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1 New Hierarchy Solutions

Let’s conclude by discussing more recent solutions to the electroweak hierarchy
problem, largely motivated by the lack of evidence for more conventional solutions
at the LHC.

1.1 Twin Higgs / Neutral naturalness

One interesting direction is to retain the symmetry-based approach but expand
the scope of possible symmetries. The natural possibility is to work with discrete
symmetries, rather than continuous ones. The idea is that the new particles re-
quired by a discrete symmetry need not carry the same Standard Model quantum
numbers, and so are less strongly constrained by data from the LHC.

There are by now many different examples of neutral naturalness, but the sim-
plest is the original: the Twin Higgs [1]. The idea is to introduce a mirror copy
of the Standard Model along with a Z2 symmetry exchanging each field with its
mirror counterpart. On top of this, one needs to assume an approximate global
symmetry in the Higgs sector, which may be U(4) or O(8) depending on one’s
level of ambition. This global symmetry need not be exact, and is violated by all
SM yukawa and gauge couplings, but should be an approximate symmetry of the
Higgs potential.

For simplicity, we will consider the perturbative case where it suffices to work
in terms of a U(4) ' SU(4) × U(1) approximate global symmetry, gauged by
the Standard Model and twin electroweak interactions (i.e., gauging the SU(2)×
SU(2)× U(1) subgroup of SU(4) and the additional U(1)). We can assemble the
Higgs doublets HA and HB into a fundamental of SU(4),

H =

(
HA

HB

)
(1)

and, under the assumption that the Higgs sector potential is approximately SU(4)
symmetric, write down a potential of the form

V (H) = m2H†H + λ(H†H)2 (2)

For m2 < 0, H acquires a vev and the SU(4) × U(1) is spontaneously broken to
SU(3) × U(1), yielding seven goldstones. Depending on the vacuum alignment,
all goldstones will be eaten, but it’s also possible to align the vev entirely in the
A sector or B sector by judicious adjustment of the potential. This adjustment is
accomplished by terms that softly break the U(4), and so ultimately will induce
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finite corrections to the goldstone mass through radiative corrections.

This theory accumulates radiative corrections from the usual couplings, for
example top yukawas of the form

λAHAQAtA + λBHBQBtB (3)

This gives the usual quadratic divergence,

δm2 = − 6

16π2
Λ2
(
λ2
A|HA|2 + λ2

B|HB|2
)

(4)

but the Z2 symmetry enforces λA = λB = λ, so that

δm2 = − 6λ2

16π2
Λ2
(
|HA|2 + |HB|2

)
(5)

Now we can see the magic of the discrete symmetry. At the level of mass terms,
the quadratic divergences respect the U(4) symmetry. Thus the goldstones of the
spontaneous breaking of the U(4) symmetry will be protected against UV contri-
butions.

We could continue to study the linear model (see, e.g., [2]), but it’s convenient
to focus on the low-energy theory of the goldstones [3]. In the limit where the
vacuum expectation value lies entirely in the B sector, in B-sector unitary gauge
we have

H =

(
HA

HB

)
= exp



i

f




h1

h2

0
h∗1 h∗2 0 0










0
0
0
f


 ≡ eiπ/fH0 (6)

Expanding out the exponential, we then get (up to a phase on h)

H =




h if√
h†h

sin
(√

h†h
f

)

0

f cos
(√

h†h
f

)


 (7)

where h = (h1, h2)T . Then we can immediately expand out HA and HB in terms
of the goldstone modes, obtaining

HA = h
f√
h†h

sin

(√
h†h

f

)
= h+ . . . (8)

HB =

(
0

f cos
(√

h†h
f

)
)

=

(
0

f − 1
2
h†h
f

+ . . .

)
(9)
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The goldstones inherit Yukawa couplings (which break the U(4))

λAHAQAtA + λBHBQBtB → λAhQAtA + λB

(
f − h†h

2f

)
QBtB + . . . (10)

and now we can see in detail the cancellation of quadratic divergences, in exact
analogy with the case of a continuous global symmetry: As in our other symmetry

� 6y2
t

16⇡2
⇤2 +

6y2
t

16⇡2
⇤2

Figure 1: Quadratic divergence cancellation in the discrete global symmetry case.

examples, the UV sensitivity is replaced by finite corrections coming from the mass
of the SM-enutral top partners, which violate the accidental U(4) through the soft
breaking terms in the potential.

But in contrast to older continuous symmetry approaches, now there are no
direct constraints on the partner particles, and so no tension with null results in
direct searches at the LHC.

However, that’s not to say that the theory is unconstrained. There are three
salient points worth discussing. First, there is a question of vacuum alignment,
why v � f , or equivalently why the Higgs is light compared to the radial mode of
approximate SU(4) breaking.

In the simplest twin Higgs model, this hierarchy requires a tuning. Trivially,
if Z2 is an exact symmetry, then v = f/

√
2; nothing distinguishes HA from HB.

