uc) un-
certainties. For neutral DY, we use �c = �uc = 2%, com-
mensurate with uncertainties achieved in existing 8 TeV
measurements. For charged DY we use �c = �uc = 5%,
consistent with uncertainty attributed to charged DY
backgrounds to W 0 searches [49–51]. We apply the cuts
p`T > 25 GeV and |⌘`| < 2.5 on leptons, and assume
an identification e�ciency of 65% (80%) for electrons
(muons). For neutral (charged) DY we bin invariant
(transverse) mass as in Ref. [39].
Our 13 TeV results, overlaid with the LEP limit, are

shown in Fig. 2 left, for luminosities of 100, 300, and
3000 fb�1. The projected LHC limits are radically bet-
ter than present constraints. The expected Run-1 limit
on W from charged DY is shown as a dotted green band.
The reach far surpasses LEP, even with Run-1 data. Pro-
jections for 100TeV are shown to the right of Fig. 2 for
luminosities of 3 and 10 ab�1.
In order to delve deeper into our results, Fig. 3 shows

how the limit on W or Y changes if only invariant
mass (for neutral DY, left panel) or transverse mass (for
charged DY, right panel) bins below a certain threshold
⇤cut are included. We learn that our limits mainly rely on
measurements below 1 (2) TeV for

p
s = 8 (13) TeV. The
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We show that high energy measurements of Drell-Yan at the LHC can serve as electroweak
precision tests. Dimension-6 operators, from the Standard Model E↵ective Field Theory, modify the
high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton
invariant mass spectrum, from neutral current Drell-Yan at 8 TeV, have comparable sensitivity to
LEP. We propose measuring the transverse mass spectrum of charged current Drell-Yan, which can
surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new
precision frontier.

Introduction.— Hadron colliders are often viewed as
“discovery machines.” They have limited precision, due
to their messy QCD environments, but their high Cen-
ter of Mass (CoM) energies allow them to directly pro-
duce new, heavy, particles. Hadron colliders are of-
ten contrasted with less energetic lepton colliders, which
can reach high precision to indirectly probe new heavy
physics, as exemplified by LEP, which tested the elec-
troweak sector of the Standard Model (SM) with unprece-
dented per-mill accuracy [1].

The flaws in this argument are well known to practi-
tioners of E↵ective Field Theory (EFT). Probing heavy
new physics, described by a mass scale M , at energies
E ⌧ M , gives a correction to observables scaling as
(E/M)n, for some n � 0. For those observables with
n > 0, hadron colliders benefit from the high CoM en-
ergy [2–7]. Is the energy enhancement at hadron colliders
su�cient to beat the precision of lepton colliders?

We address this question by studying the e↵ect of “uni-
versal” new physics [8] on neutral and charged Drell-Yan
(DY) [9] processes: pp ! `+`� and pp ! `⌫. Uni-
versal theories include scenarios with new heavy vectors
that mix with SM ones [10–15], new electroweak charged
particles [16], and electroweak gauge boson composite-
ness [17]. The e↵ects of universal new physics on DY
process can be parameterized as modifications of elec-
troweak gauge boson propagators and encapsulated in
the “oblique parameters” [18]. At leading order in a
derivative expansion they correspond to Ŝ, T̂, W, and
Y [8], which modify the �, Z, and W propagators. The
e↵ects of Ŝ and T̂ on DY processes do not grow with en-
ergy, making it di�cult for the LHC to surpass stringent
constraints from LEP [1]. On the other hand, W and

Y, which are generated by the dimension-6 operators of
table I, give rise to e↵ects that grow with energy.

We find that neutral DY has comparable sensitivity
to W and Y as LEP, already at 8TeV. This sensitiv-
ity follows from the growth in energy, as well as the
percent-level precision achieved by LHC experiments [19–
25], Parton Distribution Function (PDF) determination,
and NNLO calculations [26–32]. We propose that the
LHC can carry out similar measurements in charged DY
(using the transverse mass spectrum), which with cur-
rent data is sensitive to W far beyond LEP. We project
the sensitivity of the 13 TeV LHC, and future hadron
colliders, and find spectacular reach to probe W and Y.
While we propose to use DY for electroweak preci-

sion tests, previous studies have shown DY can probe
4-fermion contact operators [33–37], the running of elec-
troweak gauge couplings [38, 39], and quantum e↵ects
from superpartners [40, 41].

universal form factor (L) contact operator (L0)

W � W
4m2

W
(D⇢W

a
µ⌫)

2 � g22W

2m2
W
JL

a
µJL

µ
a

Y � Y
4m2

W
(@⇢Bµ⌫)

2 � g21Y

2m2
W
JY µJY

µ

TABLE I. The parameters W and Y in their “universal” form

(left), and as products of currents related by the equation of

motion (right). We dropped corrections to trilinear gauge cou-

plings.

EWPT from DY.— The 4 parameters Ŝ, T̂, W, and Y
modify the SM neutral and charged vector boson propa-
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We show that high energy measurements of Drell-Yan at the LHC can serve as electroweak
precision tests. Dimension-6 operators, from the Standard Model E↵ective Field Theory, modify the
high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton
invariant mass spectrum, from neutral current Drell-Yan at 8 TeV, have comparable sensitivity to
LEP. We propose measuring the transverse mass spectrum of charged current Drell-Yan, which can
surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new
precision frontier.

Introduction.— Hadron colliders are often viewed as
“discovery machines.” They have limited precision, due
to their messy QCD environments, but their high Cen-
ter of Mass (CoM) energies allow them to directly pro-
duce new, heavy, particles. Hadron colliders are of-
ten contrasted with less energetic lepton colliders, which
can reach high precision to indirectly probe new heavy
physics, as exemplified by LEP, which tested the elec-
troweak sector of the Standard Model (SM) with unprece-
dented per-mill accuracy [1].

The flaws in this argument are well known to practi-
tioners of E↵ective Field Theory (EFT). Probing heavy
new physics, described by a mass scale M , at energies
E ⌧ M , gives a correction to observables scaling as
(E/M)n, for some n � 0. For those observables with
n > 0, hadron colliders benefit from the high CoM en-
ergy [2–7]. Is the energy enhancement at hadron colliders
su�cient to beat the precision of lepton colliders?

We address this question by studying the e↵ect of “uni-
versal” new physics [8] on neutral and charged Drell-Yan
(DY) [9] processes: pp ! `+`� and pp ! `⌫. Uni-
versal theories include scenarios with new heavy vectors
that mix with SM ones [10–15], new electroweak charged
particles [16], and electroweak gauge boson composite-
ness [17]. The e↵ects of universal new physics on DY
process can be parameterized as modifications of elec-
troweak gauge boson propagators and encapsulated in
the “oblique parameters” [18]. At leading order in a
derivative expansion they correspond to Ŝ, T̂, W, and
Y [8], which modify the �, Z, and W propagators. The
e↵ects of Ŝ and T̂ on DY processes do not grow with en-
ergy, making it di�cult for the LHC to surpass stringent
constraints from LEP [1]. On the other hand, W and

Y, which are generated by the dimension-6 operators of
table I, give rise to e↵ects that grow with energy.

We find that neutral DY has comparable sensitivity
to W and Y as LEP, already at 8TeV. This sensitiv-
ity follows from the growth in energy, as well as the
percent-level precision achieved by LHC experiments [19–
25], Parton Distribution Function (PDF) determination,
and NNLO calculations [26–32]. We propose that the
LHC can carry out similar measurements in charged DY
(using the transverse mass spectrum), which with cur-
rent data is sensitive to W far beyond LEP. We project
the sensitivity of the 13 TeV LHC, and future hadron
colliders, and find spectacular reach to probe W and Y.
While we propose to use DY for electroweak preci-

sion tests, previous studies have shown DY can probe
4-fermion contact operators [33–37], the running of elec-
troweak gauge couplings [38, 39], and quantum e↵ects
from superpartners [40, 41].

universal form factor (L) contact operator (L0)

W � W
4m2

W
(D⇢W

a
µ⌫)

2 � g22W

2m2
W
JL

a
µJL

µ
a

Y � Y
4m2

W
(@⇢Bµ⌫)

2 � g21Y

2m2
W
JY µJY

µ

TABLE I. The parameters W and Y in their “universal” form

(left), and as products of currents related by the equation of

motion (right). We dropped corrections to trilinear gauge cou-

plings.

