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Why is QCD relevant?
• Predictions in QCD make possible the wondrous agreement 

between theory and data observed at the LHC. 
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• QCD is used at the LHC to enable discovery, as in the case 
of the Higgs boson.

Why is QCD relevant?

1604.02997

Signal

Background

QCD is needed to 
accurately model both the 

Higgs signal and its 
backgrounds
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QCD is needed to understand 
the properties of newly 
discovered particles, such as 
the Higgs couplings to other 
particles. This requires 
theoretical predictions for 
cross sections as a function of  
the property to be measured. 

Why is QCD relevant?



• QCD is needed to predict backgrounds to new physics searches 
(physics beyond the Standard Model). This becomes particularly 
important for searches with overwhelming backgrounds.

Why is QCD relevant?

Search for invisible Higgs
1610.09218

Theory ratios of ɣ+jets/Z(νν)+jets and W(lν)+jets/Z(νν)+jets together with 
measurements of ɣ+jets and W(lν)+jets are needed to predict the background

dominant background



Aim of these lectures
• Give you some basic understanding of QCD, focusing 

on its perturbative aspects. 

• Demonstrate important concepts through calculations 
of key scattering processes. 

• Discuss the physics implications of QCD on relevant 
LHC processes, demonstrating the importance of the 
interplay between theory and experiment. 

• We will have four lectures, some will be on the 
blackboard and others on the slides. 
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What is QCD?
• QCD is the theory that describes strong interactions between quarks and 

gluons. It is a non-abelian gauge theory with the symmetry gauge group 
SU(3). 

• There are 3 basic ingredients for QCD: quarks, gluons and the strong 
coupling constant 𝛂s.  

✦ quarks (and their anti-quarks): come in 3 colors in addition to their electric 
charge. The color makes them different from leptons in QED. 

✦ gluons: analogous to photons in QED, except they are color charged and 
there are 8 of them. Unlike photons, they interact with each other. 

✦ 𝛂s: a running coupling constant. It is small at high collider energies and 
large at small energies. It is larger than the QED coupling constant.
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The QCD Lagrangian
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• The terms proportional to gs in the field strength are responsible for 
the gluon self-interaction. This is what makes the difference w.r.t. 
QED. 

• taij are color matrices, they are the generators of SU(3). 

• QCD interactions do not depend on quark flavor (differences only 
due to EW ) 

• We will next split the Lagrangian into its quark and gluon parts and 
study its details.



 Lagrangian: the quark part
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• Quarks come in 3 colors:  i =

0

@
 1

 2

 3

1

A

• The part of the Lagrangian describing quarks and their interactions :

• The fundamental representation of SU(3) has (32-1)=8 generators t1ij… t8ij 
corresponding to 8 gluons A1µ.…A8µ, while i and j are color indices = 1,3. 

• An explicit representation for these generators is through the Gell-Mann 
matrices λA with tA = λA/2

Lq = ⌃q 
(q)
i

�
i�µ@µ�ij � gst

a
ij�

µAµ,a �mq�ij
�
 (q)
j
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• The gluon Lagrangian is simple: 

 Lagrangian: the gluonic part

LG = �1

4
Fµ⌫
a F a

µ⌫

The field strength Fµνa defined earlier contains the SU(3) structure 
constants fabc. They are anti-symmetric in all indices and satisfy:

[ta, tb] = ifabct
c

Some useful 
identities based 
on color algebra

Standard normalization: 
Tr(tatb) = TR�

ab

TR=1/2



Useful relations
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Nc = number of colors = 3



Gauge Invariance
• The QCD Lagrangian is invariant under local gauge 

transformations. This means that redefining the quark and gluon 
fields at any point in space and time does not change the physical 
content of the theory.
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• The quark and gluon fields as well as the covariant derivative have 
the following gauge transformations that leave the QCD 
Lagrangian unchanged:

U(x) is a unitary 3x3 matrix



Gauge Invariance
• Based on the previous relations, as well as: 
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It is easy to check that the QCD Lagrangian is indeed gauge invariant:

• It is important to note that the field strength alone is not gauge invariant in 
QCD, unlike QED. This is due to the self interacting gluons. 

• A mass term for the gluons would violate gauge invariance and is therefore 
forbidden, unlike quarks which can have a gauge invariant mass term.



Gauge fixing
• Like in QED, we can’t invert the quadratic part of the gluon 

Lagrangian to obtain its propagator. Need to add a gauge fixing 
term that depends on an arbitrary parameter ξ. In covariant gauges 
we have:
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• The gauge fixing term breaks gauge invariance. Physical results 
are in the end gauge independent. This provides an important 
check on higher order calculations that should be free from ξ.

L
gauge fixing

= �1

⇠
(@µAA

µ

)2 ξ=1:  Feynman gauge 
ξ=0: Landau gauge

Gluon propagator 
becomes:    ☛



Gauge fixing and Ghosts
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• In covariant gauges, the gauge fixing term must be supplemented 
with a ghost term to cancel the unphysical longitudinal degrees of 
freedom:

L
ghost

= @
µ

⌘a†Dµ

ab

⌘b

η: complex scalar field

• Certain ``physical’’ gauges (axial, light-like) remove the ghosts. 
We will use Feynman gauge, ξ=1, for our calculations.

structure of calculation in 
covariant gauges

|{z} |{z}
structure of calculation 

in physical gaugesλ: polarizations of gluons



Axial gauges
• We can choose an axial gauge by introducing an arbitrary direction n:

16

L
axial gauge

= �1

⇠
(nµAA

µ

)2

• The gluon propagator in this gauge becomes:

Light cone gauge: n2 = 0, ξ = 0 

• Only two degrees of freedom for the gluons propagate in this gauge 
(hence the term physical gauge). We can check that this is the case by 
using these two constraints: 

dµ⌫k⌫ = 0 = dµ⌫n⌫
k^2=0 for an 

on-shell gluon



Feynman rules: 
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Useful reference: Ellis, 
Stirling, Webber, QCD 
and Collider Physics



The running coupling
• All couplings run (QED, QCD, EW), this means they depend on the momentum 

scale Q^2 of the studied process. Gluon self-couplings lead to a profound 
difference between QED and QCD running of the coupling. 

• Consider the QED beta function (just the electron contribution). The QED 
evolution equation of the coupling constant 𝛂(Q^2):
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Q2 d↵

dQ2
= �QED(↵), �QED =

↵2

3⇡
+O(↵3)

↵(Q2) =
↵0

1� ↵0
3⇡ ln

⇣
Q2

m2
e

⌘

Coupling constant grows with energy; hits a 
Landau pole when denominator vanishes.  QED 

becomes strongly-coupled at high energies.

α0≈1/137



The running coupling
• Consider now the QCD beta function. Gluon self-couplings reverse the 

sign of the beta function:
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Q2 @↵s

@Q2
= �(↵s), �(↵s) = �↵2

s(b0 + b1↵s + b2↵
2
s + . . . ),

b0 =
11CA � 2nf

12⇡
, b1 =

17C2
A � 5CAnf � 3CFnf

24⇡2

• Lets solve the QCD evolution equation for 𝛂s assuming   �(↵s) = �↵2
sb0



The running coupling
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Asymptotic freedom:

• 𝛂s(Q) becomes small at high 
scales Q, the perturbative 
expansion improves. Quarks and 
gluons are almost free. 

• 𝛂s(Q) becomes large at small 
scales Q, perturbative expansion 
fails. Quarks and gluons interact 
strongly and confine into hadrons. 

note the sign change compared to QED



The running coupling
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Asymptotic freedom:

• Λ, often called ΛQCD, is the 
fundamental scale of QCD at 
which the coupling blows up. 
Λ⋍0.2GeV. 

• Perturbative expansions are 
valid for scales Q⨠Λ. 

note the sign change compared to QED



Confinement in QCD
• QCD becomes strongly coupled at low energies. We think this 

leads to the experimentally observed confinement of quarks and 
gluons into hadrons. 

• It is assumed that confinement always holds, although we have 
no rigorous proof of that.

quark-antiquark potential 
grows linearly at large 
separation, suggesting 

confinement

Juge, Kuti, Morningstar; review by Kronfeld, 1203.1204



QCD and hadronic collisions

Hard collision 
(Higgs 
production)  at 
short distances/
high energies

Parton-shower 
evolution to 
low energies

Hadronization 
at ΛQCD

Hadron 
decays

Multiple parton 
interactions

How does theory allow us to peer into the inner 
“hard-scattering” in this mess?



The concept of factorization
• The cross section for a hadronic process can be separated into a 

perturbative and a non-perturbative part in the following way:
renormalization 

scale

factorization 
scale

Note: this formula is correct up to some power corrections that scale like (ΛQCD/Q)^n where Q is the 
hard scale of the studied process and n is a process dependent factor.  

• The two ingredients are the partonic cross section (for which we will do few 
perturbative calculations) and the Parton Distribution Functions (PDFs) which 
are non-perturbative quantities that define the distribution of partons  inside 
the proton. They are determined from data together with some theory input.



The concept of factorization
• The cross section for a hadronic process can be separated into a 

perturbative and a non-perturbative part in the following way:
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• We can see how the factorization of cross sections into hard and soft 
parts appears in a simple example: the R-ratio in e+e-→hadrons.  
We will explicitly calculate this quantity in perturbative QCD to 
next-to-leading order in the strong coupling constant.



The R-ratio in e+e-
• The R-ratio is defined in the following way:
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• At lowest order in perturbation theory we have:

• Since hadronization happens at much longer time scales than the 
production of quarks which happens at high energies (short time 
scale), we can replace hadrons with partons.

