Supplemental Assignments for Collider Phenomenology

Tao Han, July 16-19, 2018, The MITP summer school, Mainz, Germany

Lecture 1: Introduction and Basic Formalism

Exercise 1.1: A B-factor (e. g. KEKB) is designed for asymmetric head-on collisions between a positron beam of energy 3.5 GeV and an electron beam of energy 8 GeV . Find the center-of-mass energy for the B-factory. Do you understand why to adopt this design for the energy and for the asymmetry?

Exercise 1.2: The dominant decay channel of the top quark is $t \rightarrow W^{+} b$. The partial decay width given in terms of the known mass parameters at the leading order is

$$
\Gamma_{t}=\frac{G_{F} m_{t}^{3}}{8 \pi \sqrt{2}}\left(1-\frac{m_{W}^{2}}{m_{t}^{2}}\right)^{2}\left(1+2 \frac{m_{W}^{2}}{m_{t}^{2}}\right)
$$

Assuming this formula gives its total decay width, estimate the top-quark life-time in units of yocto-second.
If the QCD scale is $\Lambda_{\mathrm{QCD}} \approx 200 \mathrm{MeV}$, compare the top-quark life-time with the time scale at which the QCD strong interaction sets in.
Also compare with the b-quark life-time, and try to understand the differences between the decays of the two quarks.
(Use the PDG review for the parameters needed.)
Exercise 1.3: (challenging problem) In the "Standard Model" of elementary particle physics, the amplitude for the scattering of the (longitudinally polarized) weak gauge bosons (the force mediator for the nuclear β decay) $W^{+} W^{+} \rightarrow W^{+} W^{+}$is calculated at high energies to be

$$
f(k, \theta)=\frac{1}{16 \pi k}\left(\frac{-M_{H}^{2}}{v^{2}}\right)\left(\frac{t}{t-M_{H}^{2}}+\frac{u}{u-M_{H}^{2}}\right)
$$

where k is the W^{+}momentum in the Center-of-Momentum frame, M_{H} is the mass of the Higgs boson, and $v \approx 250 \mathrm{GeV}$ is the Higgs vacuum expectation value. The angulardependent kinematical variables are

$$
t=-2 k^{2}(1-\cos \theta) \quad \text { and } \quad u=-2 k^{2}(1+\cos \theta)
$$

Note that the amplitude is give in the "natural units" where $c=\hbar=1$, and everything is expressed in terms of the energy units electron-volts: $1 \mathrm{GeV}=10^{9} \mathrm{eV}$.
(a). Take the high-energy limit $2 k \gg M_{H}$, compute the partial wave amplitude a_{ℓ}. Note that for final state identical particles $W^{+} W^{+}$, the angular integration should be $1 / 2 \int_{-1}^{1} d \cos \theta$.
(b). Impose the partial wave unitarity condition on a_{ℓ} for s-wave, determine the bound on the mass of the Higgs boson M_{H} (in units of GeV).
(c). If the Higgs boson did not exist in Nature, then the amplitude for the weak gauge boson scattering for $W^{+} W^{+} \rightarrow W^{+} W^{+}$would be expressed by taking the limit $2 k \ll M_{H} \rightarrow \infty$. Using the same procedure above, determine at what energy scale $2 k$ the Standard Model theory would break down to violate the partial wave unitarity.
(Remark: The "Large Hadron Collider" (LHC) at CERN, Geneva, provides proton-proton collisions at a c.m. energy of $13,000 \mathrm{GeV}$, which was designed based on the above physics argument. Consequently, we have witnessed the historical discovery of the Higgs boson!)

Exercise 1.4: A 125 GeV Higgs boson will have a production cross section of 20 pb at the LHC. How many events per year do you expect to produce for the Higgs boson with a designed LHC luminosity $10^{33} / \mathrm{cm}^{2} / \mathrm{s}$? With the expected events, why is the Higgs boson so difficult to observe?

Lecture 2: Relativistic Kinematics and Phase Space, Collider Detectors

Exercise 2.1: Show that the phase space element $d \vec{p} / 2 p^{0}$ is Lorentz invariant.

Exercise 2.2: (challenging problem) A particle of mass M decays to two particles isotropically in its rest frame. What does the momentum distribution look like in a frame in which the particle is moving with a speed β_{z} ? Compare the result with your expectation for the shape change for a basket ball.

Exercise 2.3: Consider a $2 \rightarrow 2$ scattering process $p_{a}+p_{b} \rightarrow p_{1}+p_{2}$. Assume that $m_{a}=m_{1}$ and $m_{b}=m_{2}$. Show that

$$
\begin{aligned}
t & =-2 p_{c m}^{2}\left(1-\cos \theta_{a 1}^{*}\right) \\
u & =-2 p_{c m}^{2}\left(1+\cos \theta_{a 1}^{*}\right)+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{s}
\end{aligned}
$$

$p_{c m}=\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right) / 2 \sqrt{s}$ is the momentum magnitude in the c.m. frame.
Note: t is negative definite; $t \rightarrow 0$ in the collinear limit, that could be singular for masslessexchange. Comment on the u-channel.