EWPT from DY.— The 4 parameters Ŝ, T̂, W, and Y
modify the SM neutral and charged vector boson propa-
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Limits from LHC are already 
competitive/better than those from 
LEP and will improve even more with 
more data.

pp→ℓν  has also potential to 
provide strong bounds!
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Controlling the EFT (II)
4
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Derivative expansion
breakdown

FIG. 3. Projected bounds as a function of a cuto↵ on the mass variable. The gray region corresponds to ⇤cut > ⇤max from

Eq. 2. Left: Bounds on W(with Y = 0) or Y(with W = 0) from neutral DY including only events with the dilepton invariant

mass smaller than ⇤cut. Right: Bounds on W from charged DY including only events with the lepton transverse mass smaller

than ⇤cut.

dramatic improvement of reach with
p
s is a direct conse-

quence of how the relevant bins scale with
p
s, as visible

in Fig. 3, leading to an improvement of sensitivity to W or
Y that scales as q2/m2

W / s. By highlighting the relevant
bins, Fig. 3 illustrates the ranges of invariant/transverse
mass where percent-level experimental systematics will
be important. The e↵ect of varying the systematic un-
certainties down (2%) or up (10%) with respect to our
estimate (i.e., 5% for charged DY) is shown on the right
panel of Fig. 3.

The shape of the limit/reach contours in the W-Y
plane can be understood as follows. The interference
term in the partonic neutral DY cross section depends on
a q2-independent linear combination of W and Y, when
integrated over angles. The orthogonal combination is
only constrained when W and Y are large enough for
quadratic terms to be relevant. In view of the strong con-
straint expected on W from charged DY, this flat direc-
tion is irrelevant in practice. However, we note that the
flat direction can in principle be constrained with neutral
DY only, using angular information such as the energy
dependence of forward-backward asymmetries [35]. In
practice, this does not improve the 8TeV limits (due to
the dominance of the qLqR ! l�L l

+
R amplitude), but may

be significant at higher energies/luminosities. We leave a
full study of the power of angular distributions to future
work.

Beyond EFT’s.— When using EFTs to describe high
energy processes, one has to keep in mind that an EFT
provides an accurate description of the underlying new
physics only at energies below the new physics scale. The
latter scale is the EFT cuto↵ and it should be regarded
as a free parameter of the EFT [55]. A related concept
is that of “maximal cuto↵”, which is the maximal new
physics scale that can produce an EFT operator of a
given magnitude (e.g., a given value of W or Y). The
EFT limits become inconsistent if they come from ener-
gies above the cuto↵. This concept has been addressed

in DM EFT searches [55, 56] and electroweak EFT stud-
ies [57]. Depending on whether we consider new physics
that directly generates contact interactions (L0), or mod-
ifies the vacuum polarizations (L), the maximal cuto↵
estimate is,

⇤0 ⌘ 4⇡mW /g2

max(
p
W, t

p
Y)

, ⇤ ⌘ mW

max(
p
W,

p
Y)

< ⇤0 . (2)

The first estimate comes from demanding 2 ! 2 ampli-
tudes induced by L0 not to exceed the 16⇡2 perturbativity
bound, the second one from the validity of the deriva-
tive expansion, taking into account that L is a higher-
derivative correction to the (canonically normalized) vec-
tor boson kinetic terms. There is no contradiction in the
fact that the two pictures have di↵erent cuto↵s since L
and L0 are equivalent only if the d > 6 operators induced
by the field redefinition are negligible (as is the case when
q < ⇤).
In order to quantify the impact of the limited EFT

validity, Fig. 3 shows how the reach deteriorates when
only data below the cuto↵ are employed.2 If the resulting
curve stays below the maximal cuto↵ lines corresponding
to Eq. (2), as in our case, the EFT limit is self-consistent.
The right panel of Fig. 3 also shows how lowering the
systematic uncertainties moves the limit curve far from
the maximal cuto↵ line. This allows to test EFTs with
below maximal cuto↵s.
Our results can be applied to various new physics sce-

narios. Higher derivative corrections to the SM gauge bo-
son kinetic terms directly test their compositeness above
a scale ⇤2 ⇡ mW /

p
W for the SU(2) gauge fields and

2 This is not completely correct in the charged DY case because low
transverse mass bins might in principle still receive contributions
from reactions that occur at very high center of mass energies,
well above the cuto↵. A careful assessment of this point goes
beyond the purpose of the present article.
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How do the limits vary when using only events with

Limits saturate at Λcut ~ 2-3 TeV at 13TeV.
(more luminosity → more events at high energy)

?
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Application to 

B-physics anomalies
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Semi-leptonic b to s decays
FCNC: occurs only at loop-level in the SM 
            + CKM suppressed


Semi-leptonic effective Lagrangian:

L =
4GF
p
2

↵

4⇡
V ⇤
tbVts

X

i

CiOi + C 0
iO

0
i

Deviations from SM in several observables

• Angular distributions in B → K*µµ 

• Various branching ratios B(s) → Xs µµ 

• LFU in R(K) and R(K*) (very clean prediction!)


~ 20% NP contribution to LH current

Globally 5-6σ

b s

ℓ

ℓ̄

Vtb V ∗

ts

W

Z, γ

2

Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C
`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
Four-fermion contact interactions containing scalar cur-
rents would be a natural source of LFU violation. How-
ever, they are strongly constrained by existing measure-
ments of the Bs ! µµ and Bs ! ee branching ra-
tios [47, 48]. Imposing SU(2)L invariance, these bounds
cannot be avoided [49]. We have checked explicitly that
SU(2)L invariant scalar operators cannot lead to any ap-
preciable e↵ects in RK(⇤) (cf. [50]).

For the numerical analysis we use the open source code
flavio [51]. Based on the experimental measurements
and theory predictions for the LFU ratios RK(⇤) and
the LFU di↵erences of B ! K

⇤
`
+
`
� angular observ-

ables DP 0
4,5

(see below), we construct a �
2 function that

depends on the Wilson coe�cients and that takes into
account the correlations between theory uncertainties of
di↵erent observables. The experimental uncertainties are
presently dominated by statistics, so their correlations
can be neglected. For the SM we find �

2
SM = 24.4 for 5

degrees of freedom.
Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
The plots in Fig. 1 show contours of constant ��

2 ⇡
2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
the scenarios with NP in C

µ
9 and C

µ
10 (top), in C

µ
9 and

C
e
9 (center), or in C

µ
9 and C

0 µ
9 (bottom), assuming the

remaining coe�cients to be SM-like.
The fit prefers NP in the Wilson coe�cients corre-

sponding to left-handed quark currents with high sig-
nificance ⇠ 4�. Negative C

µ
9 and positive C

µ
10 decrease

both B(B ! Kµ
+
µ

�) and B(B ! K
⇤
µ

+
µ

�) while pos-

FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.
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Neutral-current B-anomalies

Generated at 1-loop in the SM.

Λbsµ ~ 32 TeV

Best New Physics interpretation:

1
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Angular distributions in μμ 
in B → K* μμ

> 5σ

P'5

Possibily affected by 
non-perturbative QCD corrections
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Figure 1: Deviations from the SM value RK = RK⇤ = 1 due to the various chiral operators
possibly generated by new physics in the muon (left panel) and electron (right panel) sector.
Both ratios refer to the [1.1, 6] GeV2

q
2-bin. We assumed real coe�cients, and the out-going

(in-going) arrows show the e↵ect of coe�cients equal to +1 (�1). For the sake of clarity we
only show the arrows for the coe�cients involving left-handed muons and electrons (except for
the two magenta arrows in the left-side plot, that refer to C

BSM
9,µ = (CBSM

bLµL
+ C

BSM
bLµR

)/2 = ±1).