✦ Time scale for f+f- production: τ∼1/Q 
✦ Time scale for hadronization: τ∼1/Λ

f+

f-



The R-ratio in e+e-
• The R-ratio is defined in the following way:
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• At lowest order in perturbation theory we have:

• Since hadronization happens at much longer time scales than the 
production of quarks which happens at high energies (short time 
scale), we can replace hadrons with partons.

f+

f-

• At lowest order, the R-ratio is 
simple (common factors cancel 
in the ratio):

electric charge 
of the quarks
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The R-ratio in e+e-
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The R-ratio in e+e-
• Simple leading-order QCD (the 

green line) roughly describes 
the data. 

• QCD at higher orders in the 
strong coupling (the red line, 
through N3LO ) does a very 
good job in describing the data 
(away from the resonance 
regions). We will calculate the 
QCD predictions through NLO. 

• There are technical details 
associated with describing the 
resonances that we will not 
discuss in these lectures.



Example 1: e+e- to hadrons at NLO
(on the blackboard)



         e+e- to hadrons at NLO: recap

• We have learned many interesting aspects of QCD by calculating 
the R-ratio at NLO in QCD. 

• Both real and virtual corrections to the R-ratio have IR soft and 
collinear singularities that cancel in the sum (satisfying the KLN 
theorem). 

• Regulating these singularities at intermediate steps was done by 
using dimensional regularization (work in d=4-2ϵ). IR singularities 
appeared as double/single poles in ϵ. Dimensional regularization 
regulates both IR and UV singularities without introducing new 
scales to the calculation, while maintaining gauge symmetry. 

• Only IR-safe observables can be calculated in perturbation theory.



Scale dependence
• If we calculate the R-ratio to O(αs2) we would find the following 

result:
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where b0 and c are µ-independent constants,

R = R0(1 + ↵s/⇡ + (↵s/⇡)
2(c+ ⇡b0 ln

µ2

Q2
) +O(↵3

s))

Q =
p
s

• R is a physical observable that should not depend on the 
arbitrary scale µ. Given the log dependence on µ, R is only 
independent of µ if αs is µ dependent.

R = R0(1 + ↵s(µ)/⇡ + (↵s(µ)/⇡)
2(c+ ⇡b0 ln

µ2

Q2
) +O(↵3

s(µ)))



• We can use the independence of R from µ to derive the 
renormalization group equation (RGE) for the R-ratio:
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Renormalization group equations

µ2 @R

@µ2
+ �QCD(↵s)

@R

@↵s
= 0⇒dR(µ2,↵s(µ2))

dµ2
= 0

�QCD(↵s) = µ2 @↵s

@µ2

• We can use this equation to predict the µ dependence at higher 
orders:

µ2 @R
(2)

@µ2
=

�0

4⇡
↵2
s
@R(1)

@↵s

⇒ R(2) =
�0

4
(
↵s

⇡
)2R(0) ln

µ2

s
+ . . .

terms without ln(µ2/s) that are not predicted by RGE

(β0=b0); �(↵s) = �↵2
s(b0 + b1↵s + b2↵

2
s + . . . ),



The beta function
• As we have seen earlier, the beta function has a perturbative 

expansion in αs:
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b0 =
11Nc � 4nfTR

12⇡
;

b1 =
17N2

c � 5Ncnf � 3CFnf

24⇡2

• nf is the number of active flavors, 
it depends on the scale Q 

• Today, the beta function is known 
completely to 4-loops and 
partially at 5-loops.

� = �↵2
s(µ)

X

i

bi↵
i
s(µ)



Theoretical uncertainty

• Variation of the scale µ in some specified range is often used as an 
estimate of theoretical uncertainty. If our cross section was 
calculated to all orders, this dependence would vanish.
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• The scale dependence is much 
flatter at NNLO than at NLO, 
leading to smaller uncertainty. 

• The scale variation is only a 
rough guide to the uncertainty 
associated with the terms 
neglected in our perturbative 
expansion (ie missing higher 
order corrections).



Eikonal approximation
• It is useful to have diagnostic tools to check pieces of a calculation. 

The eikonal approximation for soft gluons allows us to get the 
double pole.

= ūi(p1)
�
iMij

0

⇥
vj(p2)

= ūi(p1)
�

igs ⌅�a
gT a

ij
i(⌅p1+ ⌅pg)
(p1 + pg)2

⇤
iMjk

0

⌅⇥
vk(p2)

⇤ �gs
p1 · �a

g

p1 · pg
ūi(p1)

⇧
T a

ij

⇤
iMjk

0

⌅⌃
vk(p2)

i,j: color indices in the 
fundamental representation

• Real radiation amplitude is proportional to the lower-order amplitude, 
with a color correlation.  Emission off the other leg also simplifies

(drop pg in the numerator and pg2 in the denominator)

Generic tree 
level amplitude



Eikonal approximation
• It is useful to have diagnostic tools to check pieces of a calculation. 

The eikonal approximation for soft gluons allows us to get the 
double pole.
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= ūi(p1)
�
iMij

0

⇥
vj(p2)

= ūi(p1)
�

igs ⌅�a
gT a

ij
i(⌅p1+ ⌅pg)
(p1 + pg)2

⇤
iMjk

0

⌅⇥
vk(p2)

⇤ �gs
p1 · �a

g

p1 · pg
ūi(p1)

⇧
T a

ij

⇤
iMjk

0

⌅⌃
vk(p2)

i,j: color indices in the 
fundamental representation

The real emission amplitude has factorized 
into the tree-level amplitude times an 

eikonal factor, with non-trivial correlations 
in color-space, in the soft limit



Eikonal approximation
• Phase space also factorizes, into the soft-gluon component times the 

remainder. Can derive simplified expressions for the cross section in 
this limit.  For an arbitrary process:
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ps: momentum of soft gluon

d�s =


↵s

2⇡

�(1� ✏)

�(1� 2✏)

✓
4⇡µ2

s12

◆✏�X

f,f 0

d�0
ff 0

Z
dS

�pf · pf 0

pf · pspf 0 · ps

partonic CM 
energy squared

sum over the hard colored states

δs restricts gluon energy to the soft 
region, it is a small number

dS =
1

⇡

✓
4

s12

◆�✏ Z �s
p
s12/2

0
dEs dc✓ d�E1�2✏

s s�2✏
✓ s�2✏

�

from Harris & Owens 
hep-ph/0102128,  
a useful reference for 
relevant formulae

Note that the cutoff δs restricts only the gluon energy. We are however 
integrating over all angles, and therefore collinear singularities can be present.



Eikonal approximation
• Phase space also factorizes, into the soft-gluon component times the 

remainder. Can derive simplified expressions for the cross section in 
this limit.  For an arbitrary process:
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ps: momentum of soft gluon

d�s =


↵s

2⇡

�(1� ✏)

�(1� 2✏)

✓
4⇡µ2

s12

◆✏�X

f,f 0

d�0
ff 0

Z
dS

�pf · pf 0

pf · pspf 0 · ps

partonic CM 
energy squared

sum over the hard colored states

δs restricts gluon energy to the soft 
region, it is a small number

dS =
1

⇡

✓
4

s12

◆�✏ Z �s
p
s12/2

0
dEs dc✓ d�E1�2✏

s s�2✏
✓ s�2✏

�

|M0
ff 0 |2 =

h
Mc1. . . bf . . . bf0 . . . cn

i⇤
T a
bfdf

T a
bf0df0Mc1. . . df . . . df0 . . . cn

from Harris & Owens 
hep-ph/0102128,  
a useful reference for 
relevant formulae

general structure of the factorized real emission amplitude squared



• Applying the eikonal approximation to the current process yields:
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Eikonal approximation

Cutoff dependence must 
cancel against other regions 
of gluon phase space

agrees with our full calculation

Rqq̄g
1,soft = R0 ⇥

�sCF

⇧

�(1� ⇤)
�(1� 2⇤)

�
s

4⇧µ2

⇥�� ⇤
1
⇤2
� 2

⇤
ln ⇥ + 2 ln2 ⇥ + finite

⌅
s s

• The cutoff dependence must cancel against the collinear and 
hard regions. We will write down the collinear approximation. 
The hard region can be calculated numerically as it is finite.

• The 1/ε2 must cancel against virtual corrections.



Collinear approximation
• Another singular region to consider is collinear gluon emission. 

We can study the region p1||pg using a sudakov parametrization 
of the momenta (see Catani-Grazzini, hep-ph/9810389):
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pµ1 =zpµ + kµ? � k2?
z

nµ

2p · n,

pµg =(1� z)pµ � kµ? � k2?
1� z

nµ

2p · n

z =
E1

E1 + Eg
, s1g = � k2?

z(1� z)

• S1g vanishes when k⊥→0, this is the singular limit. p and n are light-like 
vectors satisfying p.k⊥ = 0 = n.k⊥ . The amplitude simplifies in this limit:

|M1(p1, p2, pg)|2 ⇡ 2

s1g
g2sµ

2✏Pqq(z, ✏) |M0(p1 + pg, p2)|2

Pqq(z, ✏) =CF


1 + z2

1� z
� ✏(1� z)

�

p: collinear direction; k⊥: transverse momentum to p

http://arxiv.org/abs/hep-ph/9810389


Collinear approximation
• The phase space also simplifies in this limit. We get the following 

contribution to the NLO R-ratio from the p1||pg region:
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R

qq̄g
1,1||g = R0 ⇥

↵s

2⇡

1

�(1� ✏)


s

4⇡µ2

��✏ Z 1

1��c

dx2 (1� x2)
�1�✏

Z 1��

0
dz [z(1� z)]�✏

Pqq(z, ✏)

= R0 ⇥
↵s

2⇡

1

�(1� ✏)


s

4⇡µ2

��✏ ⇢1

✏

✓
3

2
+ 2 ln �

◆
� ln2� � 3

2
ln �c � 2 ln � ln �c + finite

�

s

ss s
CF

CF

agrees with our full calculation

δc is a cutoff that restricts the integration to the collinear region p1||pg.  
The z integral is restricted at 1-δs to prevent the gluon energy from 
extending into the soft region; we don’t want to double-count the 
contribution from the soft gluons already included in the eikonal 
approximation.

cos(𝜃)= 2 x2 -1



Collinear approximation
• The phase space also simplifies in this limit. We get the following 

contribution to the NLO R-ratio from the p1||pg region:
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• There is an identical contribution from the region p2||pg, so we just multiply the 
above result by a factor of 2.  