Exercise 2.4: (challenging problem) A particle of mass M decays to three particles $M \rightarrow a b c$. Show that the phase space element can be expressed as

$$
\begin{aligned}
& d P S_{3}=\frac{1}{2^{7} \pi^{3}} M^{2} d x_{a} d x_{b} . \\
& x_{i}=\frac{2 E_{i}}{M}, \quad\left(i=a, b, c, \sum_{i} x_{i}=2\right) .
\end{aligned}
$$

where the integration limits for $m_{a}=m_{b}=m_{c}=0$ are

$$
0 \leq x_{a} \leq 1, \quad 1-x_{a} \leq x_{b} \leq 1
$$

Note: For the decay in the M-rest frame, three of the four angular variables can be trivially integrated out (ignoring the spins of the particles).

Exercise 2.5: For a π^{0}, μ^{-}, or a τ^{-}respectively, calculate its decay length if the particle has an energy $E=10 \mathrm{GeV}$.

Lecture 3: Lepton Colliders

Exercise 3.1: For a resonant production $e^{+} e^{-} \rightarrow V^{*}$ with a mass M_{V} and total width Γ_{V}, derive the Breit-Wigner formula (If you find it too challenging for the calculation, you may skip this part and move on to the next line.)

$$
\sigma\left(e^{+} e^{-} \rightarrow V^{*} \rightarrow X\right)=\frac{4 \pi(2 j+1) \Gamma\left(V \rightarrow e^{+} e^{-}\right) \Gamma(V \rightarrow X)}{\left(s-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}} \frac{s}{M_{V}^{2}},
$$

Consider a beam energy spread Δ in Gaussian distribution

$$
\frac{d L}{d \sqrt{\hat{s}}}=\frac{1}{\sqrt{2 \pi} \Delta} \exp \left[\frac{-(\sqrt{\hat{s}}-\sqrt{s})^{2}}{2 \Delta^{2}}\right]
$$

obtain the appropriate cross section formulas for (a) $\Delta \ll \Gamma_{V}$ (resonance line-shape) and (b) $\Delta \gg \Gamma_{V}$ (narrow-width approximation).

Exercise 3.2: An event was identified to have a μ^{+}and a μ^{-}along with some missing energy. What can you say about the kinematics of the system of the missing particles? Consider for both an $e^{+} e^{-}$and a hadron collider.

Exercise 3.3 (challenging problem) : Derive the Weizsäcker-Williams spectrum for a photon with an energy $x E$ off an electron with an energy E

$$
P_{\gamma / e}(x) \approx \frac{\alpha}{2 \pi} \frac{1+(1-x)^{2}}{x} \ln \frac{E^{2}}{m_{e}^{2}}
$$

Note that this procedure is the direct analog to deriving the DGLAP $q \rightarrow q^{\prime} g$ splitting in QCD.

Lecture 4: Hadron Colliders

Exercise 4.1: For a four-momentum $p \equiv p^{\mu}=(E, \vec{p})$, define

$$
E_{T}=\sqrt{p_{T}^{2}+m^{2}}, \quad p_{T}^{2}=p_{x}^{2}+p_{y}^{2}, \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
$$

then show $p^{\mu}=\left(E_{T} \cosh y, p_{T} \cos \phi, p_{T} \sin \phi, E_{T} \sinh y\right)$,

$$
\text { and, } \frac{d^{3} \vec{p}}{E}=p_{T} d p_{T} d \phi d y=E_{T} d E_{T} d \phi d y
$$

Due to the random boost between the Lab-frame (O) and the c.m. frame $\left(O^{\prime}\right)$ for every event,

$$
y^{\prime}=\frac{1}{2} \ln \frac{E^{\prime}+p_{z}^{\prime}}{E^{\prime}-p_{z}^{\prime}}=\frac{1}{2} \ln \frac{\left(1-\beta_{c m}\right)\left(E+p_{z}\right)}{\left(1+\beta_{c m}\right)\left(E-p_{z}\right)}=y-y_{c m},
$$

where $\beta_{c m}$ and $y_{c m}$ are the speed and rapidity of the c.m. frame w.r.t. the lab frame.
In the massless limit, the rapidity y defines the pseudo-rapidity:

$$
y \rightarrow \eta=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=\ln \cot \frac{\theta}{2} .
$$

Exercise 4.2: For a two-body massless final state with an invariant mass squared s, show that

$$
\frac{d \hat{\sigma}}{d p_{T}}=\frac{4 p_{T}}{s \sqrt{1-4 p_{T}^{2} / s}} \frac{d \hat{\sigma}}{d \cos \theta^{*}}
$$

where $p_{T}=p \sin \theta^{*}$ is the transverse momentum and θ^{*} is the polar angle in the c.m. frame. Comment on the apparent singularity at $p_{T}^{2}=s / 4$.

Exercise 4.3: What would be needed to construct a CP-odd observable in the hadron collider environment, such as the LHC? Try to construct one (anyone and for any process of your choice).
Reference: Genuine CP-odd Observables at the LHC, by Tao Han and Yingchuan Li: Phys.Lett. B683 (2010) 278-281, e-Print: arXiv:0911.2933.