BSM corrections. RK⇤ , in a given range of q
2, is defined in analogy with eq. (8):
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where the di↵erential decay width d�(B ! K
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µ
+
µ
�)/dq

2 actually describes the four-body
process B ! K

⇤(! K⇡)µ+
µ
�, and takes the compact form
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dq2
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The angular coe�cients I
a=s,c

i=1,2 in eq. (17) can be written in terms of the so-called transversity
amplitudes describing the decay B ! K

⇤
V

⇤ with the B meson decaying to an on-shell K
⇤

and a virtual photon or Z boson which later decays into a lepton-antilepton pair. We refer
to [29] for a comprehensive description of the computation. In the left panel of figure 2 we
show the di↵erential distribution d�(B ! K

⇤
µ
+
µ
�)/dq

2 as a function of the dilepton invariant
mass q

2. The solid black line represents the SM prediction, and we show in dashed (dotted)
red the impact of BSM corrections due to the presence of non-zero C

BSM
bLµL

(CBSM
bRµL

) taken at the
benchmark value of 1.

We now focus on the low invariant-mass range q
2 = [0.045, 1.1] GeV2, shaded in blue with

diagonal mesh in the left panel of fig 2. In this bin, the di↵erential rate is dominated by

7

D’Amico et al. 2017
Theoretically clean
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Flavor in dimuon tails?
Can we test this contact interaction 
directly at the LHC?

Λbsµ > 2.5 (4.1) TeV
present (future 3ab-1) limits:

Λbsµ ~ 32 TeVWhile for the anomaly:
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Flavor in dimuon tails?
Can we test this contact interaction 
directly at the LHC?

Λbsµ > 2.5 (4.1) TeV
present (future 3ab-1) limits:

Λbsµ ~ 32 TeVWhile for the anomaly:

In a most flavour models, this flavour-violating operator is related to 
flavour-conserving ones, which are less suppressed:

However
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LHC might test this!
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Flavor in dimuon tails?
Instead of working with Λ, I go 
back to admensional parameters:

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(1)

Cbsµ

v2
=

�
q

bs

v2
Cqµ (2)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (3)

�
µ

bs
⌧ 1 ⇤qqµ ⌧ ⇤bsµ Cbsµ =

v
2

⇤2
bsµ

(4)

1

⇤2
qqµ

⇥
�
q

bs
(s̄L�µbL) + (q̄L�µqL)

⇤
(µ̄L�

µ
µL) (5)

L �
ci

⇤2
(s̄L�

↵
bL)(µ̄L�↵µL) + h.c. (6)

�C
µ

9 = ��C
µ

10 = �0.61± 0.12 (7)

R(K(⇤)) =
B(B ! K

(⇤)
µ
+
µ
�)

B(B ! K(⇤)e+e�)
(8)

�1,s⌧ ⇠ ��3,s⌧ ⇠ (few)⇥ Vcb (9)

(CT + CS)�bs(b̄L�µsL)(⌧̄L�
µ
⌧L) (10)

(CT � CS)�bs(b̄L�µsL)(⌫̄⌧�
µ
⌫⌧ ) (11)

⇠
3y2t
16⇡2

log
M

2
X

m
2
t

CT

v2
(H†

�
a
i

$
Dµ H)(L̄3

L�
µ
�
a
L
3
L) (12)

�
CT

v2
(Q̄3

L�µ�
a
Q

3
L)(L̄

3
L�

µ
�
a
L
3
L) (13)

CT ⇠ g
2
X

v
2

M
2
X

(14)

Q
3
L = (V ⇤

tb
tL + V

⇤
cb
cL + V

⇤
ub
uL, bL)

T
(15)

R
D(⇤) ⌘ R(D(⇤))/R(D(⇤))SM = 1.234± 0.052 (16)

OVL = (b̄L�µcL)(⌫̄L�
µ
⌧L) + h.c. (17)

⇠
3y2t
16⇡2

GF
p
2
�
`

ijR0 log

✓
⇤2

m
2
t

◆
(H†

T
a
i

$
DµH)L̄i�µ�

a
L
j

(18)

R0 ⌘
g`gq

g2

m
2
W

m
2
V

' 0.13 (19)

✏H =
gHmW

gmV

(20)

1

2

v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators
is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the propagating physical poles
(photon and Z boson), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
R

i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
tent). Therefore, consistently including those corrections

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

in the SM prediction is enough to achieve good theoreti-
cal accuracy. It is still useful to define the differential LFU
ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
the connection to flavour in Section 3, we limit our atten-
tion to the (L̄L)(L̄L) operators with muons given in the first
line of Eq. (1). For this purpose, it is useful to rearrange the
terms relevant to p p ! µ+µ� as:1

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

The CUµ and CDµ matrices carry the flavour structure of
the operators. Since the top quark does not appear in the
process under study we can neglect the corresponding terms.
Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

3

we set the others to zero. In summary:

CUµ
i j =

0

@
Cuµ 0 0

0 Ccµ 0
0 0 Ctµ

1

A , CDµ
i j =

0

@
Cdµ 0 0

0 Csµ C⇤
bsµ

0 Cbsµ Cbµ

1

A .

(7)

2.2 Present limits and HL-LHC projections

In this section we derive limits on the flavour non-universal
quark-lepton contact interactions by looking in the tails of
dilepton invariant mass distributions in p p ! `+`� at the
LHC. In our analysis, we closely follow the recent ATLAS
search [11] performed at 13 TeV with 36.1 fb�1 of data.
We digitise Figure 1 of Ref. [11], which shows the dis-
tribution of dielectron and dimuon reconstructed invariant
masses after the final event selection. We perform a profile
likelihood fit to a binned histogram distribution adopting
the method from Ref. [14]. The number of signal events,
as well as the expected signal events in the SM and back-
ground processes, are directly taken from the Figure 1 of
Ref. [11]. The likelihood function (L) is constructed treat-
ing every bin as an independent Poisson variable, with the
expected number of events,

DNbin = DNbin
SM ⇥

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |Fq`(ts0)|2

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |FSM

q` (ts0)|2
, (8)

which is a function of the contact interactions. The best fit
point corresponds to the global minimum of c2 ⌘�2logL,
while ns C.L. regions are given as D c2 ⌘ c2 � c2

min <
Dns , where Dns are defined with the appropriate cumula-
tive distribution functions. In the numerical study, we use
the NNLO118 MMHT2014 parton distribution functions
set [15]. We checked that our results have a very small de-
pendence on the factorization scale variation.

Furthermore, we independently cross-check the results
by implementing the subset of operators in Eqs. (6,7) in
a FEYNRULES [16] model, and generating pp ! µ+µ�

events at 13 TeV with the same acceptance cuts as in the
ATLAS search [11] using MADGRAPH5 AMC@NLO [17].
We find good agreement between the fits performed in both
ways.

In the SMEFT, neglecting flavour-violating interactions,
there are 18 independent four-fermion operators for muons
and 18 for electrons relevant to pp ! `+`� (see Eq. (1)).
In Appendix B (Tab. 1) we provide present and projected
2s limits on all these coefficients, using the recent ATLAS
search [11]. While these limits are obtained in the sce-
nario where only one operator is considered at a time, we
checked that the 18⇥ 18 correlation matrix derived in the
Gaussian approximation does not contain any large value
(the only non-negligible correlations are among the triplet
and singlet operators with the same flavour content, which

Fig. 2 In blue (red) we show the present (projected) 2s limits on Cqµ
(flavour conserving (L̄L)(L̄L) operators) where q = u,d,s,c and b,
using 13 TeV ATLAS search in pp ! µ+µ� channel [11]. Dashed
lines show the limits when all other coefficients are marginalised,
while the solid ones show the results of one-parameter fits.

is discussed in more details below). The absence of flat di-
rections can be understood by the fact that operators with
fermions of different flavour or chirality do not interfere
with each other.

Focusing only on the (L̄L)(L̄L) operators (in the nota-
tion of Eq. (6)), the 2s limits, both from the present AT-
LAS search (blue) and projected for 3000 fb�1 (red), are
shown in Fig. 2. The solid lines show the 2s bounds when
operators are taken one at a time, while the dashed ones
show the limits when all the others are marginalised. The
small difference between the two, especially with present
accuracy, confirms what we commented above.