• Adding the collinear contributions to the soft region cancels the cutoff 
dependence in the poles and reproduces the poles of the full result.  

• The remaining cutoff dependence cancels against the hard region of the phase 
space which is finite and can be handled numerically in 4 dimensions.

R

qq̄g
1,1||g = R0 ⇥

↵s

2⇡

1

�(1� ✏)


s

4⇡µ2

��✏ Z 1

1��c

dx2 (1� x2)
�1�✏

Z 1��

0
dz [z(1� z)]�✏

Pqq(z, ✏)

= R0 ⇥
↵s

2⇡

1

�(1� ✏)


s

4⇡µ2

��✏ ⇢1

✏

✓
3

2
+ 2 ln �

◆
� ln2� � 3

2
ln �c � 2 ln � ln �c + finite

�

s

ss s
CF

CF

agrees with our full calculation



Subtraction Schemes @ NLO
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• The splitting functions and eikonal factors are universal. They can 
be used to predict the poles for any process. This forms the basis 
for various subtraction schemes that handle IR singularities. 

Phase-space slicing, Harris, Owens hep-ph/0102128;  
Dipole subtraction, Catani, Seymour hep-ph/9605323; 
FKS, Frixione, Kunszt, Signer hep-ph/9512328 



Where to next?
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We have so far focused on aspects of QCD in the 
final state, for processes with leptonic initial 

state. What happens when we have more 
complicated initial states involving hadrons? 



Hadronic cross sections

• We have shown earlier 
the factorization formula 
for a hard process in 
hadron-hadron collisions:

46

W

partonic cross section: process 
dependent, calculated perturbatively

PDFs: universal, extracted from 
data

• Knowing the PDFs allows us to compare the predicted hadronic 
cross section with the measured one. This would also be a test of 
our framework for computing the partonic cross section.



Hadronic cross sections

• We have shown earlier 
the factorization formula 
for a hard process in 
hadron-hadron collisions:
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W

partonic cross section: process 
dependent, calculated perturbatively

PDFs: universal, extracted from 
data

• Knowing the PDFs allows us to compare the predicted hadronic 
cross section with the measured one. This would also be a test of 
our framework for computing the partonic cross section.

How do we extract the PDFs from data?



Deep Inelastic Scattering
• To understand this aspect, lets look at a simpler process with just one 

hadronic initial state: DIS - the scattering of a lepton on a proton.  

• DIS is still one of the most important processes to extract 
information about PDFs (ep at DESY).
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Deep Inelastic Scattering
• To understand this aspect, lets look at a simpler process with just one 

hadronic initial state: DIS - the scattering of a lepton on a proton.  

• DIS is still one of the most important processes to extract 
information about PDFs (ep at DESY).
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qµ = kµ � k
�µ

Q2 = �q2

x =
Q2

2P · q

y =
P · q

P · k
lab=

E � E
�

E

Q^2: photon virtuality, ie transverse resolution at which it probes proton structure
x: longitudinal momentum fraction of struck parton in proton
y: momentum fraction lost by the electron (in proton rest frame)

P

P: proton 
momentum



Deep Inelastic Scattering
• To understand this aspect, lets look at a simpler process with just one 

hadronic initial state: DIS - the scattering of a lepton on a proton.  

• DIS is still one of the most important processes to extract 
information about PDFs (ep at DESY).
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qµ = kµ � k
�µ

Q2 = �q2

x =
Q2

2P · q

y =
P · q

P · k
lab=

E � E
�

EP
s : C.M.E^2

Lµν: QED 
leptonic tensor

(obtained from squaring 
the upper part of the 
Feynman diagram)



DIS: hadronic tensor
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• Hermiticity (Wµν†= Wµν), current conservation (qµ Wµν =0) and parity 
invariance (in this case absence of εµνρσ) allow us to simplify Wµν: 
 
 

d⇤

dx dQ2
=

4⇥�2

Q4

⇤�
1 + (1� y)2

⇥
F1 +

1� y

x
[F2 � 2x F1]

⌅

• Parton model: electromagnetic (EM) current interacts with proton via 
point-like interactions with partons inside the proton (pparton = ξ P). 

Wµ⇥ =
1
4�

⇤
d4z eiq·z⇤P |J†

⇥(z)Jµ(0)|P ⌅

=
�

gµ⇥ � qµq⇥

q2

⇥
F1(x, Q2) +

⌅
Pµ +

qµ

2x

⇧ ⌅
P⇥ +

q⇥

2x

⇧ F2(x, Q2)
P · q

electromagnetic current

Structure functions

Wµν



DIS: hadronic tensor
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• Hermiticity (Wµν†= Wµν), current conservation (qµ Wµν =0) and parity 
invariance (in this case absence of εµνρσ) allow us to simplify Wµν: 
 
 

d⇤

dx dQ2
=

4⇥�2

Q4

⇤�
1 + (1� y)2

⇥
F1 +

1� y

x
[F2 � 2x F1]

⌅

P
Parton model

p= ξP

Wµ⇥ =
1
4�

⇤
d4z eiq·z⇤P |J†

⇥(z)Jµ(0)|P ⌅

=
�

gµ⇥ � qµq⇥

q2

⇥
F1(x, Q2) +

⌅
Pµ +

qµ

2x

⇧ ⌅
P⇥ +

q⇥

2x

⇧ F2(x, Q2)
P · q

electromagnetic current

Structure functions

Wµν



DIS: hadronic tensor
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• Hermiticity (Wµν†= Wµν), current conservation (qµ Wµν =0) and parity 
invariance (in this case absence of εµνρσ) allow us to simplify Wµν: 
 
 

 F1(x,Q^2) and F2(x,Q^2) are related through the Callan-Gross      
relation which is valid in the parton model:

                                    2 x F1(x, Q^2) = F2(x,Q^2)

Wµ⇥ =
1
4�

⇤
d4z eiq·z⇤P |J†

⇥(z)Jµ(0)|P ⌅

=
�

gµ⇥ � qµq⇥

q2

⇥
F1(x, Q2) +

⌅
Pµ +

qµ

2x

⇧ ⌅
P⇥ +

q⇥

2x

⇧ F2(x, Q2)
P · q

electromagnetic current

Structure functions

Wµν



Calculating the structure function F2

• We will calculate the structure function F2. We can obtain it by 
applying the following projection operator to Wµν

54

F2 = Rµ⇥Wµ⇥

Rµ⇥ =
2x

d� 2

�
gµ⇥ � 4 (d� 1)

x2

Q2
PµP ⇥

⇥

• We just need to calculate the following LO diagram (single quark 
in the final state):

pi

pf

Momenta parametrization (Breit frame)

P

µ =
Q

2x

⇣
1,~0, 1

⌘

p

µ
i = p

µ =
⇠Q

2x

⇣
1,~0, 1

⌘

q

µ =
⇣
0,~0,�Q

⌘



Calculating the structure function F2

• We will calculate the structure function F2. We can obtain it by 
applying the following projection operator to Wµν

55

F2 = Rµ⇥Wµ⇥

Rµ⇥ =
2x

d� 2

�
gµ⇥ � 4 (d� 1)

x2

Q2
PµP ⇥

⇥

• We just need to calculate the following LO diagram (single quark 
in the final state):

pi

pf

• Derive the following phase-space expression:

PS =
⇤

ddpf

(2⇤)d�1
�(p2

f )(2⇤)d�(d)(q + p� pf )

=
2⇤

Q2
�

�
1� x

⇥

⇥

Note: virtual corrections will have the 
same phase-space. Needed later.



Calculating the structure function F2

• We will calculate the structure function F2. We can obtain it by 
applying the following projection operator to Wµν

56

F2 = Rµ⇥Wµ⇥

Rµ⇥ =
2x

d� 2

�
gµ⇥ � 4 (d� 1)

x2

Q2
PµP ⇥

⇥

• We just need to calculate the following LO diagram (single quark 
in the final state):

pi

pf

• Obtain the structure function:

F2 =
1

4⇡

Z
d⇠

⇠

X

q

fq(⇠)⇥
PS

2N
⇥Rµ⌫ ⇥Wµ⌫

=
�

q

e2Q2
q

⇥
d⇥ fq(⇥) ⇥ �(x� ⇥)

=
�

q

e2Q2
q x fq(x)

color+spin 
averaging for 
initial state 
quark. N=3



Scaling

The LO prediction we have 
calculated shows no dependence 
on the virtuality of the photon 
Q^2. Is this consistent with data?

57

F2(x) =
X

q

e

2
Q

2
q x fq(x)



Scaling

The LO prediction we have 
calculated shows no dependence 
on the virtuality of the photon 
Q^2. Is this consistent with data?

58

F2(x) =
X

q

e

2
Q

2
q x fq(x)



Scaling

The LO prediction we have 
calculated shows no dependence 
on the virtuality of the photon 
Q^2. Is this consistent with data?

59

F2(x) =
X

q

e

2
Q

2
q x fq(x)

No. Data shows variation of 
F2 with Q^2. Can higher order 
QCD predict this behavior?



