Low-Energy Effective Quantum Field Theories An EFT is a QFT which describes physics below some scale A, as opposed to 9 fundemental (or "fu") Heory, which is valid up to artitlary high energies. Examples: Every QFT known ! SM! More formally, EFTs implement expansion in scale ratio $\lambda = E/{\Lambda}$: the Taylor series of QFT. AS such, EFTS are a fundementel tool of QFT, like perturbation theory, the experision in the coupling contents. Perhaps the most famous example of an EFT is the Ferni theory of weak interching

* Wilsonian EFT. integrate out physics

above some scale A, using path integral

- $\phi = \phi_{\perp} + \phi_{H}$; ϕ_{H} convoins that distance fluctuation • Expand $d_{eff}(\phi_{\perp}) = l_{o} + \sum_{k,i} \frac{C_{i}^{(k)} O_{i}^{(k)}(\phi_{\perp})}{\Lambda^{k}}$
- . top down, difficult in practice due to hard cutoff N
- · provides physical picture of renormalization group flow for Wilson coefficients $C_i = C_i(\Lambda)$

Operator dimension
Dimension of fields
$$(t_1 = c = 1)$$

Scalar: $\int ddx \frac{1}{2} (\partial_\mu \psi)^2 - \psi = \psi = \frac{d-2}{2}$
 $o = 2 + 2[\psi] - d \qquad [\psi] = 1 \text{ in } d=7$
Fermion: $\int d^d x + i \psi \psi = \frac{d-1}{2}$
 $o = 1 + 2[\psi] - d \qquad [\psi] = \frac{2}{2} \text{ for } d=4$

Gauge Field Ap: some as scalar but iDp = iDp + g Ap ~ E

Terminology: : relevant operator k > 0 k = 0: marginal : irrelevant k < 0 contribution vehigles for Four-fernion operator of Fermi theory is irrelevant; prefactor is $\frac{1}{M_{1}^{2}} - \frac{1}{\Lambda^{2}}$. This is the reason why the week interaction is weak! Q: Now consider SM Lagrenjian. How many relevant operators are the? For A -> 00 the irrelevant operators face away: the remaining theory only contained operators which are renormalizable in the

treditional sense.

3.) Renormalize Wilson coefficients $C_{i}^{ren}(\mu) = \lim_{\Sigma \to 0} \sum_{j} Z_{ij} C_{j}^{bare}(\Sigma)$ $d = 4-2\Sigma$

Solve
$$RG - equation$$

$$\frac{d}{dlinp} C_i(\mu) = \{C_j(\mu)\} \}_{ji}$$

$$\Lambda + \mu_h$$

$$C_i(\mu_e) = C_i(\mu_n) \mathcal{M}_{ij}(\mu_n, \mu_e)$$

$$E + \mu_e$$

Why EFTs ?

- · Expansion in scale ratios simplifies computations
- Symmetries
 sporoximate: chiral symmetry mq->0
 emergent : heavy quark symm.
 (Spin, flour)
- Scale separation / Factorization
 A series of single scale problems
 no can we dimensional analysis
 Parturbation theory OK for smell couplings
 [It breaks down for problems with
 brga scale insercless. Problem
 an be solved using the renormalization
 group in the ETT.]

perturbative physics. . General fremework for cases where full theory is not known (e.g. SM) or nonperturbative (CHPT). - Model-independent Way to paremeterze effects of unknown physics at scale A.

- separate perturbative from non-