So we must break the discrete symmetry, ideally with a soft mass. Even then,
tuning is necessary to obtain v � f . This is easy to see if you write down the
most general twin Higgs potential allowing for soft Z2 breaking:

V = λ(|HA|2 + |HB|2 − f 2)2 + κ(|HA|4 + |HB|4) + σf 2|HA|2 (11)

Here I’ve just traded the SU(4)-symmetric mass for the overall scale f of symmetry
breaking, and written the soft Z2 breaking parameter in terms of a dimensionless
parameter σ.
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Now in the limit λ � 1, the SU(4) symmetric quartic ridigly fixes |HB|2 =
f 2 − |HA|2, the goldstone comes from HA, and the potential for HA is just

V → 2κ|HA|4 + (σ − 2κ)f 2|HA|2 = λSM |HA|4 − 2λSMv
2|HA|2 (12)

From this we can read off the relation between v and f ,

2v2

f 2
=

2κ− σ
2κ

(13)

We must tune κ against σ to make this ratio small, and the tuning is precisely of
order f 2/2v2.

I should mention that a similar tuning arises in the global symmetry models
considered in last lecture, albeit for different reasons having to do with how the
Higgs potential is generated.

Second, also as in the global symmetry case, there are Higgs coupling devia-
tions coming from the goldstone nature of the Higgs – you can again think of this
as due to higher-dimensional operators in the NLSM parameterization, or just
mixing in the linear sigma model. These currently provide the leading constraint
on the model.

Third, also as in the global symmetry case, something must protect the scale
f . It could be compositeness or supersymmetry or turtles, but the discrete sym-
metry alone is not sufficient to stabilize the Higgs all the way up to the Planck scale.

There are various generalizations of this idea. One can trivially construct
ZN models, which generalize naturally to multiple sectors. Alternately, one can
construct “fraternal” models where the Z2 symmetry is only a good symmetry for
the states most relevant to the Higgs potential [2]. One can also construct more
elaborate symmetry structures using orbifold projections [4]. The signatures are
rich and interesting and worth looking for enthusiastically in the remaining lifetime
of the LHC.

1.2 Relaxion

In some sense, neutral naturalness is the most conservative “new” idea, retaining
an old mechanism (symmetry protection) and pushing the specific realization in
a new direction. But an even more exciting thing about the modern era is that
we are now beginning to see radically new ideas that don’t fit into traditional
paradigms. The most exciting recent ideas involve dynamics to select the Higgs
mass from a range of values consistent with a cutoff well above the weak scale.
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1.2.1 QCD/QCD′ Relaxion

The simplest and original incarnation [5], inspired by the Abbotte model, is that
of a QCD axion-like particle φ coupled to the Standard Model, with an additional
inflationary sector whose properties will turn out to be somewhat special. Here we
emphasize axion-like because the axion-like field will not be manifestly compact,
but rather possess only a shift symmetry. This shift symmetry will be broken by
a small, dimensionful coupling to the Higgs. We will circle back to these features,
and their potential relation to technical naturalness arguments, towards the end.

We envision enlarging the Standard Model with the following terms:

δL = (−M2 + gφ)|H|2 + V (gφ) +
1

32π2

φ

f
G̃µνGµν (14)

where M is of the order of the cutoff of the SM Higgs sector, H is the Higgs
doublet, g is the dimensionful coupling that breaks the shift symmetry, and

V (gφ) ∼ gM2φ+ g2φ2 + . . .

parameterizes the non-derivative terms solely involving φ. We will be interested
in field values of φ that greatly exceed f , so we should understand it as a non-
compact field. Now clearly when g/M → 0 the Lagrangian has a shift symmetry
φ→ φ+2πf , and g can be treated as a spurion for breaking of the shift symmetry.

Below the QCD confinement scale, the coupling between φ and the gluon field
strength gives rise to the familiar periodic axion potential

1

32π2

φ

f
G̃µνGµν → Λ4 cos(φ/f) (15)

For values of the Higgs vev near the Standard Model value, the height of the cosine
potential is

Λ4 ∼ f 2
πm

2
π ∼ yvf 3

π (16)

where m2
π changes linearly with the quark masses, and so the barrier height is lin-

early proportional to the Higgs vev (at least roughly speaking; there are of course
logarithmic corrections from the contributions to QCD running).

Now the idea is clear: starting at values of φ such that the total Higgs mass is
large and positive, and assuming the slope of the φ potential causes it to evolve in
a direction that lowers the Higgs mass, the φ potential will initially be completely
dominated by the gφ potential terms, until the point at which the total Higgs
mass-squared goes from positive to negative and the Higgs acquires a vacuum
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expectation value. At this point the wiggles due to the quark masses grow linearly
in the Higgs vev, and generically φ will stop when the slope of the QCD-induced
wiggles matches the slope of V (φ). This classical stopping point occurs when the
maximum slope of the cosine potential is of the same order as the linear tilt,

g ∼ yvf 3
π

M2f
(17)

This allows for a light Higgs (i.e., a small total Higgs mass-squared and small
electroweak scale) relative to a cutoff M provided g/M � 1. For example, with a
QCD axion decay constant f = 109 GeV and M ∼ 107 GeV we have g/M ∼ 10−30.

So far we have only accounted for the parametrics of the potential, neglecting
the actual dynamical process. In the minimal realization of the relaxion mech-
anism, φ is made to roll slowly by imagining that its evolution occurs during a
period of inflation, such that Hubble friction provides efficient dissipation of ki-
netic energy in φ.

