HEPfitting the electroweak chiral Lagrangian

arXiv:1803.00939

in collaboration with Jorge de Blas and Claudius Krause

HEFT 2018

Otto Eberhardt

Instituto de Física Corpuscular

Outline

Introduction

The electroweak chiral Lagrangian

HEPfit

Higgs fits - Current status

Higgs fits - Future projections

Summary

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

Introduction

Vacuum stability

Naturalness

Origin of masses

Baryogenesis

 $(g-2)_{\mu}$

Dark matter

Neutrino masses

Otto Eberhardt

VS.

General approaches to BSM physics

SMEFT

Electroweak chiral Lagrangian $(ew \chi \mathcal{L})$

h in a doublet

 \boldsymbol{h} and $\varphi_{\textit{a}}$ are independent

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{d > 4} \frac{1}{\Lambda^{d-4}} \sum_{i} c_i \mathcal{O}_i$$

 $\mathcal{L} \neq \mathcal{L}_{\rm SM}$ @ LO

Expansion in dimensions

Expansion in chiral dimensions and $\xi = v^2/f^2$

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

The electroweak chiral Lagrangian

$$\begin{split} \mathcal{L}_{\text{LO}} &= -\frac{1}{2} \langle G_{\mu\nu} G^{\mu\nu} \rangle - \frac{1}{2} \langle W_{\mu\nu} W^{\mu\nu} \rangle - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ i \bar{q}_L \not{D} q_L + i \bar{\ell}_L \not{D} \ell_L + i \bar{u}_R \not{D} u_R + i \bar{d}_R \not{D} d_R + i \bar{e}_R \not{D} e_R \\ &+ \frac{v^2}{4} \langle D_\mu U^\dagger D^\mu U \rangle \left(1 + F_U(h) \right) + \frac{1}{2} \partial_\mu h \partial^\mu h - V(h) \\ &- \frac{v}{\sqrt{2}} \left[\bar{q}_L Y_u(h) U P_+ q_R + \bar{q}_L Y_d(h) U P_- q_R + \bar{\ell}_L Y_e(h) U P_- \ell_R + \text{ h.c.} \right] \\ U &= \exp(2i\varphi_a T^a / v) \\ P_{\pm} &= \frac{1}{2} \pm T^3 \end{split}$$

Polynomials V(h), $F_U(h)$, $Y_{\psi}(h)$ can be of any order in h, but focus on one h here.

Otto Eberhardt

HEPfitting the $ew\chi \mathcal{L}$

The Higgs electroweak chiral Lagrangian

$$\begin{split} \mathcal{L}_{\rm fit} &= 2 c_{V} \left(m_{W}^{2} W_{\mu}^{+} W^{-\mu} + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z^{\mu} \right) \frac{h}{v} \\ &- c_{t} m_{t} \bar{t} t \frac{h}{v} - c_{b} m_{b} \bar{b} b \frac{h}{v} - c_{\tau} m_{\tau} \bar{\tau} \tau \frac{h}{v} - c_{c} m_{c} \bar{c} c \frac{h}{v} - c_{\mu} m_{\mu} \bar{\mu} \mu \frac{h}{v} \\ &+ \frac{e^{2}}{16\pi^{2}} c_{\gamma} F_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{e^{2}}{16\pi^{2}} c_{Z\gamma} Z_{\mu\nu} F^{\mu\nu} \frac{h}{v} + \frac{g_{s}^{2}}{16\pi^{2}} c_{g} \langle G_{\mu\nu} G^{\mu\nu} \rangle \frac{h}{v}, \end{split}$$

$$c_i = c_i^{\mathsf{SM}} + \mathcal{O}(\xi),$$

$$c_i^{\mathsf{SM}} = egin{cases} 1 & ext{for } i = V, t, b, au, c, \mu \ 0 & ext{for } i = g, \gamma, Z\gamma. \end{cases}$$

Otto Eberhardt

HEPfitting the $ew\chi \mathcal{L}$

HEPfit

What? Why? Where? Who?

When?

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

HEPfit

What?	High ener	gy physics observables
Why?	in the SM	and beyond
Where?	featuring	Flavour observables,
Who?		Electroweak precision observables and Higgs observables

When?

Otto Eberhardt

HEPfit

HEPfit

http://hepfit.roma1.infn.it

Otto Eberhardt

HEPfitting the ${\rm ew}\chi {\cal L}$

HEPfit

What?	HEPfit was already used for:						
Why?	JHEP 1611 (2016) 026						
Where?	JHEP 1612 (2016) 135						
Who?	Eur.Phys.J. C77 (2017) no.10, 688						
When?	JHEP 1801 (2018) 108						
	arXiv:1711.02095						
	arXiv:1803.00939						