3 Implications for R(K) and R(K⇤)

3.1 Effective field theory discussion

Recent measurements in rare semileptonic b ! s transi-
tions provide strong hints for a new physics contribution to
bsµµ local interactions (see for example the recent anal-
yses in Refs. [18,19,20]). In particular, a good fit of the
anomaly in the differential observable P0

5 [21], together
with the hints on LFU violation in RK and RK⇤ [22,23,24],
is obtained by considering a new physics contribution to
the Cbsµ coefficient in Eqs. (6,7). In terms of the SMEFT
operators at the electroweak scale, this corresponds to a
contribution to (at least) one of the two operators in the

The flavour structure is 
predicted in a given model.

4

first row of Eq. (1) (see for example [25]). Moreover, the
triplet operator could at the same time solve the anomalies
in charged-currrent (RD(⇤) ) , see e.g. Refs. [26,27,28].

Matching at the tree level this operator to the standard
effective weak Hamiltonian describing b ! s transitions,
one finds

DCµ
9 =�DCµ

10 =
p

aVtbV ⇤
ts

Cbsµ , (9)

where a is the electromagnetic fine structure constant while
|Vts| = (40.0± 2.7)⇥ 10�3 and |Vtb| = 1.009± 0.031 are
CKM matrix elements [29].

The recent combined fit of Ref. [18] reported the best
fit value and 1s preferred range

DCµ
9 =�DCµ

10 =�0.61±0.12 . (10)

Using this result and Eq. (9), one can estimate the scale of
the relevant new physics by defining Cbsµ = g2

⇤v2/L 2, ob-
taining L/g⇤ ⇡ 32+4

�3 TeV. Depending on the value of g⇤,
i.e. from the particular UV origin of the operator, the scale
of new physics L can be within or out of the reach of LHC
direct searches. We show that even in the latter case, under
some assumptions it can be possible to observe an effect
in the dimuon high energy tail. When comparing low and
high-energy measurements, the renormalisation group ef-
fects should in principle be taken into account. Since these
effects are small in this case, we neglect it in what follows
(see for example [25]).

We concentrate on UV models in which new particles
are above the scale of threshold production at the LHC,
such that the EFT approach is applicable in the most en-
ergetic dilepton events. We stress however that even for
models with light new physics these searches can be rele-
vant.

Let us discuss the flavour structure of the CD(U)µ
i j matri-

ces in Eqs. (6,7). New physics aligned only to the strange-
bottom coupling Cbsµ will not be probed at the LHC, in
fact the present (projected) 95% CL limits from the 13 TeV
ATLAS pp ! µ+µ� analysis with 36 fb�1 (3000 fb�1) of
luminosity are
����

p
aVtbV ⇤

ts
Cbsµ

����< 100 (39) , (11)

which should be compared with the value extracted from
the global flavour fits in Eq. (10). Such a peculiar flavour
structure is possible, but not very motivated from the model
building point of view.

On the other hand, taking the b! sµ+µ� flavour anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavour models flavour-violating
couplings are related (by symmetry or dynamics) to flavour-
diagonal one(s). In this case we can use the LHC upper

Fig. 3 Present and projected 95% CL limits from pp ! µ+µ� in the
MFV case defined by Eq. (14).

limit on |Cqµ | from the dimuon high-pT tail in order to set
a lower bound on |l q

bs|, defined as the ratio

l q
bs ⌘Cbsµ/Cqµ . (12)

In the following we study such limits for several particu-
larly interesting scenarios.

1) Minimal flavour violation
Under this assumption [30] the only source of flavour vio-
lation are the SM Yukawa matrices Yu ⌘ V †diag(yu,yc,yt)
and Yd ⌘ diag(yd ,ys,yb). Using a spurion analysis one can
estimate

c(3,1)Qi jL22
⇠
⇣

1+aYuY †
u +bYdY †

d

⌘

i j
, (13)

where a,b ⇠O(1), which implies the following structure:

Cuµ =Ccµ =Ctµ ⌘CUµ ,

Cdµ =Csµ =Cbµ ⌘CDµ ,
(14)

while flavour-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ | ⇠ |VtbV ⇤

tsy2
t CDµ |. In this case

the contribution to rare B meson decays has a Vts sup-
pression, while the dilepton signal at high-pT receives an
universal contribution dominated by the valence quarks in
the proton. The flavour fit in Eq. (10) combined with this
flavour structure would imply a value of |CDµ | ⇠ 1.4 ⇥
10�3 which, as can be seen from the limits in Fig. 3, is
already probed by the ATLAS dimuon search [11] depend-
ing on the origin of the operator (i.e. from the SU(2) sin-
glet or triplet structure) and will definitely be investigated

e.g.  λbsq ~ Vts in MFV

Cbsµ is fixed by the anomaly
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Flavor in dimuon tails?
Instead of working with Λ, I go 
back to admensional parameters:
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v2/L 2. Therefore we neglect them and focus on the four-
fermion interactions which comprise of four classes de-
pending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators
is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the propagating physical poles
(photon and Z boson), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx, with v' 246 GeV. The only constraint on the contact

terms imposed by SU(2)L invariance are edLek
R

i j = euLek
R

i j =

cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorize (to a large ex-
tent). Therefore, consistently including those corrections

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

in the SM prediction is enough to achieve good theoreti-
cal accuracy. It is still useful to define the differential LFU
ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. As an illustration, we show in Fig. 1 the pre-
dictions for Rµ+µ�/e+e� at

p
s0 = 13 TeV, assuming new

physics in three benchmark operators. The parton lumi-
nosities used to derive these predictions are discussed in
the next chapter.

A goal of this work is to connect the high-pT dilep-
ton tails measurements with the recent experimental hints
on lepton flavour universality violation in rare semilep-
tonic B meson decays. The pattern of observed deviations
points towards new physics contributions in left-handed
quark currents involving muons, as discussed in the next
section in more details. For this reason, when discussing
the connection to flavour in Section 3, we limit our atten-
tion to the (L̄L)(L̄L) operators with muons given in the first
line of Eq. (1). For this purpose, it is useful to rearrange the
terms relevant to p p ! µ+µ� as:1

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

The CUµ and CDµ matrices carry the flavour structure of
the operators. Since the top quark does not appear in the
process under study we can neglect the corresponding terms.
Regarding the off-diagonal elements, we keep only the b�
s one since it is where the flavour anomalies appear, while

1The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).

3

we set the others to zero. In summary:

CUµ
i j =

0

@
Cuµ 0 0

0 Ccµ 0
0 0 Ctµ

1

A , CDµ
i j =

0

@
Cdµ 0 0

0 Csµ C⇤
bsµ

0 Cbsµ Cbµ

1

A .

(7)

2.2 Present limits and HL-LHC projections

In this section we derive limits on the flavour non-universal
quark-lepton contact interactions by looking in the tails of
dilepton invariant mass distributions in p p ! `+`� at the
LHC. In our analysis, we closely follow the recent ATLAS
search [11] performed at 13 TeV with 36.1 fb�1 of data.
We digitise Figure 1 of Ref. [11], which shows the dis-
tribution of dielectron and dimuon reconstructed invariant
masses after the final event selection. We perform a profile
likelihood fit to a binned histogram distribution adopting
the method from Ref. [14]. The number of signal events,
as well as the expected signal events in the SM and back-
ground processes, are directly taken from the Figure 1 of
Ref. [11]. The likelihood function (L) is constructed treat-
ing every bin as an independent Poisson variable, with the
expected number of events,

DNbin = DNbin
SM ⇥

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |Fq`(ts0)|2

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |FSM

q` (ts0)|2
, (8)

which is a function of the contact interactions. The best fit
point corresponds to the global minimum of c2 ⌘�2logL,
while ns C.L. regions are given as D c2 ⌘ c2 � c2

min <
Dns , where Dns are defined with the appropriate cumula-
tive distribution functions. In the numerical study, we use
the NNLO118 MMHT2014 parton distribution functions
set [15]. We checked that our results have a very small de-
pendence on the factorization scale variation.

Furthermore, we independently cross-check the results
by implementing the subset of operators in Eqs. (6,7) in
a FEYNRULES [16] model, and generating pp ! µ+µ�

events at 13 TeV with the same acceptance cuts as in the
ATLAS search [11] using MADGRAPH5 AMC@NLO [17].
We find good agreement between the fits performed in both
ways.