Now there are various considerations that must be taken into account. They
are:

1. In order to sensibly yield a Higgs mass much smaller than the cutoff, φ must
scan over a sufficiently large range such that m2

H varies from O(M2) to O(0).
Thus the field range of interest is ∆φ ∼M2/g. Inflation must endure for the
entirety of this scanning. During N e-folds of inflation, the field rolls by an
amount

∆φ ∼ Nφ̇/H ∼ NV ′φ/H
2 ∼ NgM2/H2 (18)

where the first expression just relates the displacement to the velocity of
the slow-rolling field and the duration of inflation, the second uses slow-roll
conditions for φ, and the third uses the leading form of Vφ. Requiring that
this cover a change of order M2/g implies the number of e-folds of inflation
is at least

N & H2

g2
(19)

2. The scanning of φ results in a change in vacuum energy of order M4. We
require the vacuum energy during inflation to exceed this change so that
the dynamics is dominated by inflation throughout the evolution of φ. This
amounts to requiring

H >
M2

MPl

(20)
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3. During the inflationary epoch, the evolution of φ involves both classical
rolling and quantum fluctuations. If this were not the case, different patches
of the universe could end up in different electroweak vacua. Classical rolling
beats quantum fluctuations.

H <
V ′φ
H2
⇒ H < (gM2)1/3 (21)

4. Finally, it should be the case that the barriers from QCD are higher than
the Hubble scale during inflation, so that the barriers are sufficient to stop
scanning. This amounts to

H < ΛQCD (22)

which in general is superseded by the previous requirement.

Putting everything together, we can see that the cutoff of the theory is at most

M .
(

Λ4M3
Pl

f

)1/6

∼ 107 GeV ×
(

109 GeV

f

)1/6

(23)

It is worth pausing to work out the numerical consequences. Maximizing the
cutoff, we have g ' 10−23 GeV, so H < 1 MeV, N = 1040, and the field range is
∆φ = 1047 GeV. While the first two problems are aesthetic in nature, the third is
more severe. It requires the relaxion potential to be valid over field ranges vastly
in excess of the Planck scale. In general it is difficult to protect a potential over
trans-Planckian field ranges, and – as we will discuss more shortly – particularly
so in this case.

Unfortunately, even if all of these criteria are satisfied, there is an observa-
tional problem with this simplest scenario. The field φ stops not at the minimum
of the QCD cosine potential (for which the effective θ angle is zero), but is rather
displaced by an amount proportional to the slope of φ. This amounts to θ ∼ 1,
which is excluded by bounds on the neutron EDM that constrain θ . 10−11. So
the mechanism is ruled out by a natural prediction, though it is certainly no fault
of the mechanism.

A simple solution is to repeat all of the same ingredients, but make the re-
laxion a non-compact axion of another gauge group for which constraints on the
θ parameter are weaker or nonexistent. This scenario should involve quarks of a
new gauge group that are also charged under the electroweak gauge group. For
example, consider adding vector-like lepton doublets L,Lc, N,N c with charges
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Field SU(3)N SU(3)C SU(2)L U(1)Y
L � − � −1/2
Lc � − � +1/2
N � − − +1
N c � − − +1

This model is now subject to a variety of additional constraints, namely

1. The quarks of the new gauge group must get most of their mass from the
Higgs:

L ⊃ mLLL
c +mNNN

c + yHLN c + y′H†LcN (24)

2. The new gauge group must confine with light flavor,

Λ4 ' 4πf 3
π′mN (25)

3. The natural size of the smallest mass from the see-saw (assuming a heavy
L) is

mN ≥ yy′v2/mL (26)

4. The see-saw mass is at least as large as the radiative Dirac mass

mN ≥
yy′

16π2
mL log(M/mL) (27)

5. The wiggles in the potential due to EWSB exceed the wiggles due to con-
finement alone

mN ≥ yy′f 2
π′/mL (28)

Taken together, these bounds imply fπ′ < v and

mL <
4πv√

log(M/mL)
(29)

That is to say, although the mechanism lives in a sector distinct from the Standard
Model, the scale of new physics still lies near the weak scale.

The details of the inflationary scenario are similar, though now the axion is
not a QCD axion so the constraints on the PQ scale are not as stringent. Taking
it to be of the same order a the cutoff, the cutoff in this case is pushed to

M < 2× 108 GeV

(
fπ′

30 GeV

)4/7(
M

f

)1/7

(30)
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Caveats At this point it is worth mentioning several caveats to these scenarios
that may compromise or spoil the mechanism. To be clear, the mechanism is bril-
liant, and the problems are modest compared to the originality of the mechanism.
In any event, the first caveat relates to the cosmological constant. In symmetry
solutions to the hierarchy problem, one can effectively factorize the solution to the
CC problem from the solution to the hierarchy problem – because there is one
value for the weak scale, one tuning (or other mechanism) can then set the CC to
the observed value. In the relaxion scenario, the cosmological constant changes by
large amounts from minimum to minimum over which the changes to the Higgs
mass are negligible. From one minimum to another, we have ∆φ ∼ f and thus
∆V ∼ gfM2 ∼ Λ4, while the change in the Higgs mass-squared is infinitesimally
small, ∆m2

H ∼ gf ∼ Λ4/M2. So while there are many vacua with Higgs masses-
squared at the electroweak scale, the changes in the cosmological constant from
vacuum to vacuum are all vastly larger than the observed cosmological constant.

From this it is tempting to argue that one needs enough vacua to scan the full
range of the CC for each viable electroweak minimum. This would require an even
larger tuning than one would require to tune the CC in a theory with a unique
electroweak vacuum. On the other hand, these arguments are not necessarily well-
defined.