Real-emission phase space for F2

60

pf

p

We’ll calculate the 
quark contribution 
and quote the result 
for the gluon one

PS =
1

(2⇡)d�2

Z
ddpfd

dpg�(p
2
g)�(p

2
f )�

(d)(q + p� pf � pg)

=
1

(2⇡)d�2

Z
dspg

Z
ddpfd

dpg�(p
2
g)�(p

2
f )�(spg + 2p · pg)�(d)(q + p� pf � pg)

parametrize pg as pg= (E,pT,0,k); use delta 
functions to remove the E, pT and k integrations. 

PS =
⌦(d� 2)

4(2⇡)d�2

Z 1

0
dz


Q

2
z(1� z)

⇠

x

✓
1� x

⇠

◆��✏

p · pg =
⇠

2x
Q

2
z

pf · pg =
⇠

2x
Q

2

✓
1� x

⇠

◆

Set spg = -Q2 ξ z/x, which defines z, to derive:



Real-emission matrix elements for F2

• The spin, color summed/averaged + projected matrix elements:
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|M̄|2 = 4CF e2Q2
q g2

sµ2�

�
⇧

⇤
pf · pg

p · pg
+

p · pg

pf · pg
+

Q2p · pf

pf · pg p · pg
+ ... �⌥⌦

finite terms

⇥
⌃

⌅

• The real emission contribution of quark diagrams is then:

F

(1),real
2,q = e

2
Q

2
q

x

↵

s

2⇡

1

�(1� ✏)


Q

2

4⇡µ2

��✏

Z 1

x

d⇠

⇠

f

q

(⇠)

⇥
✓
x

⇠

◆
✏

✓
1� x

⇠

◆�✏

⇢
�C

F

✏

1 + (x/⇠)2

1� x/⇠

� 2C
F

x/⇠

1� x/⇠

+ ...

�

This term is bad news, no way it 
can cancel against virtual 
correction, which go like δ(x-ξ)

Looks like Pqq  ⇒ 
collinear singularity

Notice the singularity when x= ξ ⇒ soft singularity
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Factorization of IR singularities

• The 1/𝞊 pole that is not proportional to δ(x-ξ) originates from initial-
state collinear emission. This pole needs to be absorbed into the PDF. 
We need to redo the calculation replacing the PDF function fq with 
the bare one fq,0. Choose the bare PDF to remove the 1/ε pole. 

• Make soft singularity at x= ξ manifest with plus distribution 
expansion. This expansion leads to a double pole in the real emission. 

• Must also add virtual corrections, this removes the double pole in the 
real emission. 

✓
1� x

⇠

◆�1�✏

= �1

✏

�

✓
1� x

⇠

◆
+

1

[1� x/⇠]+
+O(✏)



Factorization of IR singularities

• We will perform this `mass factorization’ step-by-step. First we 
define a plus distribution

63

� 1

0
dx f(x) [g(x)]+ =

� 1

0
dx g(x) [f(x)� f(0)] if g(x)=1/x, it removes 

singularities at x=0 

• After adding virtual corrections (which can be obtained from e+e- 
virtual corrections upon crossing symmetry) and rearranging terms, 
our result for the divergent part of F2 is: 

F2,q =e

2
Q

2
q

x

Z 1

x

d⇠

⇠

f

q,0(⇠)

(
�(1� x/⇠) +

↵

s

2⇡�(1� ✏)


Q

2

4⇡µ2

��✏


�1

✏

P

qq

(x/⇠) + finite

�)

P

qq

(x) =C

F


1 + x

2

[1� x]+
+

3

2
�(1� x)

�✓
)

Z 1

0
P

qq

(x) = 0

◆
quark-number conservation



Factorization of IR singularities

• We will perform this `mass factorization’ step-by-step. First we 
define a plus distribution

� 1

0
dx f(x) [g(x)]+ =

� 1

0
dx g(x) [f(x)� f(0)] if g(x)=1/x, it removes 

singularities at x=0 

• Redefine PDF according to:

f

q

(x, µ2) = f

q,0(x) +
↵

s

2⇡

Z 1

x

d⇠

⇠

f

q,0(⇠)

⇢
�1

✏

P

qq

(x/⇠) + C(x/⇠)

�
 In MSbar: C chosen 
to remove ln(4π)-γE

• Arrive at the structure function:

F2,q = e

2
Q

2
q

x

Z 1

x

d⇠

⇠

f

q

(⇠, µ2)

⇢
�(1� x/⇠) +

↵

s

2⇡


P

qq

(x/⇠) ln
Q

2

µ

2
+ finite

��

☛ ln(Q2) dependence of F2 ⇒ explains the observed scaling violation



Scale variation and DGLAP
• Pole turns into a ln(µ2) dependence ⇒ F2 must be independent of this 

arbitrary factorization scale, which leads to an evolution equation for the 
PDF.  
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d fq(x, µ2)
d lnµ2

=
�s

2⌅

� 1

x

d⇤

⇤
fq(⇤, µ2)Pqq(x/⇤)  DGLAP equation

• Inclusion of gluon-initiated partonic processes:

F2,q = e2Q2
q x

⇧ 1

x

d⌅

⌅
fq(⌅, µ2)

⇤
⇥(1� x/⌅) +

�s

2⇧

�
Pqq(x/⌅) ln

Q2

µ2
+ finite

⇥⌅

+ e2Q2
q x

⇧ 1

x

d⌅

⌅
fg(⌅, µ2)

⇤
�s

2⇧

�
Pqg(x/⌅) ln

Q2

µ2
+ finite

⇥⌅

d

d lnµ2

�
fq(x, µ2)
fg(x, µ2)

⇥
=

�s

2⌅

⇤ 1

x

d⇤

⇤

�
Pqq(x/⇤) Pqg(x/⇤)
Pgq(x/⇤) Pgg(x/⇤)

⇥ �
fq(x, µ2)
fg(x, µ2)

⇥



PDFs
• We get much of our knowledge of PDFs from the DIS process 

• PDFs enter every hadron collider prediction, so we’d better know them 
well. They are non-perturbative objects with perturbative evolution. 

• The Q2  dependence of the PDF f(x, Q2) is calculable in perturbative QCD 
through the DGLAP equation, while the x dependence is extracted from 
data. 

• Several groups are working on extracting the PDFs and improving their 
uncertainties: CTEQ, NNPDF, ABM, MMHT, HERAPDF, JR 

• Basic idea: 

66

Hadronic cross section = PDFs ⊗ partonic cross section

measure calculateextract



Parton density coverage

67

NNPDF3.1, 1706.00428

kinematics coverage of 
NNPDF3.1 dataset in the (x,Q^2) 

plane

DGLAPDGLAP evolution moves PDFs 
down in x in addition to changing Q

Simple LO solution of the DGLAP 
equation for a single quark:

f

q

(x, µ

2
) = f(x,Q

2
0) +

↵

s

(Q

2
0)

2⇡

Log

µ

2

Q

2
0

⇥
Z 1

x

d⇠

⇠

f

q

(⇠, Q

2
0)Pqq

✓
x

⇠

◆

PDF at lower x
PDF at higher x

• 100 GeV physics at LHC:  
probes small-x, sea partons 

• TeV physics: probes large-x



Precision of today’s PDFs
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Precision of today’s PDFs

69

Today many parton distribution functions 
are known with a precision of several 

percents in the range 10-3<x<0.1



Benchmark processes for PDFs
• Impact of uncertainties from PDFs on benchmark processes

70

17
06

.00
42

8



Benchmark processes for PDFs

71

Estim
ated errors o

n 

benchmark processes 

within a given set are at 

the ±2% level Diffe
rences between 

central values 

predicted by diffe
rent 

groups 2% or le
ss

• Impact of uncertainties from PDFs on benchmark processes



PDF errors

72

• Data set choice: different groups use different data sets. 

• Parametrization choices for the PDF functional form 

• Order of perturbation theory for the hard cross section 
(leads to a different scale uncertainty) 

• Errors on data sets. 

• Published PDF sets come with errors. what could induce an 
error in a PDF?



PDF errors
• Published PDF sets come with errors. what could induce an 

error in a PDF?

73

• Data set choice: different groups use different data sets. 

• Parametrization choices for the PDF functional form 

• Order of perturbation theory for the hard cross section 
(leads to a different scale uncertainty) 

• Errors on data sets ☛  the only error included in the current fits



DIS& PDFs: Recap

74

• Factorization of long and short distance effects in QCD is key to 
our ability to calculate hadronic cross sections. Understanding 
PDFs is very important in achieving reliable predictions.  

• DIS data has played an important role in our probe of the proton 
structure. LHC and Tevatron data have allowed to further 
constrain other kinematic range for Bjorken x. 

• Today’s precision of PDFs has improved significantly, with some 
PDF determinations approaching the percent level precision. This 
is crucial for Higgs precision prospects. However there is still 
room for further improvements in their uncertainty. 



Two Hadronic Initial States: 
Drell-Yan Production



The Drell-Yan Process

76

• Drell-Yan is the production of lepton pairs in the 
s-channel. Drell-Yan like processes include:X

V

X

l1

l2

h(P1) + h0(P2) ! VBSMX; V = Z 0, . . .

h(P1) + h0(P2) ! (W ! l⌫)X

h(P1) + h0(P2) ! (�⇤, Z ! l+l�)X with  l = e,µ
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• Clean signal at hadron colliders, 
since the lepton pair does not 
interact strongly

 Facts about Drell-Yan

• One of the best theoretically studied 
processes at a hadron collider with 
uncertainties at the few percent level 

• Factorization is proved to all orders in 
QCD perturbation theory                                
(Collins-Soper-Stermann)

• Standard Candle for detector 
calibration (eg. detector response to 
lepton energy)



Historical importance
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• Study of the Drell-Yan process was critically important in 
establishing QCD as a quantitative theory

Comparison of di-muon invariant mass data 
from the NA3 experiment at CERN in 1979:

PLB 89 145 (1979)

The first introduction of a “K-factor” 
to explain discrepancies between 

theory and data
LO cross 
section



Historical importance
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• Study of the Drell-Yan process was critically important in 
establishing QCD as a quantitative theory

PLB 89 145 (1979)

Discrepancy resolved by 
next-to-leading order QCD!