In the SMEFT, neglecting flavour-violating interactions,
there are 18 independent four-fermion operators for muons
and 18 for electrons relevant to pp ! `+`� (see Eq. (1)).
In Appendix B (Tab. 1) we provide present and projected
2s limits on all these coefficients, using the recent ATLAS
search [11]. While these limits are obtained in the sce-
nario where only one operator is considered at a time, we
checked that the 18⇥ 18 correlation matrix derived in the
Gaussian approximation does not contain any large value
(the only non-negligible correlations are among the triplet
and singlet operators with the same flavour content, which

Fig. 2 In blue (red) we show the present (projected) 2s limits on Cqµ
(flavour conserving (L̄L)(L̄L) operators) where q = u,d,s,c and b,
using 13 TeV ATLAS search in pp ! µ+µ� channel [11]. Dashed
lines show the limits when all other coefficients are marginalised,
while the solid ones show the results of one-parameter fits.

is discussed in more details below). The absence of flat di-
rections can be understood by the fact that operators with
fermions of different flavour or chirality do not interfere
with each other.

Focusing only on the (L̄L)(L̄L) operators (in the nota-
tion of Eq. (6)), the 2s limits, both from the present AT-
LAS search (blue) and projected for 3000 fb�1 (red), are
shown in Fig. 2. The solid lines show the 2s bounds when
operators are taken one at a time, while the dashed ones
show the limits when all the others are marginalised. The
small difference between the two, especially with present
accuracy, confirms what we commented above.

3 Implications for R(K) and R(K⇤)

3.1 Effective field theory discussion

Recent measurements in rare semileptonic b ! s transi-
tions provide strong hints for a new physics contribution to
bsµµ local interactions (see for example the recent anal-
yses in Refs. [18,19,20]). In particular, a good fit of the
anomaly in the differential observable P0

5 [21], together
with the hints on LFU violation in RK and RK⇤ [22,23,24],
is obtained by considering a new physics contribution to
the Cbsµ coefficient in Eqs. (6,7). In terms of the SMEFT
operators at the electroweak scale, this corresponds to a
contribution to (at least) one of the two operators in the

The flavour structure is 
predicted in a given model.

4

first row of Eq. (1) (see for example [25]). Moreover, the
triplet operator could at the same time solve the anomalies
in charged-currrent (RD(⇤) ) , see e.g. Refs. [26,27,28].

Matching at the tree level this operator to the standard
effective weak Hamiltonian describing b ! s transitions,
one finds

DCµ
9 =�DCµ

10 =
p

aVtbV ⇤
ts

Cbsµ , (9)

where a is the electromagnetic fine structure constant while
|Vts| = (40.0± 2.7)⇥ 10�3 and |Vtb| = 1.009± 0.031 are
CKM matrix elements [29].

The recent combined fit of Ref. [18] reported the best
fit value and 1s preferred range

DCµ
9 =�DCµ

10 =�0.61±0.12 . (10)

Using this result and Eq. (9), one can estimate the scale of
the relevant new physics by defining Cbsµ = g2

⇤v2/L 2, ob-
taining L/g⇤ ⇡ 32+4

�3 TeV. Depending on the value of g⇤,
i.e. from the particular UV origin of the operator, the scale
of new physics L can be within or out of the reach of LHC
direct searches. We show that even in the latter case, under
some assumptions it can be possible to observe an effect
in the dimuon high energy tail. When comparing low and
high-energy measurements, the renormalisation group ef-
fects should in principle be taken into account. Since these
effects are small in this case, we neglect it in what follows
(see for example [25]).

We concentrate on UV models in which new particles
are above the scale of threshold production at the LHC,
such that the EFT approach is applicable in the most en-
ergetic dilepton events. We stress however that even for
models with light new physics these searches can be rele-
vant.

Let us discuss the flavour structure of the CD(U)µ
i j matri-

ces in Eqs. (6,7). New physics aligned only to the strange-
bottom coupling Cbsµ will not be probed at the LHC, in
fact the present (projected) 95% CL limits from the 13 TeV
ATLAS pp ! µ+µ� analysis with 36 fb�1 (3000 fb�1) of
luminosity are
����

p
aVtbV ⇤

ts
Cbsµ

����< 100 (39) , (11)

which should be compared with the value extracted from
the global flavour fits in Eq. (10). Such a peculiar flavour
structure is possible, but not very motivated from the model
building point of view.

On the other hand, taking the b! sµ+µ� flavour anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavour models flavour-violating
couplings are related (by symmetry or dynamics) to flavour-
diagonal one(s). In this case we can use the LHC upper

Fig. 3 Present and projected 95% CL limits from pp ! µ+µ� in the
MFV case defined by Eq. (14).

limit on |Cqµ | from the dimuon high-pT tail in order to set
a lower bound on |l q

bs|, defined as the ratio

l q
bs ⌘Cbsµ/Cqµ . (12)

In the following we study such limits for several particu-
larly interesting scenarios.

1) Minimal flavour violation
Under this assumption [30] the only source of flavour vio-
lation are the SM Yukawa matrices Yu ⌘ V †diag(yu,yc,yt)
and Yd ⌘ diag(yd ,ys,yb). Using a spurion analysis one can
estimate

c(3,1)Qi jL22
⇠
⇣

1+aYuY †
u +bYdY †

d

⌘

i j
, (13)

where a,b ⇠O(1), which implies the following structure:

Cuµ =Ccµ =Ctµ ⌘CUµ ,

Cdµ =Csµ =Cbµ ⌘CDµ ,
(14)

while flavour-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ | ⇠ |VtbV ⇤

tsy2
t CDµ |. In this case

the contribution to rare B meson decays has a Vts sup-
pression, while the dilepton signal at high-pT receives an
universal contribution dominated by the valence quarks in
the proton. The flavour fit in Eq. (10) combined with this
flavour structure would imply a value of |CDµ | ⇠ 1.4 ⇥
10�3 which, as can be seen from the limits in Fig. 3, is
already probed by the ATLAS dimuon search [11] depend-
ing on the origin of the operator (i.e. from the SU(2) sin-
glet or triplet structure) and will definitely be investigated

e.g.  λbsq ~ Vts in MFV
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Cbsµ is fixed by the anomaly
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we set the others to zero. In summary:

CUµ
i j =

0
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Cuµ 0 0

0 Ccµ 0
0 0 Ctµ
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@
Cdµ 0 0
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0 Cbsµ Cbµ
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A .
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2.2 Present limits and HL-LHC projections

In this section we derive limits on the flavour non-universal
quark-lepton contact interactions by looking in the tails of
dilepton invariant mass distributions in p p ! `+`� at the
LHC. In our analysis, we closely follow the recent ATLAS
search [11] performed at 13 TeV with 36.1 fb�1 of data.
We digitise Figure 1 of Ref. [11], which shows the dis-
tribution of dielectron and dimuon reconstructed invariant
masses after the final event selection. We perform a profile
likelihood fit to a binned histogram distribution adopting
the method from Ref. [14]. The number of signal events,
as well as the expected signal events in the SM and back-
ground processes, are directly taken from the Figure 1 of
Ref. [11]. The likelihood function (L) is constructed treat-
ing every bin as an independent Poisson variable, with the
expected number of events,

DNbin = DNbin
SM ⇥

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |Fq`(ts0)|2

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |FSM

q` (ts0)|2
, (8)

which is a function of the contact interactions. The best fit
point corresponds to the global minimum of c2 ⌘�2logL,
while ns C.L. regions are given as D c2 ⌘ c2 � c2

min <
Dns , where Dns are defined with the appropriate cumula-
tive distribution functions. In the numerical study, we use
the NNLO118 MMHT2014 parton distribution functions
set [15]. We checked that our results have a very small de-
pendence on the factorization scale variation.

Furthermore, we independently cross-check the results
by implementing the subset of operators in Eqs. (6,7) in
a FEYNRULES [16] model, and generating pp ! µ+µ�

events at 13 TeV with the same acceptance cuts as in the
ATLAS search [11] using MADGRAPH5 AMC@NLO [17].
We find good agreement between the fits performed in both
ways.