The second issue relates to the technical naturalness of the scenario, or the lack
thereof. As constructed, φ possesses a non-compact shift symmetry. While the
parameter g breaks the shift symmetry, when g → 0 no compact global symmetry
is restored. Thus the theory does not satisfy the typical considerations of technical
naturalness.

Let’s pull this apart a bit more. If we have a theory with an exact global
symmetry that is spontaneously broken, then the effective action of the theory has
a continuous symmetry under which

φ→ φ+ αf (31)

for any real α. But a subgroup of this is gauged, in the sense that

φ→ φ+ 2πkf (32)

is a gauge symmetry for k ∈ Z because φ is really an angle, and no local operator
can break the angular periodicity. In practice, in QCD this means that quark
masses and anomaly couplings break the continuous shift symmetry but preserve
the discrete one.
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Concretely, one can think of a U(1) global symmetry spontaneously broken by
the vev of a complex scalar Φ, expressed via a non-linear mapping Φ → ρeiφ/f .
This parameterization has a clear invariance under φ→ φ+2πkf in the sense that
it maps Φ back to itself. Explicit breaking of the symmetry in terms of operators
involving Φ will still have this invariance purely from the mapping between Φ and
φ.

As far as the relaxion goes, the coupling g breaks both the global symmetry
and the gauge symmetry. If the relaxion were to be a genuine goldstone (or, more
restrictively, expressly the QCD axion), then the potential – and the Higgs mass
– would need to be a periodic in 2πf if it’s to come from a local QFT. Since the
theory requires a non-periodic field excursion of order φ ∼M2/g, this would imply
f > M2/g. This ultimately forces the cutoff of the theory to live down at the weak
scale, giving no parametric improvement [6].

Thus we are forced to conclude that the relaxion is not an axion, and the shift
symmetry does not arise from a compact global symmetry. So what if the relaxion
is not an axion? In this case, there is no compact global symmetry, and no mecha-
nism to protect the shift symmetry over field excursions beyond the Planck scale.
One expects quantum gravity effects to alter the picture significantly, preventing
the large field excursions required for the mechanism to operate. There have been
attempts to model-build a relaxion from multiple compact fields arranged to give
larger effective periods, but it is not obvious that these attempts are successful.

1.2.2 Interactive Relaxion

Given the challenges facing the original relaxion mechanism, it is worth asking if
there are other mechanisms that might work along similar lines. Indeed, there are
several, of which one is worth briefly sketching here. Whereas the initial realiza-
tion of the relaxion has an omnipresent source of dissipation and a potential that
turns on near m2

H = 0, this alternative has an omnipresent potential and a source
of dissipation that turns on near m2

H = 0 [7].

The basic idea is to start with a relaxion of the familiar form, for an Abelian
Higgs toy model

δL = (−M2 + gφ)|H|2 + V (gφ) + Λ4 cos
φ

f ′
+

φ

4f
F F̃ (33)

where the cosine potential is an axion potential generated from the confinement
of some non-SM gauge group – so that Λ is not related to the Higgs vev – and
FF̃ is some abelian gauge group (we’ll get to the SM version momentarily). The
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coupling between the relaxion and the U(1) gauge field will be a source of particle
production, which will provide dissipation.

The essential idea is for φ to start at some large field value, φ ∼ M2/g with
some nonzero velocity, and from the direction in which the Higgs mass-squared
is large and negative. In this case, the abelian gauge group is Higgsed, with cor-
respondingly large masses. For φ̇ & Λ2, φ then rolls down its potential without
slowing on the cosine bumps, such that the Higgs mass-squared decreases in mag-
nitude. Eventually, the vev becomes small enough that φ can dissipate kinetic
energy through production of gauge bosons.

For simplicity, we will consider the process at zero temperature. The equations
of motion for the transverse modes of the gauge field A – call them A± – in unitary
gauge (∂µA

µ = 0) are

Ä± +

(
k2 +m2

A ±
kφ̇

f

)
A± = 0 (34)

Neglecting backreaction on φ, and treating φ̇ as constant, the solutions are

A±(k) ∝ eiω±t (35)

ω2
± = k2 +m2

A ±
kφ̇

f
(36)

There is a tachyonic growing mode for imaginary frequencies, corresponding to

ω2
± = k2 +m2

A ±
kφ̇

f
< 0⇒ |φ̇| & 2fmA (37)

The tachyonically growing mode drains the kinetic energy of φ exponentially
quickly, as the growing mode backreacts on φ.

Of course, for a fully accurate picture the analysis must be repeated at finite
temperature. While the qualitative picture persists, some subtleties arise, includ-
ing the fact that exponential growth only occurs for abelian gauge fields at finite
temperature.

To implement this mechanism in the Standard Model, φ must couple to a linear
combination of electroweak gauge bosons, but cannot couple to pairs of photons. If
it coupled to pairs of photons, it could dissipate energy into photon pair production
irrespective of the value of the Higgs vev. Rather, we require it to dissipate energy
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only to gauge fields acquiring mass through the Higgs mechanism. The natural
candidate is thus

L ⊃ φ

f

(
αYBB̃ − α2WW̃

)
(38)

where this linear combination contains all appropriate pairs of electroweak gauge
bosons except γγ Such a coupling might look like a fine-tuning, but can be pro-
tected in a UV model for the axion where the SM electroweak group is embedded
in an SU(2)L × SU(2)R gauge theory. In such a theory there is a PQ symmetry
under which

φ→ φ+ α (39)

θL → θL − α (40)

θR → θR + α (41)

where θL,R are the θ angles of SU(2)L,R respectively. This forces φ to couple to
WLW̃L −WRW̃R. The combination γγ̃ is invariant under the PQ symmetry, and
so can only appear in the combination ∝ (θL + θR)γγ̃, i.e., cannot couple to φ. In
this way we can forbid the γγ̃ coupling with symmetries.