NLO QCD corrections reach 
nearly a factor of 2, greatly 
reducing tension between 

theory and experiment

Altarelli, Ellis, Martinelli NPB157 
461 (1979)

τ=M2/s

�0 = �LO �� = pure NLO coefficient  

�NLO = �0 +��TOT

��TOT /�0 ⇠ 0.8� 1.0
TOT= sum of all partonic channels @ NLO

Altarelli, Ellis, Martinelli 
NPB157 461 (1979)



Historical importance

Anastasiou, Dixon, 
Melnikov, Petriello,  

PRD 69 094008 (2003)

• Understanding of vector boson production through the Drell-Yan 
process has required continued advances in our ability to understand 
QCD precisely, with data from the Tevatron and the LHC requiring 
NNLO corrections

• Drell-Yan data and predictions can be 
used to to improve our understanding of  
proton structure

80



Historical importance
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• The Drell-Yan process has been an important discovery mode 
throughout the modern history of high energy physics

Experimental discovery 
of the electroweak force 
carriers at CERN (1983)

Upsilon (bb) discovery at 
FNAL experiment E-288 

(1977)

-



Historical importance
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Missing transverse energy

UA1 (1984): Final state is the same as 
Drell-Yan production of W + jet or Z + jet, 

as well as mis-measured jets

• The Drell-Yan production of vector bosons has also played a 
prominent role in famous non-discoveries in particle physics…

missing transverse energy

Search: jet+missing energy



Historical importance
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Missing transverse energy

UA1 (1984): Final state is the 
same as Drell-Yan production of 

W boson plus jets

• The Drell-Yan production of vector bosons has also played a 
prominent role in famous non-discoveries in particle physics…

1985



Historical importance
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Missing transverse energy

UA1 (1984): Final state is the 
same as Drell-Yan production of 

W boson plus jets

• The Drell-Yan production of vector bosons has also played a 
prominent role in famous non-discoveries in particle physics…

Comparison with the theory prediction for the background  
was based on a parton shower simulation for W-production, 

i.e. W+soft/collinear jets



Historical importance
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Missing transverse energy
QCD, 

Altarelli et al

Parton showers (without matching to 
exact tree level matrix elements) do not 

explain hard emissions correctly

UA1 CM energy = 540 GeV  ⇒ 40 GeV missing 
energy is hard, not soft !

A proper SM prediction for the 
background requires W+hard 
jet emissions. This  explained 
the discrepancy, not SUSY!



From Drell-Yan Yesterday to 
Drell-Yan Today

86



Modern applications
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• The W-boson mass is an important observable in the global fit to 
electroweak precision data.  The agreement between the direct MW 
measurement and the indirect determination from fitting other data 
is a powerful constraint on Standard Model extensions.

Most precise determinations 
of MW are from Drell-Yan 
production at the Tevatron

PDG

Direct measurement



Modern applications

88

• The W-boson mass is an important observable in the global fit to 
electroweak precision data.  The agreement between the direct 
MW measurement and the indirect determination from fitting other 
data is a powerful constraint on Standard Model extensions.

✴ All fits: use primarily LEP data  
(eg. forward-backward asymmetries 
in lepton pair production, total 
hadronic cross section, etc)

✴ Blue fit: uses in addition LHC 
Higgs measurements 

✴ Grey fit: does not use LHC Higgs    
measurements 

Indirect measurement

Good agreement 
between direct and 

indirect measurements



Measuring the W mass
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• The W→lν contains final-state missing energy; cannot 
reconstruct the W mass peak

l

ν

This is a smooth function (can write 
it in terms of spherical harmonics)

Predict a sharp drop at 
MW/2; this distribution 
sensitive to W mass! 
Called a “Jacobian peak”



Measuring the W mass
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• Sensitivity to MW reduced by several effects: width of the W 
boson, addition of finite pTW (the previous derivation was valid 
for pTW=0), detector smearing

U. Baur hep-ph/0304266

✴ Black histogram: shows 
the effect of the width ΓW

✴ Red dots: show the effect 
of a non-zero pTW due to 
the hadronic radiation

✴ Yellow histogram: shows 
the effect of detector 
smearing



Measuring the W mass
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• Can construct the transverse mass, which is less sensitive our 
theoretical understanding of pTW

• Finite-pTW corrections to the 
mT distribution are 
suppressed by pTW2/MW2

• However, it is still sensitive 
to detector smearing

• In practice, mT and pT of both 
the electron and missing 
energy are used

CDF, PRL 108 151803 (2012)

U. Baur hep-ph/0304266



Measuring the W mass

92

• Sensitivity to MW reduced by several effects: width of the W 
boson, addition of finite pTW (the previous derivation was valid 
for pTW=0), detector smearing

U. Baur hep-ph/0304266

✴ Black histogram: shows 
the effect of the width ΓW

✴ Red dots: show the effect 
of a non-zero pTW due to 
the hadronic radiation

✴ Yellow histogram: shows the 
effect of detector smearing

All these effects make 
the precise extraction of 
MW a complicated task!

First LHC measurement 
appeared recently!

arXiv:1701.07240



Modern applications
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• Drell-Yan is the primary search mode for W’ and Z’ bosons that 
would signal an extension of the Standard Model gauge group

• Hypothetical signature of a W’ 
boson with fermionic couplings 
identical to the Standard Model W 
couplings in the muon+missing 
transverse energy channel in CMS

• Probes extensions of the Standard 
Model to several TeV

• Note the Jacobian peak that 
appears for MT=MW’ ; same 
structure that appears for the 
Standard Model W



Modern applications (PDFs)
• Drell-Yan production, at both collider energies and fixed-target 

energies, provides invaluable information on PDFs

Tevatron W and Z 
production probe 
quark PDFs down to 
x~10-3 (CDFWASY, 
CDFZRAP, D0ZRAP)

Important constraints on 
quark/anti-quark PDFs 
at higher-x from fixed-
target Drell-Yan 
(DYE605, DYE866)



Modern applications (PDFs)
• Drell-Yan production, at both collider and fixed-target energies, 

provides invaluable information on PDFs

High-precision LHC 
data on W/Z production 
increasingly becoming 
an important element of 
modern PDF fits (eg. 
CMS W ASY)



Flavor separation of sea quarks

Accounting for E866 in CTEQ5:

Historically important in  
ensuring an appropriate 
parameterization of the sea 
quarks in the high-x region  

• Measuring Drell-Yan on a variety of nuclear targets probes 
differences in sea-quark PDFs

deuterium has 1 proton and 1 neutron
𝛔pd: proton-deuterium xsection

before including 
E866

after including 
E866

E866: PRL 80 3715 (1998)

momentum fraction of the target quark



Flavor separation of valence quarks
• Tevatron measurements of the W-boson charge asymmetry 

probes the flavor separation of the up/down valence quark ratio

Assuming born kinematics and valence 
quarks domination of the cross section

A
ch

(y
W

) =
d�

W+

dyW
� d�

W�

dyW

d�

W+

dyW
+ d�

W�

dyW

⇡
u(xA)
d(xA)

d̄(xB)
ū(xB) � 1

u(xA)
d(xA)

d̄(xB)
ū(xB) + 1

xA =
MWp

s

e

yW ; xB =
MWp

s

e

�yW

• As yW goes to its maximum value (large rapidity), xB becomes 
small (while xA→ 1) and the ratio dbar/ubar → 1. This allows 
us to constrain u(xA)/d(xA).



Flavor separation of valence quarks
• Tevatron measurements of the W-boson charge asymmetry 

probes the flavor separation of the up/down valence quark ratio

The intermediate rapidity 
range (yw~1) shows 
differences between MSTW 
and NNPDF when using the 
same code (MC@NLO)

electron charge asymmetry 
predicted using different 
codes and PDF sets

The charge asymmetry dataset 
is needed to better determine 

the proton structure



Gluon PDF from Z pT
• New development: can constrain 

the intermediate-x gluon relevant 
for Higgs production using the Z-
boson pT spectrum

Significant reduction of gluon PDF error  
after including Z pT 

(g
lu

on
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

)

Z pT is highly-correlated with gluon in  
x-region for Higgs

xHiggs ~ 0.01

RB, Guffanti, Petriello, Ubiali 1705.00343

different ZpT 
bins

xHiggs ~ 0.01



Predicting Drell-Yan in 
QCD Perturbation Theory



Drell-Yan @ LO  
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Drell-Yan @ LO
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X X

partonic s hadronic s = (P1+P2)2

ŝ = S x1 x2 = M

2
l1l2

X

V

X

l1

l2

h(P1) + h0(P2) ! W+(! e+⌫e)X
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• LO partonic cross section:

Drell-Yan @ LO 
X X

partonic s hadronic s = (P1+P2)2

ŝ = S x1 x2 = M

2
l1l2

X

V

X

l1

l2

h(P1) + h0(P2) ! W+(! e+⌫e)X

�̂qq̄0 =
1

2ŝ

Z
d3q

(2⇡)32q0
(2⇡)4�4(p1 + p2 � q) · |M|

2

p1 = x1P1, p2 = x2P2
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• LO partonic cross section:

Drell-Yan @ LO 
X X

and

where

�iMµ = v̄(p2)
igwp
2
�µ

1

2
(1� �5)u(p1)

|M|
2

=

✓
1

3
· 1
3

◆✓
1

2
· 1
2

◆

| {z }
average color and spin

X

spin

X

color

�̂qq̄0 =
1

2ŝ

Z
d3q

(2⇡)32q0
(2⇡)4�4(p1 + p2 � q) · |M|

2
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• LO partonic cross section (for on-shell W):

