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The story so far

@ The nature of the discovered boson is more or less consistent with the SM
Higgs

@ Its combined (CMS + ATLAS) mass, from run-I data, is measured to be
My = 125.09 + 0.21 (stat.) +0.11 (syst.) GeV in the h — ~v and the
h — ZZ* — 4¢ channels

@ A CP-even spin zero hypothesis is favoured
o If it is “the Higgs", then its mass has fixed the SM
o Still to be measured: h — Z~, h— u™p™, vi, Mhn

o Till a reliable measurement of self-coupling is available it is best to consider

the available final states that reflect the Higgs couplings

Shankha Banerjee (IPPP, Durham) HEFT 2018 2/28



-
Signal strengths (7 + 8 TeV @ 25 fb™!)
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Introduction

@ Many reasons to go beyond the SM, viz. gauge hierarchy, neutrino mass,
, baryon asymmetry etc.
o Plethora of BSM theories
@ Two phenomenological approaches:
o Model dependent: study the signatures of each model individually
o Model independent: low energy effective theory formalism — analogous to
Fermi's theory of beta decay
@ The SM here is a low energy effective theory valid below a cut-off scale A
o A bigger theory is assumed to supersede the SM above the scale A
@ At the perturbative level, all heavy (> A) DOF are decoupled from the low
energy theory (Appelquist-Carazzone theorem)
@ Appearance of HD operators in the effective Lagrangian valid below A

- fi
L= 2+ T Y 0!

d>5 i
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HD operators

@ Higher-dimensional Operators: invariant under SM gauge group
e d = 5: Unique operator — Majorana mass to the neutrinos: +(®7L)" C(®TL)

@ d =6: 59 =15+ 19 + 25 independent operators. Lowest dimension (after
d = 4) which induces HVV interactions [W. Buchmuller and D. Wyler; B.

Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek; K.Hagiwara, D. Zeppenfeld et. al.]
@ d = 7: Such operators appear in Higgs portal dark matter models
@ d = 8: Lowest dimension inducing neutral TGC interactions

@ To understand the EWSB sector better, we first consider a subset of d = 6
operators involving ®, 0, %, X, (where X = G. B, /)
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Gauge-invariant D6 CP™ operators : Higgs-Gauge sector

@ The operators containing the Higgs doublet ® and its derivatives:
tod!(pH Lo (otorg (of L oote)?
Oq)’l = (Dud)) P (D (D), Oq;.’z = §d;l(¢ (D)(? (‘D d)), O¢.3 = g(q) d))

@ The operators containing the Higgs doublet ® (or its derivatives) and bosonic field

strengths :
Oce = ®'0GS, G, Opw = "B, W, Oww = &' W, W o

Ow = (D,®) W (D,®); Ops = "B, B"®; 0p = (D) B"(D,®),

W = j &g, W2, B = j&'BM; g, g SU(2)., U(1)y gauge couplings
le,, = 6” Wl,a — 61, Wi — g€abc Wll‘) Wlf) B;“/ - ({)U,Bu — 0y B;l

G, = 0,G. — 0,G], — gf™ G2 GS

® : Higgs doublet, D, ® = (9, + 4g'B, + ig % W7)® : Covariant derivative
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Properties of these operators

@ ¢ 1: Custodial symmetry violated — severely constrained by T-parameter

@ O¢: Custodial symmetry preserved; modifies SM HVV couplings by

multiplicative factors (same Lorentz structure)

@ Oy 3 Modifies only the Higgs self-interaction; gives additional contribution

to the Higgs potential

@ Ogg: Introduces HGG coupling with same Lorentz structure as in the SM;

constrained from single Higgs production
@ Opw: Drives tree-level Z <+ v mixing — highly constrained by EWPT

o Oww, Ow, Opgg, Og: Modifies the HVV couplings by introducing new
Lorentz structures in the Lagrangian; not all are severely constrained by the
EWPT
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Effective Lagrangian

2 2
L=8 (%ij we + 7quz“) + Z 250

Ler D8 (WL W 0"H + h.c.) + g5, HW,, W™

+852; ZuwZ" 0" H + gin)y HZu 2"

