# CP violation: to infinity and beyond

Ben Gripaios

Cambridge

April 2018

## CP violation: to infinity and beyond

- dimension 6 CPV in EFT . . .
- ...and 7,8,...∞
- ...and beyond

a sisyphean task!

B. Lightyear, 1995

### **Outline**

- ▶ What is *CP*?
- Why CP violation?
- How to seek and interpret CPV?

What is *CP*?

What is CP?!

$$C: \phi \in \mathbb{R} \to \pm \phi, \phi \in \mathbb{C} \to \phi^*, \psi \to i\gamma^2\psi^*\dots$$

IMHO this is (a) wrong and (b) misses the point

#### QM vs relativistic QFT

- ► In QM, symmetries should preserve probabilities: (anti) linear/ unitary operators U
- ▶ In SR, the Minkowski metric is preserved by  $x \rightarrow \Lambda x + a$
- ▶ In QFT, (a central extension of) Poincaré:  $\exists U(\Lambda, a)$  s.t.  $U(\Lambda', a')U(\Lambda, a) = U(\Lambda'\Lambda, \Lambda'a + a')$
- ► Connected  $\implies \exists H, P^i, J^i, K^i \text{ s.t.}$  $HP^i = P^iH, HJ^i = J^iH, HK^i \neq K^iH :-)$

Weinberg, Vol. I



## Definition of *P*, *T*, *C*

- $U(\Lambda',a')U(\Lambda,a) = U(\Lambda'\Lambda,\Lambda'a+a')$
- ▶ Connected:  $\det \Lambda = 1$  and  $\Lambda_0^0 \ge 1$ . Disconnected?
- ▶ Definition:  $P = U(\Lambda, 0), \Lambda = diag(+---)$  for which this is still true.
- ▶ ditto for T, but with  $\Lambda = \text{diag}(-+++)$
- ▶ For *C*, send particles into antiparticles

#### Rather implicit definition!

- 1. Does CP exist?
- 2. Is CP unique?

### Does CP exist?

#### No!

- ▶ Existence  $\Longrightarrow$  (*CP*)H = H(CP)
- Experiment: 1964
- ▶ Theory: No *CP* defined for U(1) extends to  $SU(2) \times U(1)$ .

CP is an alternative fact, at best a convenient fiction:

A symmetry of QED; an approximate symmetry of SM

# Is CP unique?

#### No!

- $\blacktriangleright \mathbb{R} \ni \phi(t,x) \to \pm \phi(t,x)$
- ►  $\int dtd^3xm_\phi\phi^2$
- $ightharpoonup \mathbb{C} 
  ightharpoonup \phi(t,x) o \eta \phi(t,x), |\eta| = 1$
- $\rightarrow \int dt d^3x m_{\phi} |\phi|^2$

Physically inequivalent, in general.

#### Why is *CP* violation interesting?

- It exists!
- Too big in the SM!
- Too small in the SM!

### Why is *CP* violation interesting?

- It exists!
- ► Too big in the SM! cf EDM of *n*, *e*, *Tl*, *Hg*
- Too small in the SM! cf baryogenesis

Various measurements - BBN, CMB, ... - agree (roughly) that

$$\frac{n_B-n_{\overline{B}}}{n_\gamma}=6\times 10^{-10}$$

which requires (an odd initial condition or)

- B-violation
- C- and CP-violation
- non-thermal equilibrium

(These are necessary but not sufficient, cf. washout.)

- B-violation
- C- and CP-violation
- non-thermal equilibrium

These are all present in the SM, but not enough, given  $m_h = 125$  GeV.

We need BSM and especially CPV BSM.

Before LEP and LHC & co. visited hubris upon us, we had lots of good ideas for baryogenesis

- ▶ SM with  $m_h \ll 125$  GeV
- (N)MSSM
- GUT
- Affleck-Dine
- leptogenesis

(At least one of these still is a good idea!)

Now that we know that we don't know, let's return to a more ignorant approach . . .

How to seek and interpret CPV (in general purpose collider experiments)?

Kübler-Ross: The five stages of grief  $\dots$ 

#### 1. Denial

(Or how not to do it.)