There are various other subtleties in this scenario, too many to enumerate here,
but hopefully we have articulated the sense in which there are multiple possible
realizations of the essential relaxion mechanism.

1.3 NNaturalness

An alternative that proceeds from similar inspiration is to put many copies of
the Standard Model in the same universe, but explain why one copy acquires the
dominant energy density [8].

The idea is to envision N sectors which are mutually decoupled. For simplic-
ity, we could take it to be N copies of the Standard Model, though this is not an
important restriction. From copy to copy, we imagine the Higgs mass parameters
are distributed in some range from −Λ2

H to Λ2
H according to some probability dis-

tribution. For a wide range of distributions, the generic expectation is that some
sectors have accidentally small Higgs masses, m2

H ∼ Λ2
H/N . For large enough N ,

this implies that there is a sector whose electroweak scale is well below the cutoff,
which we might identify with “our” Standard Model.

Reversing the argument, this implies that the cutoff of the theory should be

ΛH ∼
√
N |mH |
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E.g. a cutoff of 10 TeV corresponds to N = 104, whereas a cutoff of 1010 GeV
requires N = 1016.

There is another factor in play when N is large. While the naive scale of
quantum gravity is MPl, in the presence of a large number of species the scale at
which gravity becomes strongly coupled is lowered,

Λ2
G ∼M2

Pl/N

You can think of this as just coming from wavefunction renormalization of the
graviton by N fields whose contributions are dominated by the scale N . This im-
plies the effective Planck scale should be at least M2

Pl ∼ NΛ2
G. Solving the entire

hierarchy problem this way would entail N = 1032. However, this lowers the cutoff
of quantum gravity to the weak scale, and gives us the usual problems associated
with a low cutoff.

But we would naturally have one sector with the observed value of the weak
scale and a Higgs cutoff associated with the cutoff of quantum gravity for N = 1016,
for which ΛH = ΛG = 1010 GeV. Alternately, we could preserve a notion of grand
unification for N = 104, for which quantum gravity grows strong at 1016 GeV, and
something like supersymmetry enters at ΛH = 10 TeV to cut off the Higgs sector.

The question, then, is to explain why this sector with “our” Standard Model
is populated, while all of the other sectors are not. As with the relaxion, this
is accomplished through cosmology. In a universe with many sectors, the uni-
verse is populated by whatever sectors are abundant. If all sectors had a thermal
abundance, there would be an enormous contribution to the energy density of the
universe, and we would not have any ability to understand why we are the sector
with the smallest scales. Thus we can imagine a cosmological mechanism that
preferentially reheats sectors with smaller scales.

The simplest way to accomplish this is to imagine an inflationary epoch, fol-
lowed by reheating due to the decay of some reheaton. To avoid tuning, this
reheaton should couple universally to all sectors. The Standard Model can be
preferentially reheated (i.e., absorb most of the energy from the reheaton decays)
if the branching ratio of the reheaton to each sector scales like an inverse power of
the (absolute value of the) Higgs mass-squared in each sector.

The simplest example is of a scalar φ with couplings

L ⊃ −aφ
∑

i

|Hi|2 −
1

2
m2φ2 (42)
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The branching ratios of φ to each sector depend on its mass and whether or not
electroweak symmetry is broken in each sector (in general, it will be broken in
half and unbroken in the other half). If we imagine that mφ � |mH | in all the
sectors, then we can work out the branching ratios by integrating out the Higgses
and gauge bosons (when massive) in each sector.
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in sectors with and without electroweak symme-

try breaking, respectively. Thus the reheaton preferen-

tially decays into sectors with light Higgs bosons and non-

zero vevs. If, instead, the reheaton were heavy enough

to decay directly to on-shell Higgs or gauge bosons, the

branching fractions would be democratic into those sec-

tors, and the energy density in our sector would not come

to dominate the energy budget of the Universe.

In the scalar case the decays are di↵erent, but the scal-

ing of the decay widths is exactly the same. This can be

seen once more by integrating out the Higgs and gauge

bosons in all the sectors:

LhHi6=0
� � C�

1 a yq
v

m2
h
� q qc ;

LhHi=0
� � C�

3 a g2

16⇡2
1

m2
H
�Wµ⌫W

µ⌫ ,
(5)

where again the C�
i are numerical coe�cients, and Wµ⌫

is the SU(2) field strength. As in the fermionic case, this

Lagrangian leads to decay widths that scale as �m2
H<0 ⇠

1/m2
hi

and �m2
H>0 ⇠ 1/m4

Hi
in sectors with and without

electroweak symmetry breaking, respectively, through

the diagrams shown in Fig. 2. We have not included

the one-loop decay � ! � � in Eq. (5) for sectors with

hHi 6= 0. This operator scales as 1/m2
h and is important

for sectors with N & 108; we find that this is never the

leading decay once the bounds on N discussed in Sec. III

are taken into account.