+ many proceedings

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

HEPfit

What?	Shehu AbdusSalam	Otto Eberhardt	Ana Peñuelas
	(U Tehran)	(IFIC València)	(IFIC València)
Why?	Jorge de Blas	Marco Fedele	Maurizio Pierini
	(INFN Padova)	(U Paris-Sud)	(CERN)
Where?	Debtosh Chowdhury	Enrico Pranco	Laura Reina
	(EP Paris)	(INFN Rome)	7 (Florida State)
Who?	Marco Ciuchini	Giovanni Grilli	Luca Silvestrini
	(INFN Rome)	(U São Paulo)	(INEN Rome)
When?	Giovanna Cottin	Satoshi Mishima	Mauro Valli
	(NTU Taipei)	(KEK)	(INFN Rome)
	António Coutinho	Ayan Paul	Norimi Yokozaki
	(INFN Rome)	(HU Berlin)	(Tohoku U)

HEPfit

What?	
Why?	Already now: development version
Where?	https://github.com/silvest/HEPfit
Who?	Autumn 2018: first fully documented release
When?	http://hepfit.roma1.infn.it

Otto Eberhardt

HFPtit	с н.			C)	÷.,
	н	н	$\mathbf{ u}$	tı	ı÷.
					ιL

What?	
Why?	
Where?	It's free and it's open-source!
Who?	
When?	
How much?	

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

Current inputs

		bb	WW	au au	ZZ	$\gamma\gamma$	$Z\gamma$	$\mu\mu$
	SM Br	57.5%	21.6%	6.3%	2.7%	2.3‰	1.6‰	0.2‰
ggF8	87.2%	_	AC	AC	AC	AC	AC	AC
ggF13	87.1%	_	AC	C	AC	AC	AC	AC
VBF8	7.2%	_	AC	AC	AC	AC	AC	AC
VBF13	7.4%	С	AC	C	AC	AC	AC	AC
Vh8	5.1%	AC	AC	AC	AC	AC	AC	AC
Vh13	4.4%	AC	AC	C	AC	AC	AC	AC
tth8	0.6%	AC	-	-	AC	AC	AC	AC
tth13	1.0%	AC	AC	AC	AC	AC	AC	AC
Vh2		Tev						
tth2		Tev						

Uncertainty of the signal strengths $\mu \pm \sigma$:

$$0 < \sigma < 0.5$$
 $0.5 \le \sigma < 1.0$ $\sigma > 1.0$

Flat vs. Gaussian priors

All priors flat vs. natural solutions:

Flat vs. Gaussian priors

All priors flat vs. natural solutions:

Which Gaussians to avoid overfitting?

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

Flat vs. Gaussian priors

Choose a Gaussian

$$\Rightarrow$$
 with $\sigma = 0.5$

for c_c and $c_{Z\gamma}$

All solutions

All solutions

Current status of the Higgs fits - posteriors

Otto Eberhardt

HEPfitting the $ew\chi \mathcal{L}$

Current status of the minimal composite Higgs models

 $\xi = v^2/f^2$

In the coset SO(5)/SO(4):

$$c_V = \sqrt{1-\xi}$$

 $c_\psi^{(4)} = \sqrt{1-\xi}$ or $c_\psi^{(5)} = \frac{1-2\xi}{\sqrt{1-\xi}}$

Otto Eberhardt

Current status of the minimal composite Higgs models

$$\xi = v^2/f^2$$

In the coset SO(5)/SO(4):

$$c_V = \sqrt{1-\xi}$$

 $c_\psi^{(4)} = \sqrt{1-\xi}$ or $c_\psi^{(5)} = rac{1-2\xi}{\sqrt{1-\xi}}$

Otto Eberhardt

Current status of the minimal composite Higgs models

$$\xi = v^2/f^2$$

In the coset SO(5)/SO(4):

$$c_V = \sqrt{1-\xi}$$

 $c_{\psi}^{(4)} = \sqrt{1-\xi}$ or $c_{\psi}^{(5)} = \frac{1-2\xi}{\sqrt{1-\xi}}$

4: $\xi < 0.22$, f > 530 GeV **5**: $\xi < 0.12$, f > 710 GeV

Relation to the κ formalism

$$\kappa_X^2 = \frac{\sigma(X \to h)}{\sigma(X \to h)_{\text{SM}}}, \qquad \kappa_Y^2 = \frac{\Gamma(h \to Y)}{\Gamma(h \to Y)_{\text{SM}}}, \qquad \kappa_i = |f_i(c_j)| \equiv \frac{|\mathcal{A}_i(c_j)|}{|\mathcal{A}_i(c_j^{\text{SM}})|}$$

Relation to the κ formalism

Otto Eberhardt

HEPfitting the ${\rm ew}\chi {\cal L}$

Relation to the κ formalism

Para-	Fit result	Para-	Fit result	Result from κ -fit
meter		meter		
κ_V	1.00 ± 0.06	C _V	1.00 ± 0.06	1.00 ± 0.06
κ_t	$1.04\substack{+0.09 \\ -0.10}$	Ct	1.03 ± 0.09	1.04 ± 0.10
κ_{b}	0.94 ± 0.13	СЬ	$\textbf{0.94} \pm \textbf{0.13}$	0.94 ± 0.13
κ_ℓ	1.00 ± 0.10	$c_{ au}$	1.01 ± 0.10	1.00 ± 0.10
κ_{g}	$1.02\substack{+0.08\\-0.07}$	C _g	$-0.01\substack{+0.08\\-0.07}$	-0.02 ± 0.10
κ_γ	0.97 ± 0.07	c_{γ}	0.05 ± 0.20	0.06 ± 0.35