Drell-Yan @ LO 

• LO hadronic cross section:

�̂qq̄0,LO =
⇡

12 ŝ
g2w �(1� z) z =

M2
l⌫

ŝ

�qq̄0,LO =

Z 1

0
dx1dx2

X

q

(q(x1)q̄0(x2) + q̄(x1)q
0(x2))

| {z }
quark PDFs

�̂(ŝ, z)



Drell-Yan @ NLO in QCD  

106



107

• Several ingredients contribute to the NLO QCD cross 
section for Drell-Yan:

Drell-Yan @ NLO in QCD

✦ Virtual corrections for the       channel:qq̄0

✦ Real corrections for the       channel:qq̄0

+ +

qg gq̄0✦ Real corrections for the      and       channel:

These are new 
channels that appear 
for the first time at 

NLO!
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• Feynman rules:

Drell-Yan @ NLO in QCD

Quark-propagator

Gluon-propagator

Quark-W vertex

i,j=1,..3

a,b=1,..8

Quark-gluon vertex

Color generators for 
the quarks
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• In d = 4-2𝟄 the LO partonic cross section becomes:

Drell-Yan @ NLO in QCD

�̂qq̄0,LO =
⇡

12 ŝ
g2w (1� ✏) �(1� z) z = M2

l⌫/ŝ

• In d-dimensions, gluons have d-2 = 2-2𝟄 polarizations. This changes the 
spin averaging over the initial state, which is relevant for the qg and gq 
channels. The number of quark polarizations is 2. 

• In d-dimensions, the strong coupling constant has a mass dimension, i.e.  
gs ! gs µ

✏when 𝟄 is not 0. The Feynamn rules should read 
[ ] ⇠ µ

d�1
2 [G] ⇠ µ

d�2
2Fermion field: gluon field: 

[gs] ⇠ µ✏

can rewrite it as: �̂qq̄0,LO = �0 �(1� z)
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• The virtual corrections for the      channel:

Drell-Yan @ NLO in QCD
qq̄0

+ +

• In dimensional regularization, external self-energy diagrams vanish 
for massless quarks as the corresponding integral is scaleless:

= 0   (prove this as an exercise)

• We therefore need to consider the vertex 1-loop diagram only
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• The virtual vertex corrections for the       channel taking only O(gs
2):

Drell-Yan @ NLO in QCD
qq̄0

2

•  Let’s work on the O(gs2) vertex:
p1

p2

k+p1

k-p2

= Vqq̄0

Vqq̄0 = � gw
2
p
2
g2sµ

2✏

Z
ddk

(2⇡)d
v̄(p2)�µ( 6k� 6p2) 6✏w(1� �5)( 6k+ 6p1)�µu(p1)

k2(k + p1)2(k � p2)2

*X! 2 Re ( { } )
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• Combine the denominators using the following Feynman 
parametrization, then shift the momentum 

Drell-Yan @ NLO in QCD

k ! k � xp1 + yp2

1

a b c

= 2

Z 1

0
dx dy dz �(1� x� y � z)

1

[x a+ y b+ c z]3

• The shift leads to the simplified integral: abbreviated 
numerator

• Applying the same shift to the numerator, keeping in mind that terms odd in k
µ 

 
integrate to zero, and using on-shell conditions leads to the following numerator:  

N = �2(1� ✏)
2� d

d
k2 v̄(p2) 6✏w(1� �5)u(p1)

�2ŝ v̄(p2) 6✏w(1� �5)u(p1) ((1� x)(1� y)� ✏xy)

Vqq̄0 = � gw

2
p
2
g

2
sµ

2✏

Z 1

0
dx dy dz �(1� x� y � z)

Z
d

d
k

(2⇡)d
N

(k2 + x y ŝ)3
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• Our integral now becomes:

Drell-Yan @ NLO in QCD

Vqq̄0 = �iMLO 2 g2s µ
2✏

R 1
0 dx dy dz �(1� x� y � z)

R
ddk
(2⇡)d

1
(k2+x y ŝ)3

⇥
h
4 (1�✏)2 k2

d � 2ŝ ((1� x)(1� y)� ✏xy)
i

with �iMLO = � gw
2
p
2
v̄(p2) 6✏w(1� �5)u(p1)

• It remains to do the loop integral. We use the following results:
R

ddk
(2⇡)d

1
[k2��]3

= �i �[1+✏]
2 (4⇡)d/2

��1�✏

R
ddk
(2⇡)d

k2

[k2��]3
= i d

4
�[1+✏]

✏
��✏

(4⇡)d/2

and get:

Vqq̄0 = �iMLO g

2
s µ

2✏ �(1+✏)
(4⇡)d/2

i

R 1
0 dx dy dz (�x y ŝ)�✏

�(1�x�y�z)
n

2 (1�✏)2

✏ + 2ŝ ((1�x)(1�y)�✏ x y)
(�x y ŝ)

o

UV-divergence

Soft+Collinear divergences
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• Doing the parametric integrals, adding the color structure   [TaTa]ij 
(i and j are the quark color indices), and taking the 2 Re(Vqq’ M*

LO):

Drell-Yan @ NLO in QCD
-

2Re(Vqq̄0 M
⇤
LO) = |MLO|2 CF

�
↵s
2⇡

� ⇣
ŝ

4⇡µ2

⌘�✏
�(1�✏)
�(1�2✏)

⇣
�2
✏2 � 3

✏ +
2⇡2

3 � 8
⌘

• Need the real radiation contributions as well:
2

1

p

p
3

k

�̂ =
1

2 ŝ
|M|

2
· PS2 and

�virtual
NLO,qq̄0

= �LO CF

�
↵s
2⇡

� ⇣
ŝ

4⇡µ2

⌘�✏
�(1�✏)
�(1�2✏)

⇣
�2
✏2 � 3

✏ +
2⇡2

3 � 8
⌘

ŝ = (p1 + p2)2 = 2 p1 · p2
t̂ = (p1 � p3)2 = �2 p1 · p3
û = (p2 � p3)2 = �2 p2 · p3



Drell-Yan @ NLO in QCD
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PS2 =
1

8⇡

✓
4⇡

M2

◆✏ 1

�(1� ✏)
z✏(1� z)1�2✏

Z 1

0
dy(y(1� y))�✏

R 1
0 dy y↵ (1� y)� = �(1+↵)�(1+�)

�(2+↵+�)and and  M=MW  , z = M2/ŝ

partonic CM frame

y = 1
2 (1 + cos✓)

t̂ = �ŝ

⇣
1� M2

ŝ

⌘
(1� y)

û = �ŝ

⇣
1� M2

ŝ

⌘
y

with

·
⇣
(1� ✏)

⇣
� û

t̂
� t̂

û

⌘
� 2ŝM2

t̂û
+ 2✏

⌘

|Mq ¯q0 |
2

= �
✓
1

2
· 1
2

◆

| {z }
spin avg.

✓
1

3
· 1
3

◆

| {z }
color avg.

·Tr(T aT a) · (gµ✏)2 · g2w · 2(1� ✏)



Drell-Yan @ NLO in QCD

116

• The result for the real radiation contribution for the       is:  qq̄0

• Combining this result with the virtual corrections one shown on a previous 
slide leads to:

where Pqq(z) =
3
2 �(1� z) + 1+z2

(1�z)+

• While the leading pole cancels in the sum of real and virtual corrections for 
the       channel, the left over 1/𝟄 pole (from initial state collinear singularity) 
requires subtraction to obtain a finite cross section. 

qq̄0

You will need to use the  plus-distribution expansion defined through the following formulae:

R 1
0 dz

h
lnn(1�z)

1�z

i

+
f(z) =

R 1
0 dz lnn(1�z)

1�z (f(z)� f(1))

1
(1�z)1+2✏ = � 1

2✏�(1� z) + 1
(1�z)+

� 2✏
h
ln(1�z)
(1�z)

i

+
+ . . .

�̂qq̄0,NLO = �0 CF

�
↵s
2⇡

� ⇣
ŝ

4⇡µ2

⌘�✏
�(1�✏)
�(1�2✏)

⇢
�2
✏ Pqq(z) + ( 2⇡

2

3 � 8)�(1� z) + 4(1 + z2)
h
ln(1�z)
1�z

i

+

�

�̂R
qq̄0,NLO

= �0 CF

�
↵s
2⇡

� ⇣
ŝ

4⇡µ2

⌘�✏
�(1�✏)
�(1�2✏)

⇢
2
✏ �(1� z)� 2

✏
1+z2

(1�z)+
+ 4(1 + z2)

h
ln(1�z)
1�z

i

+

�
2
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• Absorb remaining initial-state collinear singularities into PDFs, which 
amounts to adding the following counterterm:

Drell-Yan @ NLO in QCD

• Arrive at the final result (we have switched to the MSbar scheme):

One for each PDF

f

N
g(z) =

R 1
0 dx dy f(x) g(y) �(z � xy)where

�̂qq̄0,NLO = �0 CF

�
↵s
2⇡

� ⇢
2 ln

⇣
ŝ
µ2

⌘
Pqq(z) + ( 2⇡

2

3 � 8)�(1� z) + 4(1 + z2)
h
ln(1�z)
1�z

i

+

�

2⇥ ↵s

2⇡

✓
4⇡

e�

◆✏ 1

✏
Pqq

O
�̂LO(z)

2⇥ ↵s

2⇡

✓
4⇡

e�

◆✏ 1

✏
Pqq

O
�̂LO(z) = 2⇥ ↵s

2⇡

✓
4⇡

e�

◆✏ CF

✏
�LO Pqq(z)



Drell-Yan @ NLO in QCD

�̂ =
1

2 ŝ
|M|

2
· PS2 and

·
✓
(1� ✏)

✓
� ŝ

t̂
� t̂

ŝ

◆
� 2ûM2

t̂ŝ
+ 2✏

◆

|M|
2

=

✓
1

2 (1� ✏)

1

2

◆

| {z }
spin avg.