Before moving to a more detailed discussion of signals

and constraints it is worth pointing out two important

di↵erences between the � and ` models that will lead us to

modify the latter. Given the scaling of the widths we can

approximately neglect the contributions to cosmological

observables from the hHi = 0 sectors. In the simple case

that the vevs squared are equally spaced, v2
i ⇠ 2 i ⇥ v2

us,

as in Eq. (1) with r = 1, we find that the branching ratio

into the other sectors is
P

1/i ⇠ log N .

In the � model, this logarithmic sensitivity to N is not

realized. Since the reheaton decays into sectors with non-

zero vevs via mixing with the Higgs, the decays become

suppressed by smaller and smaller Yukawa couplings as

hi becomes heavy. After the charm threshold is crossed

m� < 2 mci
we can neglect the contribution of the new

sectors to cosmological observables (with one exception

that we discuss in the next section). This behavior is

displayed in the left panel of Fig. 3, where we show the

fraction of energy density deposited in each sector.

The second important di↵erence is that in the ` model

the reheaton couples directly to neutrinos and, in the sec-

tors with electroweak symmetry breaking, it mixes with

them. This leads to two e↵ects. First, the physical re-

heaton mass grows with N , implying that the structure

of the ` model forces the reheaton to be heavy at large

N , and can be inconsistent depending on the value of �.

Additionally, this mixing can generate a freeze-in abun-

dance [5] of neutrinos in the other sectors from the pro-

cess ⌫us ⌫us ! ⌫us ⌫i via an o↵-shell Z0. Tension with

neutrino overclosure and overproduction of hot dark mat-

ter leads to an upper bound on the maximum number of

sectors. In practice, it is hard to go beyond N ' 103.

However, there is a simple extension of the ` model

that at once mitigates its UV, i.e., large N , sensitivity

and solves the problems arising from a direct coupling

to neutrinos. If the reheaton couples to each sector only

through a massive portal (whose mass grows with vi),

then the branching ratios will scale with a higher power

of the Higgs vev after integrating out the portal states.

As an example, consider introducing a 4th generation of

vector-like leptons (L4, L
c
4), (E4, E

c
4), and (N4, N

c
4 ) to

each sector. Then relying on softly broken U(1) sym-

metries, we can couple the reheaton to L4 only via the

Lagrangian

LL4
� Lmix + LY + LM , (6)

Lmix = ��Sc
X

i

�
L4 H

�
i
� µE

X

i

�
ec E4

�
i
,

LY = �
X

i

h
YE

�
H† L4 Ec

4

�
i
+ Y c

E

�
H Lc

4 E4

�
i

+ YN

�
H L4 N c

4

�
i
+ Y c

N

�
H† Lc

4 N4

�
i

i
,

LM = �
X

i

h
ME

�
Ec

4 E4

�
i
+ ML

�
Lc

4 L4

�
i

+ MN

�
N c

4 N4

�
i

i
� mS S Sc ,

where we have assumed universal masses and couplings

across all the sectors for simplicity. We again need � ⇠
1/

p
N for perturbativity. Note that we are assuming that

Figure 2: Dominant decays when 〈H〉 6= 0 (left) and 〈H〉 = 0 (right)

For sectors where electroweak symmetry is broken, the dominant decay is into
fermions, via

L ⊃ ay
v

m2
h

φqqc (43)

whereas when electroweak symmetry is unbroken the dominant decay is into gauge
bosons, via

L ⊃ a
g2

16π2

1

m2
H

φWµνW
µν (44)

Thus the decay rate into broken-phase sectors scales as 1/m2
h, while the decay

into unbroken-phase sectors scales as 1/m4
H . Reheaton decays prefer a sector with

broken electroweak symmetry and the smallest possible value of mh.

The resulting energy density of each sector is proportional to the decay width,

ρi
ρus
' Γi

Γus
(45)

This leads to some energy density in the sectors nearest to ours in mass, with
attendant predictions for dark radiation within the reach of future CMB experi-
ments.

2 Rampant Speculation

2.1 UV/IR mixing

Let’s end with an excursion into radically different territory, which marks a sharp
departure from the types of solutions considered thus far. One way to frame the
hierarchy problem is as a separation of UV physics from IR physics in effective
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field theory: the theory in the far UV knows nothing about the theory in the far
IR. From this perspective, one might hope to work around the hierarchy problem
by linking the far UV and the far IR. This would represent a sharp departure from
effective field theory, and the challenge is to make the departure well posed.

As we have already seen during our discussion of the cosmological constant
problem, we might hope to expect a theory of quantum gravity to feature UV/IR
mixing. There are two ways we could try to put this to work. The first is to leverage
conjectured constraints on EFT parameters, as we did in discussing the CC. The
second is to look for theories where UV/IR mixing manifests itself directly. Let’s
consider each in turn.

2.1.1 Indirect UV/IR mixing

An illustrative effort along these lines was made by Cheung & Remmen ’14 [9].
They wished to make use of one conjectured constraint on EFT parameters im-
posed by a consistent theory of quantum gravity, namely the (electric) Weak Grav-
ity Conjecture [10].

In its simplest form, the WGC posits that an abelian gauge theory coupled to
gravity must contain a state of charge q (in units of the gauge coupling g) and
mass m satisfying

q >
m

MPl

(46)

which amounts to the statement that gravity is the weakest force, since this implies
the gauge force between two charges exceeds the gravitational one.