Future scenarios

Collider	HL-LHC	ILC	ILC	CLIC	CLIC	CEPC	FCC-ee
		250	all	380	all		
<i>L</i> [ab ⁻¹]	3	1.2	5.3	0.5	4	5	12.6
\sqrt{s} [TeV]	14	0.25	0.25	0.38	0.38	0.25	0.24
			0.5		1.4		0.35
			1.0		3.0		

Future projections for the HL-LHC

Otto Eberhardt

HEPfitting the $ew\chi \mathcal{L}$

Future projections for ILC, CLIC, CEPC, FCC-ee

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

Future sensitivity to ξ

 ξ down to 0.003 and f up to 4 TeV can be probed.

Otto Eberhardt

HEPfitting the $ew\chi \mathcal{L}$

Summary

Fit to the electroweak chiral Lagrangian:

No sign for New Physics in the signal strengths.

	LHC now	HL-LHC	Best future sensitivity
			(ILC and FCC-ee)
Δc_V	6%	3%	1‰
Δc_X	pprox 10%	pprox 5%	1%
$(X = g, t, b, \tau)$			
Δc_{γ}	20%	8%	4%
f [TeV]	> 0.5	> 0.8	> 4

Back-up

Otto Eberhardt

HEPfitting the $\mathrm{ew}\chi\mathcal{L}$

Correlations	in	the	current	$ew\chi\mathcal{L}$	fit:
--------------	----	-----	---------	---------------------	------

	c _V	Ct	с _b	Cc	$c_{ au}$	c_{μ}	Cg	c_{γ}	c _{Zγ}
c _V	1	0.12	0.71	0.25	0.49	0.09	0.14	0.32	0
Ct	0.12	1	0.25	0.16	0.05	0.01	-0.68	-0.31	0
с _b	0.71	0.25	1	0.09	0.56	0.07	0.36	0.03	0
Cc	0.25	0.16	0.09	1	0.14	0.02	0.04	0.03	0
$c_{ au}$	0.49	0.05	0.56	0.14	1	0.06	0.25	0.01	0
c_{μ}	0.09	0.01	0.07	0.02	0.06	1	0	0	0
Cg	0.14	-0.68	0.36	0.04	0.25	0	1	0.33	0
c_{γ}	0.32	-0.31	0.03	0.03	0.01	0	0.33	1	0
$c_{Z\gamma}$	0	0	0	0	0	0	0	0	1

	κ_V	κ _t	κ_{b}	κ_ℓ	κ_{g}	κ_{γ}
κ_V	1	0.13	0.73	0.49	0.26	0.68
κ_t	0.13	1	0.27	0.06	0.33	0.05
κ_{b}	0.73	0.27	1	0.56	0.74	0.60
κ_ℓ	0.49	0.06	0.56	1	0.33	0.47
κ_{g}	0.26	0.33	0.74	0.33	1	0.11
κ_γ	0.68	0.05	0.60	0.47	0.11	1

Correlations in the current κ_i fit:

Model	Collider	LHC	HL-LHC	ILC	ILC
		now		250	all
	<i>L</i> [ab ⁻¹]	0.06	3	1.2	5.3
CHM-4	$\xi [imes 10^{-3}]$	220	100	13	5.4
	f [GeV]	530	770	2200	3300
CHM-5	$\xi [imes 10^{-3}]$	120	42	8.9	3.6
	f [GeV]	710	1200	2600	4100
Model	Collider	CLIC	CLIC	CEPC	FCC-ee
Model	Collider	CLIC 380	CLIC all	CEPC	FCC-ee
Model	Collider L [ab ⁻¹]	CLIC 380 0.5	CLIC all 4	CEPC 5	FCC-ee 12.6
Model CHM-4	Collider L [ab ⁻¹] ξ [×10 ⁻³]	CLIC 380 0.5 21	CLIC all 4 9.2	CEPC 5 6.2	FCC-ee 12.6 4.8
Model CHM-4	Collider $L \text{ [ab}^{-1]}$ $\xi \text{ [×10^{-3}]}$ f [GeV]	CLIC 380 0.5 21 1700	CLIC all 4 9.2 2500	CEPC 5 6.2 3300	FCC-ee 12.6 4.8 3500
Model CHM-4 CHM-5	Collider $L [ab^{-1}]$ $\xi [\times 10^{-3}]$ f [GeV] $\xi [\times 10^{-3}]$	CLIC 380 0.5 21 1700 15	CLIC all 4 9.2 2500 5.2	CEPC 5 6.2 3300 4.7	FCC-ee 12.6 4.8 3500 3.2