✓
1

3
· 1
8

◆

| {z }
color avg.

·Tr(tata) · (gsµ✏)2 · g2w · 2(1� ✏)

PS2 =
1

8⇡

✓
4⇡

M2

◆✏ 1

�(1� ✏)
z✏(1� z)1�2✏

Z 1

0
dy(y(1� y))�✏

• The gq’ channel:
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-

ŝ = (p1 + p2)2 = 2 p1 · p2
t̂ = (p1 � p3)2 = �2 p1 · p3
û = (p2 � p3)2 = �2 p2 · p3
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• The gq’ channel:

Drell-Yan @ NLO in QCD

• The cross section for the qg channel is identical to the gq’ cross 
section since we are integrating inclusively over the final state.  

�̂qg = �̂gq̄0

-

-

�̂gq0 = �0
↵s
2⇡ ·

8
>>>><

>>>>:

2 ·
✓
1

2
(z2 + (1� z)2)

◆

| {z }
P (0)

gq (z)

·
h
ln
⇣

M2

µ2

⌘
+ ln

⇣
(1�z)2

z

⌘i
+ 3

4 + z
2 � 3

4z
2

9
>>>>=

>>>>;

-



Future High Energy 
Colliders



A future 100 TeV machine?
• There is growing interest in the HEP community to build a 

future high-energy pp machine with CM energy ~100 TeV 

• Initial discussions regarding CERN, Chinese sites. This 
would possibly be after an e+e- Higgs factory is constructed.
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• Drell-Yan will continue to play an integral role of the physics 
program at such future machines.

Drell-Yan in the future

Large production rates for 
W and Z boson production 
via Drell-Yan at 100 TeV; 
will remain an important 
background to any 
searches at high energies
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• Drell-Yan will continue to play an integral role of the physics 
program at such future machines

Drell-Yan in the future

New kinematic regions 
probed; W/Z production 
down to Bjorken x~10-6, 
more than an order of 
magnitude lower than 
LHC 14 TeV coverage



124

• Unmatched reach for new gauge bosons which would indicate 
new forces of Nature beyond SU(3)xSU(2)xU(1)

New gauge bosons at 100 TeV

• Ultimate LHC reach 
in mass is ~7-8 TeV 

• A 100 TeV machine 
extends this out to 
35 TeV or beyond, 
depending on the 
model

1511.06495



Drell-Yan: Recap
• Drell-Yan is an important precision tool at hadron colliders 

• This is the only process for which we are approaching 
percent level precision both experimentally and theoretically 

• Proven track record for discovery (Z/W-boson,  several 
resonances, etc). Plays an important role in understanding 
proton structure (PDFs) 

• It will continue to play an important role at future hadron 
colliders

125



Highlights of Methods and 
Recent Results for NNLO 

Calculations



The need for NNLO

NNLO 
important 

 for:

Benchmark processes 
measured with high 

precision, eg.: Drell-Yan, 
Z+jet, …

Background to Higgs 
studies, eg.:di-boson; 

Input to PDFs, eg.:V+jet, 
dijet, ttbar,… 

When NLO 
corrections are large, 

NNLO is needed to test 
perturbative behavior, 

eg.: gg → Higgs 



• Three basic ingredients for NNLO calculations:

Ingredients for NNLO calculations

• IR singularities cancel in the sum of real and virtual corrections and mass 
factorization counterterms but only after phase space integration for real 
radiations 

• Virtual corrections have explicit IR poles, whereas real corrections have 
implicit IR poles that need to be extracted. 



• Three basic ingredients for NNLO calculations:

Ingredients for NNLO calculations

• IR singularities cancel in the sum of real and virtual corrections and mass 
factorization counterterms but only after phase space integration for real 
radiations 

• Virtual corrections have explicit IR poles, whereas real corrections have 
implicit IR poles that need to be extracted. 

Z hvv4
✏4

+
vv3
✏3

+
vv2
✏2

+
vv1
✏

+ vv0
i
d�2

Z hrv2
✏2

+
rv1
✏

+ rv0
i
d�3

Z
[rr0] d�4



• Three basic ingredients for NNLO Calculations:

Ingredients for NNLO calculations

• IR singularities cancel in the sum of real and virtual corrections and mass 
factorization counterterms but only after phase space integration for real 
radiations 

• Virtual corrections have explicit IR poles, whereas real corrections have 
implicit IR poles that need to be extracted. 

Deriving an organizing principle to 
extract and cancel singularities for 
arbitrary observables was the major 

obstacle in obtaining NNLO predictions 



From G. Salam, late 2016

A barrier was broken 
through in 2015!

Breaking through to NNLO



From G. Salam, late 2016

A barrier was broken 
through in 2015!

Breaking through to NNLO

This explosion of new NNLO results was 
made possible thanks to several ideas!



Cancellation of IR divergences @ NNLO

• Subtraction methods:

✤ qT subtraction  Catani, Grazzini; for processes without jets 

✤ N-jettiness subtraction  RB, Focke, Liu, Petriello; Gaunt, Stahlhofen, 
Tackmann, Walsh; valid for all processes including jet production 

• Effective field theory methods:

✤ Sector decomposition  Anastasiou, Melnikov, Petriello; Binoth, Heinrich 

✤ Antenna subtraction  Kosower; Gehrmann, Gehrmann De Ridder, Glover 

✤ Sector Improved Residue Subtraction Czakon; RB, Melnikov, 
Petriello; Czakon, Heymes; Caola, Melnikov, Rontsch 

✤ Colorful subtraction Del Duca, Duhr, Kardos, Somogyi, Trocsanyi 

✤ Projection to Born Cacciari, Dreyer, Karlberg, Salam, Zanderighi

• Subtraction methods:



Traditional subtraction approaches

• Introduce subtractions that 
reproduce the singular 
behavior of the full differential 
cross section 

• The subtractions should be 
simple enough to integrate and 
obtain an explicit form of the 
divergences

• The difference between the full 
result and the subtractions is 
integrated numerically



Another approach

• To see the possibility of another approach, consider Higgs production 
at NLO, or O(αS), as an example. A real emission correction: 

pi pf

pH

1

2pi · pf
=

1

2EipTHe⌘

pTH=transverse 
momentum of Higgs

η=rapidity of jet

O(αS)  becomes a Born-level calculation with no 
singularities at finite pTH 

This propagator can’t diverge for finite transverse momentum 
(note that η must be finite for non-vanishing pTH)



Another approach

• This observation motivates the following partition of phase space for 
the differential cross section: 

� =

Z
dpTH

d�

dpTH
✓(pcutTH � pTH) +

Z
dpTH

d�

dpTH
✓(pTH � pcutTH)

Finite regions of real 
emissions go here 

This is a simple, finite 
tree-level calculation

Singular regions of real emissions and 
virtual corrections go here



Another approach

• This observation motivates the following partition of phase space for 
the differential cross section: 

� =

Z
dpTH

d�

dpTH
✓(pcutTH � pTH) +

Z
dpTH

d�

dpTH
✓(pTH � pcutTH)

Finite regions of real 
emissions go here 

This is a simple, finite 
tree-level calculation

Singular regions of real emissions and 
virtual corrections go here

This split is useful because there is a simpler 
way to derive the cross section below pTcut



Effective field theory for low pTH

• Effective field theory can simplify the calculation when pTH≪mH.  
It provides a systematic way of expanding the full differential cross 
section for small pTH/mH.

d�

dpTH
(pTH ⌧ mH) ⇠ S(mH , pTH)⌦ Ca(pTH , xa)⌦ Cb(pTH , xb)

Universal function 
describing soft emissions

Functions which describe 
virtual corrections and 

collinear emissions

xa, xb=Bjorken-x for each beam

Collins, Soper, 
Sterman (1985)

This formula holds at NNLO since S, Ci are known to O(αS2)

It is a much simpler problem to calculate S and Ci than it is to cancel 
real and virtual singularities at NNLO for arbitrary observables! 



qT-subtraction
• Effective field theory can simplify the calculation when pTH≪mH.  

It provides a systematic way of expanding the full differential cross 
section for small pTH/mH.

d�

dpTH
(pTH ⌧ mH) ⇠ S(mH , pTH)⌦ Ca(pTH , xa)⌦ Cb(pTH , xb)

Universal function 
describing soft emissions

Functions which describe 
virtual corrections and 

collinear emissions

xa, xb=Bjorken-x for each beam

Collins, Soper, 
Sterman (1985)

This formula holds at NNLO since S, Ci are known to O(αS2)

It is a much simpler problem to calculation S and Ci than it is to cancel 
real and virtual singularities at NNLO for arbitrary observables! 

For pTcut/mH→0 this becomes an exact expression for the NNLO 
result.  This is the idea behind qT-subtraction. Catani, Grazzini (2007)



Jets at the LHC?
• A limitation of this approach is that it can only describe partonic 

processes with no final-state partons.

Consider Higgs+jet at NLO, or 
Higgs at finite pTH, as an example

p1
p2

pH

1

2p1 · p2
=

1

2pT1|~pTH � ~pT1|

⇥ 1

cosh(�⌘)� cos(��)

This vanishes independently of pTH 
for either pT1 or pT2 soft, or p1||p2

pTH no longer resolves singularities in the 
presence of final-state partons



N-jettiness

• There is a resolution parameter suitable for final-state partons!