There are a variety of arguments for this bound, but perhaps the simplest can
be made purely from GR + charge/energy conservation + minimal assumptions
about the theory of quantum gravity. Consider a black hole of charge Q and mass
M decaying solely to some number of the charged particle in question. Charge
conservation tells us

Nparticles =
Q

q
(47)

Conservation of energy requires that the rest mass of the final state be less than
that of the black hole,

Nparticlesm =
Q

q
m < M (48)

From these two statements we can conclude that the charge-to-mass ratio of the
particle z must exceed that of the black hole Z, which we can appropriately nondi-
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mensionalize with MPl:

z = q
MPl

m
> Z = Q

MPl

M
(49)

An extremal black hole corresponds to Z = 1 and is stable unless there exists a
particle for which z > 1. If extremal black holes are stable, then the spectrum
of the theory contains a large number of stable black hole remnants, which are in
tension with holographic grounds and imply various thermodynamic catastrophes.

Avoiding stability of extremal black holes implies

z = q
MPl

m
> 1⇒ q >

m

MPl

(50)

as desired. Now the idea of Cheung & Remmen was to extend the Standard Model
to include an unbroken U(1) and some particle charged under it whose mass sat-
isfies the WGC and is controlled by electroweak symmetry breaking. A natural
candidate is gauging U(1)B−L, which can be rendered anomaly-free by adding a
right-handed neutrino νR. Current bounds on U(1)B−L require q . 10−24.

Now neutrino masses arise from a yukawa coupling to the Higgs, giving a Dirac
mass

yνvν̄LνR + h.c. (51)

The lightest neutrino has the largest charge-to-mass ratio. Let’s say its mass is
mν ∼ 0.1 eV. Then if

q ∼ mν

MPl

∼ 10−29 (52)

consistent with current bounds, then the WGC is just barely satisfied. If the
values of the yukawa coupling yν and U(1)B−L coupling-times-charge q are held
fixed, then higher values of the Higgs vev v would violate the WGC. So one could
imagine that consistency of quantum gravity bounds v.

Of course, there are many outs – there could be lighter states charged under
U(1)B−L that satisfy the WGC. Keeping yν and q fixed is an arbitrary restriction,
much as in the application of the atomic principle to anthropic reasoning. But
it still illustrates an interesting way of entraining the weak scale to conjectured
properties of quantum gravity.

Unfortunately, even taking the premises to be true, the argument itself fails
due to another conjecture. So far we have discussed the electric form of the WGC,
but there is also a magnetic form, which can be justified on grounds of allowing
magnetically charged black holes to decay (or simply requiring that magnetically
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charged black holes be made of some lower-entropy particle states). The magnetic
WGC posits that the cutoff Λ of a purely electric description of an Abelian gauge
theory with charged states must satisfy

Λ . qMPl (53)

where here the cutoff could correspond to e.g. the scale of monopoles in the theory
or some other breakdown of the purely electric description. This would imply the
above construction breaks down at the scale of neutrino masses, and additional
degrees of freedom associated with Λ would appear well before the scale v. So
there is no free lunch.

2.1.2 Direct UV/IR mixing

Another possibility is to grab the proverbial bull by the horns and look for field
theories directly manifesting UV/IR mixing. Thankfully, we have a well-posed ex-
ample in the guise of quantum field theory on noncommutative backgrounds [11].

The starting point is to imagine a nonvanishing commutator between coordi-
nates on R4,

[xµ, xν ] = iΘµν

where Θ is a constant, real, antisymmetric noncommutativity matrix. The algebra
of functions on this noncommutative space can be viewed as an algebra of ordinary
functions on the usual R4 with the product deformed to the noncommutative,
associative star product,

(φ1 ? φ2)(x) = e
i
2

Θµν∂yµ∂
z
νφ1(y)φ2(z)

∣∣∣
y=z=x

(54)

So we are studying theories whose fields are functions on ordinary R4 with ordi-
nary actions, except that products of fields are replaced by the star product.

To see evidence for UV/IR mixing, it suffices to consider the appropriate gener-
alization of φ4 theory. This is a theory with a mass gap and quadratic divergences
in the commutative version. The non-commutative version is simply

S =

∫
d4x

(
1

2
(∂φ)2 +

1

2
m2φ2 +

1

4!
λφ ? φ ? φ ? φ

)
(55)

where the star product in the quadratic pieces of the action reduces to the normal
commutative products up to total derivatives; only the interactions are modified.
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This amounts to modifying the Feynman rules so that the interaction vertex has
an additional phase factor of the form

e−
i
2

∑
i<j ki×kj

where ki is the momentum flowing into the vertex through the ith field and the
“cross product” is

ki × kj ≡ kiµΘµνkjν

This phase factor is invariant under cyclic permutations, but not arbitrary permu-
tations. In a Feynman diagram with fixed external legs, there are then “planar”
graphs, where propagators don’t cross on their way to external states, and “non-
planar” graphs where propagators cross.