In the SMEFT, neglecting flavour-violating interactions,
there are 18 independent four-fermion operators for muons
and 18 for electrons relevant to pp ! `+`� (see Eq. (1)).
In Appendix B (Tab. 1) we provide present and projected
2s limits on all these coefficients, using the recent ATLAS
search [11]. While these limits are obtained in the sce-
nario where only one operator is considered at a time, we
checked that the 18⇥ 18 correlation matrix derived in the
Gaussian approximation does not contain any large value
(the only non-negligible correlations are among the triplet
and singlet operators with the same flavour content, which

Fig. 2 In blue (red) we show the present (projected) 2s limits on Cqµ
(flavour conserving (L̄L)(L̄L) operators) where q = u,d,s,c and b,
using 13 TeV ATLAS search in pp ! µ+µ� channel [11]. Dashed
lines show the limits when all other coefficients are marginalised,
while the solid ones show the results of one-parameter fits.

is discussed in more details below). The absence of flat di-
rections can be understood by the fact that operators with
fermions of different flavour or chirality do not interfere
with each other.

Focusing only on the (L̄L)(L̄L) operators (in the nota-
tion of Eq. (6)), the 2s limits, both from the present AT-
LAS search (blue) and projected for 3000 fb�1 (red), are
shown in Fig. 2. The solid lines show the 2s bounds when
operators are taken one at a time, while the dashed ones
show the limits when all the others are marginalised. The
small difference between the two, especially with present
accuracy, confirms what we commented above.

3 Implications for R(K) and R(K⇤)

3.1 Effective field theory discussion

Recent measurements in rare semileptonic b ! s transi-
tions provide strong hints for a new physics contribution to
bsµµ local interactions (see for example the recent anal-
yses in Refs. [18,19,20]). In particular, a good fit of the
anomaly in the differential observable P0

5 [21], together
with the hints on LFU violation in RK and RK⇤ [22,23,24],
is obtained by considering a new physics contribution to
the Cbsµ coefficient in Eqs. (6,7). In terms of the SMEFT
operators at the electroweak scale, this corresponds to a
contribution to (at least) one of the two operators in the

Assumption: The only breaking of the SU(3)5 
flavour symmetry is via the SM Yukawas.

4

first row of Eq. (1) (see for example [25]). Moreover, the
triplet operator could at the same time solve the anomalies
in charged-currrent (RD(⇤) ) , see e.g. Refs. [26,27,28].

Matching at the tree level this operator to the standard
effective weak Hamiltonian describing b ! s transitions,
one finds

DCµ
9 =�DCµ

10 =
p

aVtbV ⇤
ts

Cbsµ , (9)

where a is the electromagnetic fine structure constant while
|Vts| = (40.0± 2.7)⇥ 10�3 and |Vtb| = 1.009± 0.031 are
CKM matrix elements [29].

The recent combined fit of Ref. [18] reported the best
fit value and 1s preferred range

DCµ
9 =�DCµ

10 =�0.61±0.12 . (10)

Using this result and Eq. (9), one can estimate the scale of
the relevant new physics by defining Cbsµ = g2

⇤v2/L 2, ob-
taining L/g⇤ ⇡ 32+4

�3 TeV. Depending on the value of g⇤,
i.e. from the particular UV origin of the operator, the scale
of new physics L can be within or out of the reach of LHC
direct searches. We show that even in the latter case, under
some assumptions it can be possible to observe an effect
in the dimuon high energy tail. When comparing low and
high-energy measurements, the renormalisation group ef-
fects should in principle be taken into account. Since these
effects are small in this case, we neglect it in what follows
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We concentrate on UV models in which new particles
are above the scale of threshold production at the LHC,
such that the EFT approach is applicable in the most en-
ergetic dilepton events. We stress however that even for
models with light new physics these searches can be rele-
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ces in Eqs. (6,7). New physics aligned only to the strange-
bottom coupling Cbsµ will not be probed at the LHC, in
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luminosity are
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which should be compared with the value extracted from
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structure is possible, but not very motivated from the model
building point of view.

On the other hand, taking the b! sµ+µ� flavour anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavour models flavour-violating
couplings are related (by symmetry or dynamics) to flavour-
diagonal one(s). In this case we can use the LHC upper
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In the following we study such limits for several particu-
larly interesting scenarios.

1) Minimal flavour violation
Under this assumption [30] the only source of flavour vio-
lation are the SM Yukawa matrices Yu ⌘ V †diag(yu,yc,yt)
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estimate
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while flavour-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ | ⇠ |VtbV ⇤

tsy2
t CDµ |. In this case

the contribution to rare B meson decays has a Vts sup-
pression, while the dilepton signal at high-pT receives an
universal contribution dominated by the valence quarks in
the proton. The flavour fit in Eq. (10) combined with this
flavour structure would imply a value of |CDµ | ⇠ 1.4 ⇥
10�3 which, as can be seen from the limits in Fig. 3, is
already probed by the ATLAS dimuon search [11] depend-
ing on the origin of the operator (i.e. from the SU(2) sin-
glet or triplet structure) and will definitely be investigated
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we set the others to zero. In summary:

CUµ
i j =

0

@
Cuµ 0 0

0 Ccµ 0
0 0 Ctµ

1

A , CDµ
i j =

0

@
Cdµ 0 0

0 Csµ C⇤
bsµ

0 Cbsµ Cbµ

1

A .

(7)

2.2 Present limits and HL-LHC projections

In this section we derive limits on the flavour non-universal
quark-lepton contact interactions by looking in the tails of
dilepton invariant mass distributions in p p ! `+`� at the
LHC. In our analysis, we closely follow the recent ATLAS
search [11] performed at 13 TeV with 36.1 fb�1 of data.
We digitise Figure 1 of Ref. [11], which shows the dis-
tribution of dielectron and dimuon reconstructed invariant
masses after the final event selection. We perform a profile
likelihood fit to a binned histogram distribution adopting
the method from Ref. [14]. The number of signal events,
as well as the expected signal events in the SM and back-
ground processes, are directly taken from the Figure 1 of
Ref. [11]. The likelihood function (L) is constructed treat-
ing every bin as an independent Poisson variable, with the
expected number of events,

DNbin = DNbin
SM ⇥

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |Fq`(ts0)|2

Âq,`
R tbin

max
tbin

min
dt t Lqq̄(t,µF ) |FSM

q` (ts0)|2
, (8)

which is a function of the contact interactions. The best fit
point corresponds to the global minimum of c2 ⌘�2logL,
while ns C.L. regions are given as D c2 ⌘ c2 � c2

min <
Dns , where Dns are defined with the appropriate cumula-
tive distribution functions. In the numerical study, we use
the NNLO118 MMHT2014 parton distribution functions
set [15]. We checked that our results have a very small de-
pendence on the factorization scale variation.

Furthermore, we independently cross-check the results
by implementing the subset of operators in Eqs. (6,7) in
a FEYNRULES [16] model, and generating pp ! µ+µ�

events at 13 TeV with the same acceptance cuts as in the
ATLAS search [11] using MADGRAPH5 AMC@NLO [17].
We find good agreement between the fits performed in both
ways.

In the SMEFT, neglecting flavour-violating interactions,
there are 18 independent four-fermion operators for muons
and 18 for electrons relevant to pp ! `+`� (see Eq. (1)).
In Appendix B (Tab. 1) we provide present and projected
2s limits on all these coefficients, using the recent ATLAS
search [11]. While these limits are obtained in the sce-
nario where only one operator is considered at a time, we
checked that the 18⇥ 18 correlation matrix derived in the
Gaussian approximation does not contain any large value
(the only non-negligible correlations are among the triplet
and singlet operators with the same flavour content, which

Fig. 2 In blue (red) we show the present (projected) 2s limits on Cqµ
(flavour conserving (L̄L)(L̄L) operators) where q = u,d,s,c and b,
using 13 TeV ATLAS search in pp ! µ+µ� channel [11]. Dashed
lines show the limits when all other coefficients are marginalised,
while the solid ones show the results of one-parameter fits.

is discussed in more details below). The absence of flat di-
rections can be understood by the fact that operators with
fermions of different flavour or chirality do not interfere
with each other.

Focusing only on the (L̄L)(L̄L) operators (in the nota-
tion of Eq. (6)), the 2s limits, both from the present AT-
LAS search (blue) and projected for 3000 fb�1 (red), are
shown in Fig. 2. The solid lines show the 2s bounds when
operators are taken one at a time, while the dashed ones
show the limits when all the others are marginalised. The
small difference between the two, especially with present
accuracy, confirms what we commented above.

