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Lecture 1: Introduction and Basic Formalism

Exercise 1.1: A B-factor (e. g. KEKB) is designed for asymmetric head-on collisions

between a positron beam of energy 3.5 GeV and an electron beam of energy 8 GeV. Find

the center-of-mass energy for the B-factory. Do you understand why to adopt this design

for the energy and for the asymmetry?

Exercise 1.2: The dominant decay channel of the top quark is t → W+b. The partial

decay width given in terms of the known mass parameters at the leading order is
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Assuming this formula gives its total decay width, estimate the top-quark life-time in units

of yocto-second.

If the QCD scale is ΛQCD ≈ 200 MeV, compare the top-quark life-time with the time scale

at which the QCD strong interaction sets in.

Also compare with the b-quark life-time, and try to understand the differences between the

decays of the two quarks.

(Use the PDG review for the parameters needed.)

Exercise 1.3: (challenging problem) In the “Standard Model” of elementary particle

physics, the amplitude for the scattering of the (longitudinally polarized) weak gauge bosons

(the force mediator for the nuclear β decay) W+W+ → W+W+ is calculated at high energies

to be
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where k is the W+ momentum in the Center-of-Momentum frame, MH is the mass of the

Higgs boson, and v ≈ 250 GeV is the Higgs vacuum expectation value. The angular-

dependent kinematical variables are

t = −2k2(1− cos θ) and u = −2k2(1 + cos θ).
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Note that the amplitude is give in the “natural units” where c = h̄ = 1, and everything is

expressed in terms of the energy units electron-volts: 1 GeV = 109 eV.

(a). Take the high-energy limit 2k ≫ MH , compute the partial wave amplitude aℓ. Note that

for final state identical particles W+W+, the angular integration should be 1/2
∫ 1
−1 d cos θ.

(b). Impose the partial wave unitarity condition on aℓ for s-wave, determine the bound on

the mass of the Higgs boson MH (in units of GeV).

(c). If the Higgs boson did not exist in Nature, then the amplitude for the weak gauge boson

scattering for W+W+ → W+W+ would be expressed by taking the limit 2k ≪ MH → ∞.

Using the same procedure above, determine at what energy scale 2k the Standard Model

theory would break down to violate the partial wave unitarity.

(Remark: The “Large Hadron Collider” (LHC) at CERN, Geneva, provides proton-proton

collisions at a c.m. energy of 13,000 GeV, which was designed based on the above physics

argument. Consequently, we have witnessed the historical discovery of the Higgs boson!)

Exercise 1.4: A 125 GeV Higgs boson will have a production cross section of 20 pb at

the LHC. How many events per year do you expect to produce for the Higgs boson with a

designed LHC luminosity 1033/cm2/s? With the expected events, why is the Higgs boson

so difficult to observe?
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Lecture 2: Relativistic Kinematics and Phase Space, Collider Detectors

Exercise 2.1: Show that the phase space element dp⃗/2p0 is Lorentz invariant.

Exercise 2.2: (challenging problem) A particle of mass M decays to two particles

isotropically in its rest frame. What does the momentum distribution look like in a frame

in which the particle is moving with a speed βz? Compare the result with your expectation

for the shape change for a basket ball.

Exercise 2.3: Consider a 2 → 2 scattering process pa + pb → p1 + p2. Assume that

ma = m1 and mb = m2. Show that

t = −2p2cm(1− cos θ∗a1),

u = −2p2cm(1 + cos θ∗a1) +
(m2

1 −m2
2)

2

s
,

pcm = λ1/2(s,m2
1, m

2
2)/2

√
s is the momentum magnitude in the c.m. frame.

Note: t is negative definite; t → 0 in the collinear limit, that could be singular for massless-

exchange. Comment on the u-channel.

Exercise 2.4: (challenging problem) A particle of mass M decays to three particles

M → abc. Show that the phase space element can be expressed as

dPS3 =
1

27π3
M2dxadxb.

xi =
2Ei

M
, (i = a, b, c,

∑

i

xi = 2).

where the integration limits for ma = mb = mc = 0 are

0 ≤ xa ≤ 1, 1− xa ≤ xb ≤ 1.

Note: For the decay in the M-rest frame, three of the four angular variables can be trivially

integrated out (ignoring the spins of the particles).

Exercise 2.5: For a π0, µ−, or a τ− respectively, calculate its decay length if the particle

has an energy E = 10 GeV.
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Lecture 3: Lepton Colliders

Exercise 3.1: For a resonant production e+e− → V ∗ with a mass MV and total width ΓV ,

derive the Breit-Wigner formula (If you find it too challenging for the calculation,

you may skip this part and move on to the next line.)

σ(e+e− → V ∗ → X) =
4π(2j + 1)Γ(V → e+e−)Γ(V → X)
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V
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,

Consider a beam energy spread ∆ in Gaussian distribution
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],

obtain the appropriate cross section formulas for (a) ∆ ≪ ΓV (resonance line-shape) and

(b) ∆ ≫ ΓV (narrow-width approximation).

Exercise 3.2: An event was identified to have a µ+ and a µ− along with some missing

energy. What can you say about the kinematics of the system of the missing particles?

Consider for both an e+e− and a hadron collider.

Exercise 3.3 (challenging problem): Derive the Weizsäcker-Williams spectrum for a

photon with an energy xE off an electron with an energy E

Pγ/e(x) ≈
α

2π

1 + (1− x)2

x
ln

E2

m2
e

.

Note that this procedure is the direct analog to deriving the DGLAP q → q′g splitting in

QCD.
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Lecture 4: Hadron Colliders

Exercise 4.1: For a four-momentum p ≡ pµ = (E, p⃗), define

ET =
√

p2T +m2, p2T = p2x + p2y, y =
1

2
ln

E + pz
E − pz

,

then show pµ = (ET cosh y, pT cosφ, pT sin φ, ET sinh y),

and,
d3p⃗

E
= pTdpTdφ dy = ETdETdφ dy.

Due to the random boost between the Lab-frame (O) and the c.m. frame (O′) for every

event,

y′ =
1
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=
1

2
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(1 + βcm)(E − pz)
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where βcm and ycm are the speed and rapidity of the c.m. frame w.r.t. the lab frame.

In the massless limit, the rapidity y defines the pseudo-rapidity:

y → η =
1

2
ln

1 + cos θ

1− cos θ
= ln cot

θ

2
.

Exercise 4.2: For a two-body massless final state with an invariant mass squared s, show

that

dσ̂

dpT
=

4pT

s
√

1− 4p2T/s

dσ̂

d cos θ∗
.

where pT = p sin θ∗ is the transverse momentum and θ∗ is the polar angle in the c.m. frame.

Comment on the apparent singularity at p2T = s/4.

Exercise 4.3: What would be needed to construct a CP-odd observable in the hadron

collider environment, such as the LHC? Try to construct one (anyone and for any process

of your choice).

Reference: Genuine CP-odd Observables at the LHC, by Tao Han and Yingchuan Li:

Phys.Lett. B683 (2010) 278-281, e-Print: arXiv:0911.2933.
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