8, AuwZHO"H + glpg, HAWZ™ + ghyy HAW A,

1 gMw \ fw 2 gMw
o= (SR ) 55 sl == () i
C

2 A2
o _ [(eMw)\ SPfw +s s o) gMw\ s*fes + c*fuw
Enzz= \ "o 22 Bz T (TR 282
g — (8Mw s(fw — ) . g2 — (&Mw s(s*fes — *fuw)
oy =\ Tpe 2c ¢ &= (T c
_ gMw 52(fBB + fuw)
BHyy= — A2 2
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Anomalous charged TGC interactions

We also consider the anomalous VVV interactions by

Luwwv=—ignwv{g’ (Whwrvr — Wj v, WH)

nv
A
ey W WV S W WPV
w

where gwwy = g5, gwwz = g¢, ky =1+ Axy and glz =1+ Aglz with

Miy _ 38° My

A= fw+ fa); Ay = Az = =1,
Ky 2/\2(W+ B); v z oAz www
M2 M2
Z_ w . o w 2 2
Agl = mﬁ/\/, Ahz = 2C2/\2 (C fW — S fB)
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Modified efficiencies: Case study (pp — Hjj — WW*jj)

o We consider the H — WW* + 2j, WW* — [Tvl~ D (I = {e, u}) channel

EWW* +>2—jets —

which includes contributions from both VBF and VH production modes.

50.983* + 121.76 8% fuw + 22.853%F2yy + 0.158f3 + 0.01fy

1601.433* + 3796.633% fyw + 666.7982f2,,, — 1.98Bf2,, + 0.73fL,,

30

@ Percentage modification of the combined efficiency of all cuts compared to

the SM case. Grey region :
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|
Phenomenology at e™e™ colliders

Two main Higgs production processes are

e ete™ — vivH process — admixture of s and t-channel processes

@ Possible to separate s and t-channel from eTe™ — vi’H events by applying

S+ M3 — M3
2V'S

o A ~ AEj; where AEjet/Ejer < 0.3/1/Ejer. For two b-jets each with energy

~100 GeV. A = 1/2 x (03 x VIOO)? ~ 4 GeV
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The amplitudes : An example

M= i)

[3 u?_~_ Tm%]

To0= /\2 {4(s* fap + c fun)[8°7 (k1 - ko) — kS'KY']+ (P + 5*fg)
x[—g (K + k3 + 2ks - ko) + (K{' Ky + 2k5' Ky + ks'k})]}

@ M ie—_ 7y is a linear combination of x; € {5, fww, fw, fes, fg}

@ Cross-section can always be expressed as a bilinear combination

UZH SX, E X, U

ij=1
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Fitted cross-sections

o(VS)=x - M(VS) - xT

where X = (5, fww, fw, fes, fg) is a row vector

on parameter-space

181.67 —6.43 -299 051 -0.71
—-6.43 046 0.18 —0.03 —0.08
“4(300 GeV) =] —2.99 0.8 014 —0.02 —0.06
-0.51 —0.03 —0.02 0.2 0.03
-0.71 —0.08 -0.06 0.3 008
15.36 0.04 0.07
Lon(300 GeV) =1 004 12x103 —7.7x107*
0.07 —7.7x107% 46x107*

@ o° is less sensitive on Ogg and Op but ¢! is almost insensitive to HDOs
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N
o versus \/'S

Benchmark points: BP1 = {1,0,5,0,0}, BP2={1,0,—5,0,0} (allowed by
EWPT constraints and LHC data)

300

—-BP2

0
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\/E (GeV) \/E (GeV)
e In the SM: o7y ~ 1/S and !, ~ In(S/M?)
o In presence of HDOs, the v/S-dependency is non-trivial especially for the

s-channel process
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0y distributions

Benchmark points: BP3 = {1,-3,8, —4,3} (allowed by EWPT constraints and
LHC data)
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Varying two parameters at the same time

Two parameters are varied keeping others fixed (v/S = 300 GeV). Brown patches signify

osm £ ospmx10%

s-channel s-channel
o |
= X
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|
Estimating D6 coefficients at the HL-LHC

@ The HD operator coefficients are constrained to values of O(1)/TeV?