3 Implications for R(K) and R(K⇤)

3.1 Effective field theory discussion

Recent measurements in rare semileptonic b ! s transi-
tions provide strong hints for a new physics contribution to
bsµµ local interactions (see for example the recent anal-
yses in Refs. [18,19,20]). In particular, a good fit of the
anomaly in the differential observable P0

5 [21], together
with the hints on LFU violation in RK and RK⇤ [22,23,24],
is obtained by considering a new physics contribution to
the Cbsµ coefficient in Eqs. (6,7). In terms of the SMEFT
operators at the electroweak scale, this corresponds to a
contribution to (at least) one of the two operators in the

Assumption: The only breaking of the SU(3)5 
flavour symmetry is via the SM Yukawas.
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first row of Eq. (1) (see for example [25]). Moreover, the
triplet operator could at the same time solve the anomalies
in charged-currrent (RD(⇤) ) , see e.g. Refs. [26,27,28].

Matching at the tree level this operator to the standard
effective weak Hamiltonian describing b ! s transitions,
one finds
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where a is the electromagnetic fine structure constant while
|Vts| = (40.0± 2.7)⇥ 10�3 and |Vtb| = 1.009± 0.031 are
CKM matrix elements [29].

The recent combined fit of Ref. [18] reported the best
fit value and 1s preferred range
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Using this result and Eq. (9), one can estimate the scale of
the relevant new physics by defining Cbsµ = g2

⇤v2/L 2, ob-
taining L/g⇤ ⇡ 32+4

�3 TeV. Depending on the value of g⇤,
i.e. from the particular UV origin of the operator, the scale
of new physics L can be within or out of the reach of LHC
direct searches. We show that even in the latter case, under
some assumptions it can be possible to observe an effect
in the dimuon high energy tail. When comparing low and
high-energy measurements, the renormalisation group ef-
fects should in principle be taken into account. Since these
effects are small in this case, we neglect it in what follows
(see for example [25]).

We concentrate on UV models in which new particles
are above the scale of threshold production at the LHC,
such that the EFT approach is applicable in the most en-
ergetic dilepton events. We stress however that even for
models with light new physics these searches can be rele-
vant.

Let us discuss the flavour structure of the CD(U)µ
i j matri-

ces in Eqs. (6,7). New physics aligned only to the strange-
bottom coupling Cbsµ will not be probed at the LHC, in
fact the present (projected) 95% CL limits from the 13 TeV
ATLAS pp ! µ+µ� analysis with 36 fb�1 (3000 fb�1) of
luminosity are
����

p
aVtbV ⇤

ts
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����< 100 (39) , (11)

which should be compared with the value extracted from
the global flavour fits in Eq. (10). Such a peculiar flavour
structure is possible, but not very motivated from the model
building point of view.

On the other hand, taking the b! sµ+µ� flavour anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavour models flavour-violating
couplings are related (by symmetry or dynamics) to flavour-
diagonal one(s). In this case we can use the LHC upper
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a lower bound on |l q
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In the following we study such limits for several particu-
larly interesting scenarios.

1) Minimal flavour violation
Under this assumption [30] the only source of flavour vio-
lation are the SM Yukawa matrices Yu ⌘ V †diag(yu,yc,yt)
and Yd ⌘ diag(yd ,ys,yb). Using a spurion analysis one can
estimate

c(3,1)Qi jL22
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u +bYdY †
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⌘
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, (13)

where a,b ⇠O(1), which implies the following structure:

Cuµ =Ccµ =Ctµ ⌘CUµ ,

Cdµ =Csµ =Cbµ ⌘CDµ ,
(14)

while flavour-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ | ⇠ |VtbV ⇤

tsy2
t CDµ |. In this case

the contribution to rare B meson decays has a Vts sup-
pression, while the dilepton signal at high-pT receives an
universal contribution dominated by the valence quarks in
the proton. The flavour fit in Eq. (10) combined with this
flavour structure would imply a value of |CDµ | ⇠ 1.4 ⇥
10�3 which, as can be seen from the limits in Fig. 3, is
already probed by the ATLAS dimuon search [11] depend-
ing on the origin of the operator (i.e. from the SU(2) sin-
glet or triplet structure) and will definitely be investigated
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triplet operator could at the same time solve the anomalies
in charged-currrent (RD(⇤) ) , see e.g. Refs. [26,27,28].

Matching at the tree level this operator to the standard
effective weak Hamiltonian describing b ! s transitions,
one finds

DCµ
9 =�DCµ

10 =
p

aVtbV ⇤
ts

Cbsµ , (9)

where a is the electromagnetic fine structure constant while
|Vts| = (40.0± 2.7)⇥ 10�3 and |Vtb| = 1.009± 0.031 are
CKM matrix elements [29].

The recent combined fit of Ref. [18] reported the best
fit value and 1s preferred range

DCµ
9 =�DCµ

10 =�0.61±0.12 . (10)

Using this result and Eq. (9), one can estimate the scale of
the relevant new physics by defining Cbsµ = g2

⇤v2/L 2, ob-
taining L/g⇤ ⇡ 32+4

�3 TeV. Depending on the value of g⇤,
i.e. from the particular UV origin of the operator, the scale
of new physics L can be within or out of the reach of LHC
direct searches. We show that even in the latter case, under
some assumptions it can be possible to observe an effect
in the dimuon high energy tail. When comparing low and
high-energy measurements, the renormalisation group ef-
fects should in principle be taken into account. Since these
effects are small in this case, we neglect it in what follows
(see for example [25]).

We concentrate on UV models in which new particles
are above the scale of threshold production at the LHC,
such that the EFT approach is applicable in the most en-
ergetic dilepton events. We stress however that even for
models with light new physics these searches can be rele-
vant.

Let us discuss the flavour structure of the CD(U)µ
i j matri-

ces in Eqs. (6,7). New physics aligned only to the strange-
bottom coupling Cbsµ will not be probed at the LHC, in
fact the present (projected) 95% CL limits from the 13 TeV
ATLAS pp ! µ+µ� analysis with 36 fb�1 (3000 fb�1) of
luminosity are
����

p
aVtbV ⇤

ts
Cbsµ

����< 100 (39) , (11)

which should be compared with the value extracted from
the global flavour fits in Eq. (10). Such a peculiar flavour
structure is possible, but not very motivated from the model
building point of view.

On the other hand, taking the b! sµ+µ� flavour anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavour models flavour-violating
couplings are related (by symmetry or dynamics) to flavour-
diagonal one(s). In this case we can use the LHC upper
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Fig. 3 Present and projected 95% CL limits from pp ! µ+µ� in the
MFV case defined by Eq. (14).

limit on |Cqµ | from the dimuon high-pT tail in order to set
a lower bound on |l q

bs|, defined as the ratio

l q
bs ⌘Cbsµ/Cqµ . (12)

In the following we study such limits for several particu-
larly interesting scenarios.

1) Minimal flavour violation
Under this assumption [30] the only source of flavour vio-
lation are the SM Yukawa matrices Yu ⌘ V †diag(yu,yc,yt)
and Yd ⌘ diag(yd ,ys,yb). Using a spurion analysis one can
estimate

c(3,1)Qi jL22
⇠
⇣

1+aYuY †
u +bYdY †

d

⌘

i j
, (13)

where a,b ⇠O(1), which implies the following structure:

Cuµ =Ccµ =Ctµ ⌘CUµ ,

Cdµ =Csµ =Cbµ ⌘CDµ ,
(14)

while flavour-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ | ⇠ |VtbV ⇤

tsy2
t CDµ |. In this case

the contribution to rare B meson decays has a Vts sup-
pression, while the dilepton signal at high-pT receives an
universal contribution dominated by the valence quarks in
the proton. The flavour fit in Eq. (10) combined with this
flavour structure would imply a value of |CDµ | ⇠ 1.4 ⇥
10�3 which, as can be seen from the limits in Fig. 3, is
already probed by the ATLAS dimuon search [11] depend-
ing on the origin of the operator (i.e. from the SU(2) sin-
glet or triplet structure) and will definitely be investigated

qqμμ operators with valence quarks 
are tested better than per-mille level.