Figure 3: Planar and nonplanar diagrams in non-commutative φ4

At one loop, the two-point function receives corrections from one planar graph
and one non-planar graph, shown in in Figure 3. The two diagrams give

Planar ∼ λ

3

∫
d4k

(2π)4

1

k2 +m2
(56)

Non− planar ∼ λ

6

∫
d4k

(2π)4

eik×p

k2 +m2
(57)

(58)

where the planar one is just the usual quadratically divergent graph, and the
non-planar one picks up a phase factor from the crossing of an internal line. To
see the effect of the phase factor, we can re-write the propagators in terms of
Schwinger parameters

1

k2 +m2
=

∫ ∞

0

dαe−α(k2+m2) (59)
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to get gaussian integrals

Planar ∼ λ

48π2

∫
dα

α2
e−αm

2

(60)

Non− planar ∼ λ

96π2

∫
dα

α2
e−αm

2−p◦p/α (61)

(62)

where p ◦ q = −pµΘ2
µνqν has dimensions of 1/mass2. These integrals are divergent,

which we regulate by multiplying the integrand by a smooth cutoff e−1/(Λ2α). Then
we find the graphs give the following contributions

Planar ∼ λ

48π2

(
Λ2 −m2 log(Λ2/m2) + . . .

)
(63)

Non− planar ∼ λ

96π2

(
Λ2
eff −m2 log(Λ2

eff/m
2) + . . .

)
(64)

(65)

where

Λ2
eff =

1

1/Λ2 + p ◦ p
In this latter case, taking Λ → ∞ gives Λeff = 1

p◦p . Taking p → 0 then gives
Λeff → ∞. That is to say, the non-planar diagram generates an IR divergence
from what we normally think of as a UV divergence. In addition, the limits Λ→∞
and p→ 0 do not commute; there is UV/IR mixing.

The 1-loop 1PI quadratic effective action now takes the form

1

2

(
p2 +M2 +

g2

96π2(p ◦ p+ 1/Λ2)
+ . . .

)
φ(p)φ(−p) (66)

where here M2 is the “renormalized” mass parameter M2 = m2 +g2Λ2/48π2 + . . . .
For the moment, imagine just taking Λ → ∞. Now there are two poles in the
effective action:

• The usual one at p2 +m2 ' O(g2)

• A new one at p ◦ p ' − g2

96π2
1

p2c+m
2

where p2
c is the projection of the momentum onto the commutative subspace. You

can think of this second pole as signalling the existence of a new light particle that
is, in some sense, “dual” to the high-momentum modes of φ.
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There is another interesting feature, which is the specific breakdown of Wilso-
nian EFT when the theory is considered at finite cutoff. Normally, a renormal-
izable Wilsonian action must have well-defined correlation functions as Λ → ∞,
and additionally correlation functions at fiite Λ differ from their limiting values
by O(1/Λ) at all values of the external momenta. This second condition is badly
violated here by the cutoff-dependence in the 1PI effective action.

A sensible Wilsonian interpretation could be restored precisely by introducing
a new particle with action of the form

δS =

∫
d4x

(
1

2
∂χ ◦ ∂χ+

1

2
Λ2(∂ ◦ ∂χ)2 +

i
√
λ√

96π2
χφ

)
(67)

When integrated out, this would cancel off the g2/(p ◦ p + 1/Λ2) term in the ef-
fective action and replace it with a pure g2/p ◦ p one, restoring the consistency of
Wilsonian EFT.

But whether you think of this from the perspective of Wilsonian EFT or at
infinite cutoff, there are clearly surprising departures from effective field theory,
ones which suggestively hint at an approach to the electroweak hierarchy problem.
Of course, this is a long way from solving the hierarchy problem. The field χ
doesn’t look anything like a standard propagating degree of freedom in Lorentzian
signature, much less the higgs. But it points to a qualitatively interest direction in
which to probe the hierarchy problem, one which is unlike any we have encountered
before. If the hierarchy problem is solved by radically new ideas in quantum field
theory, UV/IR mixing seems like a promising direction.

3 Conclusion

This brings us to an end. Hopefully I have conveyed the essential character of nat-
uralness arguments as a motivator for physics beyond the Standard Model, as well
as a variety of proposed solutions and their observable consequences. Although
the naturalness problems of the Standard Model appear in diverse contexts and at
diverse scaling dimensions, they have surprisingly much in common. So, too, do
the solutions we have investigated thus far: discrete and continuous symmetries,
dynamical evolution, anthropics, and UV/IR mixing each make frequent appear-
ances. Indeed, if you’re in the mood to look for new approaches, you may find the
following table helpful. I have no idea how UV/IR mixing could solve the Strong
CP problem, but it couldn’t hurt to try.
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Strong CP Problem CC Problem Hierarchy Problem

Cts. symmetry U(1)PQ SUSY SUSY, global
Disc. symmetry P/CP E → −E Z2

Dynamical field U(1)PQ Abbott Relaxion
Anthropics ? Structure formation Atomic principle

UV/IR mixing ? Holography WGC/NCQFT/...

We are in an exciting time, where tests of some naturalness problems (the elec-
troweak hierarchy problem) are at hand, and other (strong CP) are on the horizon.
Current tests of the electroweak hierarchy problem make things quite interesting,
given the onward march of null results. There are old solutions which are com-
pelling but in tension with data, and new solutions which are born of necessity
and take us in wildly new directions. Time considerations have prevented us from
exploring the full set of new directions, and some of my favorites which you may
wish to investigate further include approaches using conformal symmetry [12] and
ones using disorder [13].

If nothing else, hopefully is far from clear to you that we have systematically
studied all such solutions. Many new directions remain, some of which proceed
along avenues sketched here, and some which have yet to be imagined. Null results
in conventional channels free us to break new ground. This is where you come in!
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