- We see  $\gamma, W^{\pm}, Z$ .
- 'd = 6' operators  $\tilde{\gamma}W^+W^-$  and  $\tilde{Z}W^+W^-$
- ▶ EDM constrains  $\tilde{\gamma}W^+W^-$ , so look for  $\tilde{Z}W^+W^-$ .

Kumar, Rajaraman, & Wells, 0801.2891

Han & Li, 0911.2933



#### What is the cut-off of this EFT?

Not 
$$\Lambda$$
, but  $(g^2g'v^2\Lambda^2)^{\frac{1}{4}} \ll \Lambda$ 

BMG & Sutherland, 1309.7822



The correct way to do is to acknowledge  $SU(2) \times U(1)$ :

The invariant d = 6 operator WWW forces  $WW\gamma/WWZ = \tan \theta_W$ . Departures require a d = 8 operator.

Need  $\Lambda < 170 \text{ GeV}$ 

BMG & Sutherland, 1309.7822



### 2. Anger

Lesson learned: when seeking CPV at LHC, expts and theorists should take account of what we already know.

## 3. Bargaining

We'll accept  $SU(2) \times U(1)$  and the existence of spin-0 h, if you'll pretend that it isn't the Higgs boson

Now we can play a nice game (i.e. one that we can actually win!):

Pretend that CP exists, so that  $h \to \pm h$ ; which hypothesis does data prefer?

- Study gauge/Higgs processes
- ▶  $h \rightarrow ZZ \rightarrow 4I, h \rightarrow WW \rightarrow 2I2v, h \rightarrow Z\gamma, h \rightarrow \gamma\gamma, Vh \rightarrow Vbb$
- 0<sup>+</sup> favoured at 99.95%

e.g. ATLAS, 1307.1432

e.g. CMS, 1411.3441

But is it really game over?!

e.g. for  $h \to ZZ$  these studies compare a renormalizable SM vertex  $vhZ^{\mu}Z_{\mu}$  with the higher-dimension operator  $vh\tilde{Z}^{\mu\nu}Z_{\mu\nu}/\Lambda^2$ 

### But there are 4 operators in the 'gauge/Higgs sector':

$$\begin{split} \Delta \mathcal{L}_{CP}^{(4)} &= \tilde{c}_{WW}' \, \tilde{W}_{\mu\nu}^a W^{\mu\nu\,a} \, \frac{h}{v} + \tilde{c}_{WB}' \, \text{Tr} \Big[ \Sigma^\dagger \, \tilde{W}_{\mu\nu}^a \sigma^a \, \Sigma \, B_{\mu\nu} \sigma^3 \Big] \, \frac{h}{v} \\ &+ \tilde{c}_{BB}' \, \tilde{B}_{\mu\nu} B^{\mu\nu} \, \frac{h}{v} + \frac{\tilde{c}_{gg}}{2} \, \tilde{G}_{\mu\nu}^a G^{a\mu\nu} \, \frac{h}{v} \, . \end{split}$$

Contino & al., 1303.3876

So, is it really game over?!

No, because there is no 'gauge/Higgs' sector

- ► Theory: This is a basis-dependent definition
- Expt: the process is pp → 4/

BMG & Sutherland, to appear

## 4. Depression

#### Btw, there is no CP odd/even sector, either

 Classes of d-dimensional operators can be reduced into irreps of symmetries of the lagrangian at lower dimensions

BMG & Sutherland, to appear

▶ But CP is not a symmetry of the d = 4 lagrangian!



### 5. Acceptance

We accept  $SU(2) \times U(1)$  and the existence of the Higgs. And we fit all 80/2500 operators.

We accept  $SU(2) \times U(1)$  and the existence of the Higgs. And we fit all 80/2500 operators.

A game we're getting better at, at least with CP

Ellis & al, 1410.7703

Riva & Falkowski, 1411,0669

Without CP, the wheels are starting to turn

Dwivedi & al., 1505.05844

Ferreira & al., 1612.01808

Brehmer & al., 1712.02350

There are, no doubt, easier and harder ways of going about this:

- ▶ *CP* is a symmetry of the perturbative SM with  $\leq$  2 families
- ► *CP* is an approximate symmetry with 3 families
- ▶ 'most' observables don't know/care about CPV in  $d \le 4$
- some observables are better measured/better sensitive to CP than others

Where should we look for CPV?