The MFV solution is already in 
strong tension with LHC!
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U(2) symmetry
In this case one assumes that light generations do not couple directly to NP. 

Only Cbµ is relevant
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Fig. 2 In blue (red ) we show the present (projected) 2σ limits on Cq µ

(flavor conserving (L̄ L)(L̄ L) operators) where q = u, d , s, c and b,
using 13 TeV ATLAS search in pp → µ+µ− channel [11]. Dashed
lines show the limits when all other coefficients are marginalized, while
the solid ones show the results of one-parameter fits

the differential observable P ′
5 [22], together with the hints

on LFU violation in RK and RK ∗ [23– 25], is obtained by
considering a new physics contribution to the Cbsµ coeffi-
cient in Eqs. (6, 7). In terms of the SMEFT operators at the
electroweak scale, this corresponds to a contribution to (at
least) one of the two operators in the first row of Eq. (1)
(see for example [26]). Moreover, the triplet operator could
at the same time solve the anomalies in the charged-currrent
(RD(∗)) , see e.g. Refs. [27– 29].

Matching at the tree level this operator to the standard
effective weak Hamiltonian describing b → s transitions,
one finds

"Cµ
9 = −"Cµ

10 = π

αVtbV ∗
ts
Cbsµ, (9)

where α is the electromagnetic fine structure constant while
|Vts | = (40.0 ± 2.7) × 10−3 and |Vtb| = 1.009 ± 0.031 are
CKM matrix elements [30].

The recent combined fit of Ref. [18] reported the best fit
value and 1σ preferred range

"Cµ
9 = −"Cµ

10 = −0.61 ± 0.12. (10)

Using this result and Eq. (9) the scale of the relevant new
physics can be estimated by defining Cbsµ = g2

∗v
2/%2,

obtaining %/g∗ ≈ 32+4
−3 TeV. Depending on the value of

g∗, i.e. from the particular UV origin of the operator, the

scale of new physics % can be within or out of the reach of
LHC direct searches. We show that, even in the latter case,
under some assumptions it can be possible to observe an
effect in the dimuon high-energy tail. When comparing low-
and high-energy measurements, in principle the renormaliza-
tion group effects should be taken into account. Since these
effects in this case are small, we neglect them (see for exam-
ple [26]).

We concentrate on UV models in which new particles are
above the scale of threshold production at the LHC, such that
the EFT approach is applicable in the most energetic dilepton
events. We stress however, that even for models with light
new physics these searches can be relevant.

We now focus on the flavor structure of the CD(U )µ
i j matri-

ces in Eqs. (6, 7). New physics aligned only to the strange-
bottom coupling Cbsµ will not be probed at the LHC, in
fact the present (projected) 95% CL limits from the 13 TeV
ATLAS pp → µ+µ−analysis with 36 fb−1 (3000 fb−1) of
luminosity are
∣∣∣∣

π

αVtbV ∗
ts
Cbsµ

∣∣∣∣ < 100 (39), (11)

which should be compared with the value extracted from the
global flavor fits in Eq. (10). Such a peculiar flavor structure
is possible but not very motivated from the model building
point of view.

On the other hand, taking the b → sµ+µ−flavor anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavor models flavor-violating
couplings are related (by symmetry or dynamics) to flavor-
diagonal one(s). In this case the LHC upper limit on |Cq µ|
from the dimuon high-pT tail can be used in order to set a
lower bound on |λqbs |, defined as the ratio

λ
q
bs ≡ Cbsµ/Cq µ. (12)

In the following we study such limits for several particularly
interesting scenarios.

1. Minimal flavor violation
Under this assumption [31] the only source of flavor violation
are the SM Yukawa matrices Yu ≡ V † diag(yu, yc, yt ) and
Yd ≡ diag(yd , ys, yb). Using a spurion analysis the following
can be estimated

c(3,1)Qi j L22
∼

(
1+ αYuY †

u + βYd Y
†
d

)

i j
, (13)

where α,β ∼ O(1), which implies the following structure:

Cuµ = Ccµ = Ctµ ≡ CUµ,

Cdµ = Csµ = Cbµ ≡ CDµ, (14)

while flavor-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ| ∼ |VtbV ∗

ts y
2
t CDµ|. In this case

the contribution to rare B meson decays has a Vts suppres-
sion, while the dilepton signal at high-pT receives an uni-

123
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ces in Eqs. (6, 7). New physics aligned only to the strange-
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which should be compared with the value extracted from the
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is possible but not very motivated from the model building
point of view.

On the other hand, taking the b → sµ+µ−flavor anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavor models flavor-violating
couplings are related (by symmetry or dynamics) to flavor-
diagonal one(s). In this case the LHC upper limit on |Cq µ|
from the dimuon high-pT tail can be used in order to set a
lower bound on |λqbs |, defined as the ratio

λ
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bs ≡ Cbsµ/Cq µ. (12)

In the following we study such limits for several particularly
interesting scenarios.

1. Minimal flavor violation
Under this assumption [31] the only source of flavor violation
are the SM Yukawa matrices Yu ≡ V † diag(yu, yc, yt ) and
Yd ≡ diag(yd , ys, yb). Using a spurion analysis the following
can be estimated

c(3,1)Qi j L22
∼
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1+ αYuY †

u + βYd Y
†
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)

i j
, (13)

where α,β ∼ O(1), which implies the following structure:

Cuµ = Ccµ = Ctµ ≡ CUµ,

Cdµ = Csµ = Cbµ ≡ CDµ, (14)

while flavor-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ| ∼ |VtbV ∗

ts y
2
t CDµ|. In this case

the contribution to rare B meson decays has a Vts suppres-
sion, while the dilepton signal at high-pT receives an uni-

123

Cbsµ ~ Vts Cbµ Cbµ ~ 1.4 × 10-3

The present and future limits on the bottom 
operator are instead at the percent level.
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Fig. 3 Present and projected 95% CL limits from pp → µ+µ−in the
MFV case defined by Eq. (14)

versal contribution dominated by the valence quarks in the
proton. The flavor fit in Eq. (10) combined with this flavor
structure would imply a value of |CDµ| ∼1.4×10−3 which,
as can be seen from the limits in Fig. 3, is already probed by
the ATLAS dimuon search [11] depending on the origin of
the operator (i.e. from the SU(2) singlet or triplet structure)
and will definitely be investigated at high luminosity.3 Allow-
ing for more freedom and setting Cbsµ ≡ λbsCDµ, we show
in the top (central) panel of Fig. 4 the 95% CL limit in the
CDµ– |λbs | plane, where CUµ is related to CDµ by assuming
the triplet (singlet) structure. As discussed before, a direct
upper limit on λbs via b −s fusion can be derived only for
very large values. On the other hand, requiring Cbsµ to fit
the B decay anomalies already probes interesting regions in
parameter space, excluding the MFV scenario (λbs = Vts)
for both singlet and triplet cases.

2. U (2)Q flavor symmetry
This symmetry distinguishes light left-handed quarks (dou-
blets) from third generation left-handed quarks (singlets).
The leading symmetry-breaking spurion is a doublet whose
flavor structure is unambiguously related to the CKM
matrix [32]. In this case, in general the leading terms would
involve the third generation quarks, as well as diagonal cou-
plings in the first two generations. The relevant parameters

3 It should also be noted that the triplet combination is bounded from the
semileptonic hadron decays (CKM unitarity test)CUµ−CDµ = (0.46±
0.52) × 10−3 [7], in the absence of other competing contributions.

Fig. 4 We show the present (solid red) and projected (dashed red)
95% CL limit from pp → µ+µ− in the Cqµ– |λbs | plane. The solid
(dashed) green line corresponds to the best fit (2σ interval) from the fit
of the flavor anomalies in Eq. (10)

123

For general λbs
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- LHC measurements of high-pT tails of 2 → 2  processes offer strong 
probes of new physics, 
complementing (and often surpassing) limits derived from LEP. 

- Care must be taken to understand the typical energy scale of the 
experiment and making sure that, at the interpretation level, 

- This allows us to probe mass scales often higher than the reach of 
direct searches. 

- The limits are already relevant for models addressing B-anomalies.

Conclusions

Eexp ≪ ΛNP

Thank you!
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