o Kinematic variables can show very little variations w.r.t. the SM for such

small coefficients

@ One may construct observables sensitive to even small values of the operator

coefficients

@ Cross-sections and decay widths are sensitive observables

@ If we construct ratios, many correlated uncertainties get cancelled
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|
The ratio R4

oo X BR, fi
Ry(f) = TggF H—ry () 0.34

TggF X BRy w200, ()

032
Ra(f) = Mi?(f’) x —(7gaE X BRHyy) PN 03
uEENL(F)  (0ggr X BRy_Lywws _202,)5M L0
E 026
@ Strong bounds on Oy and Ogg; &
insensitive to the other two 02
operators O\, and Op 0.8
o fuw ~ fap allowed region e T
~ [7276, 7265] U [*0067 004] fuw/A? (TeV2)
TeV 2 Figure : ®=y versus iy /A2 (Tev=2). Red line — theoretical

expectation in presence of HDOs; Dark green band — uncorrelated
theoretical uncertainty; Light green band — total uncorrelated uncertainty at
14 TeV with 3000 [ integrated luminosity; Black dotted line — central
value.
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|
The ratio R»

over(f) X BRuy(f) o
O'VVH(f;') X BRJH*),YY(f,‘) X BRW

Ra(fi) =

Ry @ TV

@ We consider the bounds from R4 T T
for Oy and see that even such

small values can be probed at 14
TeV HL — LHC

Ry @14 TeV

o fiyw /A? excluded region : L g
[1.96, +1.62] TeV 2, fiy /A2 ‘
excluded region : [—2.10, +2.50]

TeV—2
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The ratio R3

OggF X BRH—>Z*\/—>2Z7 ( f/)

Ra(f) =

o Op sensitive only to the ZZ* and
Z~ channels.

@ Sensitivity to ZZ* is negligible.
Sensitivity to Z+ is strong, but
H — Z~ is not yet measured.

@ Projected bounds g /A? is
[-8.44,—7.17] U [-0.72,4+0.56]
TeV—2.

OgeF X BRUS w2000 (F)

@ 14 TeV

Rs
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0.011
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15 -10 5
fp/A? (TeV=2)
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|
Constraining TGC couplings with pp — ZH at the HL-LHC

@ We have seen from LEP that measuring the oblique S, T parameters can
constrain several BSM scenarios at much higher scales than the LEP running

energy

@ Many vertices ensuing from EFT operators are correlated and hence LEP has

already constrained certain operators affecting the Higgs vertices

@ We target the higher energy regions in the parameter space in order to

compete with the LEP constraints [See Rick’s slides for more details]

Shankha Banerjee (IPPP, Durham) HEFT 2018 21 /28



Constraining TGC couplings with pp — ZH at the HL-LHC

ALy D Y ogEZ, fotf + 0gl(Whiagydy, + h.c)
I

Z'”Z

+ gl h [W“’ W, + zu,,} + g%, h

9n

h
+ Z Yy 7erf Y+ g wd ( Jaytdy + hee)

ﬁn

h I h
+ bz A L s ;W“’“W‘ +hzz 5 8" L

s

The gqg — Vh amplitude can be expressed as

1 . .
MU= VR = (@) JY " (B) [AY s + BY (0 anu — pua)] ,

g =T

. . . omi . , 1 S 1
AV =gV v v Vv v
U b e B B e T

w h
a5 =9z5y ay =gy
Z gk s

N P g5v N N . Ogyygr v

Z Z i h h w W il
ay =297 + —n 5 (i)gL‘,—L,. + T"‘)Qéz) . ap =2g; + e

W
bf =— 1q, KZ7 b‘; —25;",1 KWW »
Z w

If:*QPQ[fH" Kz, g5 = *QIQH") 95 =

Sl
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Constraining TGC couplings with pp — ZH at the HL-LHC

ALy D Z6g,ZZ,‘f'y“f+59$(H"fﬁm"dL +he)

7 q ﬁd\JW/Z
27,
g b (W o Z Z,| + gk b N
205». .
h - S
".,ud; Wiayds+he) 9 ~ H

h h
Leading effect from contact interaction at high energies.
Energy growth as there is no propagator.