⌧N =
X

k

min {ni · qk}

N-jettiness, an event shape 
variable (similar to thrust); 
first introduced in Stewart, 
Tackmann, Waalewijn (2009)

light-like directions of initial 
beams and final-state jets

momenta of final-
state partons

N=number of jets

Intuition: τN ~0: all radiation is either soft, or collinear to a beam/jet 
τN>0: at least one additional jet beyond Born level is resolved



N-jettiness
• Go back and reconsider our Higgs+jet example using this variable, in 

the potentially singular kinematic limits p1||p2 and p1,2 soft:

p1
p2

pH

1

2p1 · p2
⇡ 1

2EJ⌧1

final-state jet energy
1-jettiness, since our 
Born-level process 

has a single jet

All final-state singularities 
are regulated by τ1!



N-jettiness subtraction

We can obtain NNLO predictions for arbitrary jet production 
processes using N-jettiness as a resolution parameter!

RB, Focke, Liu, Petriello (2015);  Gaunt, Stahlhofen, Tackmann, Walsh (2015)

� =

Z
d⌧N

d�

d⌧N
✓(⌧ cut � ⌧N ) +

Z
d⌧N

d�

d⌧N
✓(⌧N � ⌧ cut)

have one more resolved jet 
than at Born level; only 

need NLO in this region!

a simpler effective 
theory description is 

available for the region



N-jettiness subtraction

We can obtain NNLO predictions for arbitrary jet production 
processes using N-jettiness as a resolution parameter!

d�

d⌧N
(⌧N ⌧ Q) ⇠ H ⌦Ba ⌦Bb ⌦ S ⌦

"
NY

n=1

Jn

#

hard scales in the 
process (e.g., transverse 

momenta of jets)
describes 
radiation 
collinear to 
initial-state 
beams;  
universal

describes hard 
radiation

describes radiation 
collinear to  final-
state jets; universal

describes 
soft 
radiation; 
universal; 
depends on 
number of 
jets

Stewart, Tackmann, Waalewijn (2009)



N-jettiness subtraction
• Only one more issue to address: what is known regarding the 
functions H, B, S, J?  Do we known them to the requisite NNLO?

•H@NNLO: for W/H/Z+j, Gehrmann, Tancredi (2011); Gehrmann, Jaquier, Glover, 
Koukoutsakis (2011) (see also Becher, Bell, Lorentzen, Marti (2013)) 

•B@NNLO: Gaunt, Stahlhofen, Tackmann (2014), confirmed in RB, Petriello, 
Schubert, Xing (2017) 

•S@NNLO: RB, Liu, Petriello (2015) 

•J@NNLO: Becher, Neubert (2006); Becher, Bell (2011)

Within the past two years all ingredients have become available 
to apply this idea to jet production at the LHC! 



Gauge boson plus jet production

• First example:  gauge boson 
plus jet production.  This is an 
important background to dark 
matter searches at the LHC.

HT=scalar sum of jet 
transverse momenta

CMS Z+jet 
production

NLO+parton shower; 
too soft at high HT

another NLO+parton 
shower; too hard at high HT

LO+parton shower; better shape, 
but normalization difference
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observable; How does NNLO 
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• First example:  gauge boson 
plus jet production.  This is an 
important background to dark 
matter searches at the LHC.



Comparison to the data
• We have reconsidered the comparison to 7 TeV data of ATLAS 
and CMS; shape of corrections depends on the observable!

RB, Liu, Petriello, (2016), based on N-jettiness subtraction 

Large 2-jet contribution first opens at 
NLO; receives a large correction at NNLO
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NLO; receives a large correction at NNLO
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Comparison to the data

•The ellipses denote power corrections that become negligible for small τNcut

Continued excellent agreement with data at 13 TeV! 
NNLO predictions obtained with  N-jettiness subtraction 



Comparison to the data

•The ellipses denote power corrections that become negligible for small τNcut

NNLO improves the NLO 
description of HT 

Continued excellent agreement with data at 13 TeV! 
NNLO predictions obtained with  N-jettiness subtraction 



• The Z-boson transverse momentum spectrum measurement has 
reached a remarkable precision at the LHC, with errors below 
1% over a large range

The Z-boson transverse momentum

The leading-order cross section 
for this process depends on the 
gluon PDF; we can learn about 
the gluon distribution entering 

Higgs production from this 
data!



Comparison with NNLO theory
•We have performed an NNLO QCD 

calculation of pTZ and extensively 
compared with ATLAS and CMS 
data. 

•We have combined NNLO QCD and 
NLO electroweak corrections (Kuhn, 
Kulesza, Pozzorini, Schulze 2005; Denner, Dittmaier, Kasprzik, 
Muck 2011; Hollik, Kniehl, Scherbakova, Veretin 2015)

NLO EW important at 
high pT

CMS on Z-peak

NNLO QCD leads to an 
improved description

No current PDF set describes this well; 
use this data to improve the PDF fit!

RB, Guffanti, Petriello, Ubiali JHEP 1707 (2017) 



Impact on PDFs from Z-pT

PDF error on 
Higgs cross 

sections reduced 
by 30%!

Gluon-gluon and quark-gluon luminosity 
errors reduced right near MX~mH=125 GeV! 

~fg x fg ~fq x fg

RB, Guffanti, Petriello, 
Ubiali (2017) 

• Improvements with respect to a HERA-only baseline fit:



Further impact on PDFs from top-quark

• NNLO differential top results lead to further improvement in the gluon 
PDF, in particular in the high-x region relevant for new physics searches.

NNPDF collaboration, 2017



Impact on global fit from new data
In the NNPDF 3.1 global fit, when top-quark, Z-pT and 

jet data are combined, the PDF errors on the gluon-
fusion and VBF production modes are reduced by 

nearly a factor of 2 with respect to NNPDF 3.0!

NNPDF 2017



MATRIX

• Another example of the need 
for NNLO precision to describe 
LHC data: WZ 

• New tool for NNLO 2→2 
zero-jet processes: MATRIX. 
Uses qT-subtraction to handle 
IR singularities.

Kallweit, Rathlev, Wiesemann, Grazzini (2017)



Di-jet production at NNLO
• Several important applications of di-jet production at the LHC, 

including searches for new physics, measurements of αs, and 
determination of the high-x gluon

NNLO known in the leading-color approximation, using antenna subtraction:

Notably improved data/theory agreement in the central y* region

Currie, Gehrmann-de Ridder, Gehrmann, Glover, Huss, Pires (2017)



Higgs + 1jet @ NNLO in QCD
• 3 results with 3 different methods are available, allowing cross checks 

and validation. Calculations done in the infinite top mass approximation. 

RB, Melnikov, Petriello, Schulze 1504.07922 
RB, Focke, Giele, Liu, Petriello 1505.03893 
Caola, Melnikov, Schulze 1508.02684 
Chen, Gehrmann, Glover, Jaquier 1607.08817

• Normalized distributions agree better with 8 TeV data than 
unnormalized ones, although data has large experimental error.  

8TeV data



• Slightly better agreement with the 13 TeV data.

Higgs + 1jet @ NNLO in QCD



Higgs pT with full mt dependence
• The Higgs pT is important to look for BSM effects in the Higgs 

sector, and to break degeneracies between EFT couplings that appear 
if only the total cross section is measured.

NLO for finite mt now 
known, important input to 

future Higgs analyses!  
Jones, Kerner, Luisoni  (2018)

•Numerical evaluation of the 2-loop 
virtual master integrals with SECDEC 
(Borowka et al (2015)) 

•Compare with previous result 
FTapprox, which used EFT for virtual 
corrections reweighed by exact Born-
level amplitudes, and full mt 
dependence everywhere else

SM: ct =1, kg=0



Higgs pT with full mt dependence
• The Higgs pT is important to look for BSM effects in the Higgs 

sector, and to break degeneracies between EFT couplings that appear 
if only the total cross section is measured.

FTapprox gets shape of pT 
spectrum correct, but full 
NLO gives an additional 

6-8% enhancement!

Jones, Kerner, Luisoni  (2018)



Higgs production at N3LO
• Perturbative expansion of the cross section stabilized after the inclusion of the N3LO 

contribution (N3LO band contained in the NNLO one). 

• Dashed lines provide fixed order results improved with resumation. The resummation 
does not have an impact on the central value for the scale choice mu=mH/2 

• Calculation done in the infinite top mass limit. 
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does not have an impact on the central value for the scale choice mu=mH/2 

• Calculation done in the infinite top mass limit. 



Future Directions at NNLO and Beyond

• Current topic: 2-loop amplitudes for 2→3 processes.  
Currently an active subject of study, with initial results for 3-
jet amplitudes appearing (Gehrmann, Henn, Lo Presti (2016); Badger, Bronnum-
Hansen, Hartanto, Peraro (2017);  Abreu, Febres Cordero, Ita, Page, Zeng (2017); …)

• Current topic: multi-scale 2-loop amplitudes with massive internal 
particles, relevant for Higgs, top, vector boson production.  New 
mathematical structures beyond multiple polylogarithms appear 
(Remiddi, Tancredo (2016); Bonciani et al (2016); Weinzierl et al (2016-2017); Ablinger et al (2017); 
Broedel, Duhr, Dulat, Tancredi (2017);  Caola, Lindert, Melnikov, Monni, Tancredi, Wever (2018),…)

• New results at 3 loops: completely analytic calculation of 3-
loop inclusive gluon-fusion Higgs production in terms of elliptic 
integrals (Mistlberger (2018)); first results for N3LO splitting functions 
(Moch, Ruijl, Ueda, Vermaseren, Vogt (2017-2018))



Summary
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• Precision QCD calculations are becoming ever more 
important as the LHC program progresses.   

• In this lectures, we have studied the framework in which 
predictions are calculated. Two major components need an 
accurate understanding: PDFs and partonic cross sections. 

• Various new ideas and tools have been developed to best 
describe LHC data.  

• More exciting developments are ahead of us, stay tuned!