Dumb answer: wherever we like!

Some observables are cleaner than others ...

### CPV elsewhere in physics

- ▶ Via *CPT*/Kramers:  $T^2$  fermion = fermion  $\implies$  degenerate  $\implies$  no EDM in e, n, Hg, TI, ...
- How to apply this to LHC?!

### CPV elsewhere in physics II

- ▶  $[CP, H] = 0 \implies$  no switching eigenstates, cf  $K_L \rightarrow 2\pi, 3\pi$
- $ightharpoonup e^+e^-/p\overline{p}$ :-)
- $pp :-(; q\overline{q} \text{ initial states and invariants})$
- detectors are biased (though reversing B helps)

#### CPV elsewhere in physics III

- P: reverses momenta (and adds phases)
- C: switches particles/antiparticles (and adds phases)
- ▶ T: reverses momenta, spins, in/out states

#### n.b.

- P rates unchanged by reversing momenta
- C: rates unchanged by switching particles/antiparticles
- ▶ T: rates sometimes unchanged by reversing momenta and spins:  $S_1 = -S_0 S_1^{\dagger} S_0$

aka naïve time reversal  $\hat{T}$ 

# General Purpose Colliders

#### How can we use these ideas?

- Can't measure spins, so use momenta
- ▶ With  $2 \rightarrow 3$  processes, 4 independent momenta
- ► Can form *C*-even,  $P, \hat{T}$ -odd  $\varepsilon_{\mu\nu\sigma\rho}p_1^{\mu}p_2^{\nu}p_3^{\sigma}p_4^{\rho}$
- ▶ Plus two C-odd, P,  $\hat{T}$ -even scalar products



Brehmer & al., 1712.02350.pdf

- Quantify (using Fisher info) how much can be got from this
- I guess we'll end up doing it by machine (learning) . . .

And beyond ...

Is SMEFT enough?

### It is hard to get EW baryogenesis with SMEFT

- ▶ need big effects ⇒ low cut-off
- danger of invalidating the EFT
- ▶ e.g. |H|<sup>6</sup> and strongly first-order EWPT

Grojean & al., 0407019

Bodeker & al., 0412366

Grinstein & Trott, 0806.1971

Cirigliano & al., 1603.03049

(6. Hope)

We need effects 'beyond infinity' in EFT! Two examples  $\dots$ 

In the SM (and SMEFT), H is a co-ordinate on  $\mathbb{R}^4$ 

In the minimal composite Higgs model, H is a co-ordinate on  $SO(5)/SO(4)\cong S^4$ 

The extra point makes a difference: there is a topological term in the action that counts how many times spacetime  $S^4$  wraps around SO(5)/SO(4)

It violates CP!

It does not appear at any order in the EFT expansion :-)

It is utterly negligible at low energies :-(

But it may be a vestige of interesting physics in a UV completion

Davighi & BMG, 1603.03049 & to appear

A 2nd, more prosaic example, new light degrees of freedom . . .

# Scalar singlet

#### A scalar singlet can have big effects

The scalar potential can be strongly first order

Espinosa & al, 1107.5441

▶ The CPV d = 5 operator  $\eta Q^3 HU^3$  can achieve EWBG

Espinosa, BMG & al, 1110.2876

### Scalar singlet II

A nice model is readily available: composite Higgs with SO(6)/SO(5)

BMG & al, 0902.1483

but is hardly in the spirit of this meeting!

### Scalar singlet III

#### Just write the EFT up to d = 5:

BMG & Sutherland, 1604.07365

#### 22 operators, ripe for a fit!

#### DEFT

n.b. In the old days this used to be painstakingly done by hand

these days it can be done by machine.

- Poincarè-invariant theories
- ▶ D = 3 + 1 (smaller D would be easy to do too)
- any gauge group which is a product of SU(n)s and U(1)s
- any matter field content
- any basis or bases
- ▶ includes CP

BMG & Sutherland, to appear



### SM d=6



# CP violation: to infinity and beyond

- EFT (of course!), at ever higher dimensions . . .
- ...and beyond, for baryogenesis
- a sisyphean task!

B. Lightyear, 1995