Jy 2
M(ff—zih) = gf LT [1

At high energies, the following four directions in the EFT parameter space are

isolated by ZH production

Fuu, = o ((cﬁ\, " gl +W - ”" D (§ — ok, - Y))
g 2 0\4 lh»
Sraga, = _CT ((Ca" —7)591 + W+ (8 - bk, — Y))
) 4953,
H’Zu,(u,{ = 3030 (8- 5“7‘*'03 897 -Y)
W
2s,,
Srinin = _7:" (8 -0k, +¢j, 867 -Y)
W
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pp — ZH at high energies

fake rate taken as 2%)
Major background Zbb

@ Boosted substructure analysis with fat-jets of R = 1.5 used

T T
-BPL+

BP1-

~Zh SM

=3
i
T T T T I I I

T e o P I
200 400 600 800 1000 1200 1400 1600 1800 2000

MI1|2J [GeV]
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We study the impact of constraining TGC couplings at higher energies
We study the channel pp — ZH — ¢/~ bb
The backgrounds are SM pp — ZH, Zbb, t1 and the fake pp — Zjj (j — b

(uts Zbb th

1, 2 B-mesons (with pT > 15 GeV) within R = 1.5 0.03 0.22
2. 2 isolated leptons (pT > 16 GeV) 0SSF 0.48 0.53
3. 80 GeV < M 1L < 100 Gev, pT_Ll > 160 GeV and DR(11) > 0.2 0.61 0.83
3. »= 1 fat jet with 2 B-mesons and pT(jet) > 116 CeV 0.91 0.97
4, 2 Mass drop and >=2 filtered subjets 0.99 0.99
5. Double b-tag (76%, 2% mistag) 0.38 0.41
6. 115 GeV < M_bb < 135 Gev 0.19 0.40
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pp — Zh at high energies

@ Next we perform a two-parameter Y>-fit (at 300 fb~1) to find the allowed
region in the 6gf — (8k — )

\
\
\
\
\
\
\

\

\

‘\\

\
\
\
\
\
\
\

LEP

Grey region: LEP exclusion; pink band: exclusion from WZ [Franceschini, Panico,
Pomarol, Riva and Wulzer, 2017];

Green (blue) region: exclusion from ZH with only interference (interference plus

squared) term
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Summary and conclusions

o EFT framework is a powerful tool to understand Higgs coupling deviations

and nature of the Higgs (part of a doublet or not?)

o Efficiencies for various acceptance cuts are altered by varying Lorentz

structure

o Future e" e colliders can potentially constrain EFT parameters to excellent

precision

@ Various ratios can be used to see the effect of small values of operator

coefficients — cancellation of several uncertainties

@ Possible to constrain certain EFT parameters to stronger degrees at HL-LHC
than was done at LEP

@ Boosted ZH channel helps in
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Backup: Ranges of R, R> and R3

Observable Oww Ogs Ow Os
[-3.32,-2.91] | [-3.32,—2.91] Not Not
R1 @ 7+8 TeV @] U bounded bounded
[+0.12,40.57] | [+0.12, 40.57]
[~2.76, —2.65] | [—2.76, —2.65] Not Not
R1 @ 14 TeV U u bounded bounded
[-0.06,+40.04] | [—0.06,+0.04]
R, @14 TeV | [-1.96,+1.62] Not [-2.10,42.50] Not
bounded bounded
Not Not Not [-8.44, —7.17]
R3 @ 14 TeV used used used U
[-0.72,40.56]
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Backup

S, = —c‘%_ ((cg“ + ﬂ)ég +W- by (s bk — Y)>

Graa, = —i ((03.‘. o —)dgl + W + thy (8 0y - y)>

s = (G-, 7 -

W
i = —%(S‘ — 0k, +c5 097 - Y)
»
9§um = —C%wvx—iv(cw +caw — Caw — %(Cu + ¢ — C2B))
92:1,,.1,_ = —C'%‘_TXZ (cw +caw — caw + t23 (cs +cus — &28))
o = % Té’ (cs+ cup — c28)
W
Dintn = *2:;?“ %(CB +Cup — Cop)
»
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