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1 Strong CP Problem, continued

Last time, we left off with the strong CP problem, namely why the CP-violating
phase

L ⊃ −θ g2
s

32π2
Ga
µνG̃

aµν (1)

is at most θ ∼ 10−10, whereas naturalness expectations dictate it should be O(1).

We also noted that, thanks to the axial anomaly, we could move this term back
and forth between GG̃ and the quark masses. That is, under

q → q′ = eiαγ5/2q (2)

q̄ → q̄′ = q̄eiαγ5/2 (3)

we have

−q̄RMqL + h.c.→ −q̄RMeiαqL + h.c.+ α
g2
s

32π2
GaG̃a (4)

where the first term arises because the mass term violates the axial symmetry
at the classical level, and the second term is from the axial anomaly. (Here and
henceforth we’ll work in terms of the left- and right-handed components of the
Dirac fermion, which will make things clearer when we study the Standard Model.)

We then discussed explaining the smallness of θ by expanding the Standard
Model to include a symmetry that forbids it, namely a generalized P symmetry.

1.1 Axions

We then turned to the θ dependence of the QCD vacuum energy. Loosely speaking,
the QCD Lagrangian in the UV for the lightest quarks has the form

−muūRuL −mdd̄RdL + h.c. (5)

Under an axial rotation that moves θ into the quark masses, we have

−mue
iθūRuL −mde

iθd̄RdL + h.c (6)

When QCD confines, we get a bilinear expectation value for the quarks, giving a
contribution to the vacuum energy. Ignoring isospin violation (i.e. taking mu =
md) and working in terms of low-energy parameters,

E(θ) ∼ m2
πf

2
π cos(θ) (7)
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We then suggested that introducing a pseudoscalar field a, which we’ll call an
axion, that couples to GG̃ like θ, i.e.,

δL = − g2

32π2

(
θ +

a

fa

)
GG̃ (8)

would give a vacuum energy

E(a, θ) = −m2
πf

2
π cos(θ + a/fa) (9)

with a minimum at 〈a〉 = −θfa where the total effective CP violating angle is set
to zero, solving the strong CP problem.

This might seem like a big ask, but it really isn’t. The basic idea is to make
U(1)A a good classical symmetry of the action by introducing an appropriate set
of Higgs scalars that give masses to quarks, though it remains anomalous. We
call such a symmetry a Peccei-Quinn symmetry, U(1)PQ, for its discoverers [1].
When the scalars acquire a vev, the U(1)PQ is spontaneously broken, giving rise
to a goldstone boson, identified with the axion a. Just consider a toy model with
a single Dirac fermion coupled to a scalar via

L ⊃ −ΦQ̄RQL + h.c (10)

Now the U(1)A is a good classical symmetry provided

QL → eiαQL QR → e−iαQR Φ→ e−2iαΦ (11)

but remains anomalous in the sense that rephasings of the Q can adjust the θ
angle. Now if Φ acquires a vev, the U(1)A is spontaneously broken and there is
a goldstone mode. If we focus on the goldstone, Φ(x) → fa√

2
eia(x)/fa , then this

couples as

L ⊃ − fa√
2
eia(x)/faQ̄RQL + h.c. (12)

Performing a spacetime-dependent axial rotation on the quark, Q→ eia(x)γ5/2faQ,
we have

L ⊃ i
∂µa

2fa
Q̄γµγ5Q−

fa√
2
Q̄RQL + h.c.− g2

32π2

a

fa
Ga
µνG̃

aµν (13)

precisely as desired. Note that we also pick up derivative couplings to the fermions,
consistent with the shift symmetry.

This doesn’t work in the Standard Model with one Higgs doublet, because both
H andH∗ are involved in Yukawa couplings, so there is no U(1)A charge assignment
we could make to the Higgs to restore the axial symmetry in the yukawas. So there
are two things you can try:
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1.1.1 Only SM quarks: Weinberg-Wilczek and DFSZ

The first is to introduce a second Higgs doublet and consider the axial symmetry
under which

qL → eiαqL qR → e−iαqR H1 → e2iαH1 H2 → e−2iαH2 (14)

in conventions where both H1 and H2 have the same SM quantum numbers. This
allows us to write down Yukawa couplings and a Higgs potential of the form

YuQ̄LH1uR + YdQ̄LH
∗
2dR + h.c + V (|H1|2, |H2|2, |H∗1H2|2) (15)

Note that this forbids certain terms in the potential allowed by the gauge sym-
metry, namely H∗1H2 + h.c. or (H∗1H2)2 + h.c.. When these Higgses acquire vevs,
electroweak symmetry and U(1)PQ are spontaneously broken, and the axion is the
goldstone

a ≡ 1

v
(v1ImH0

1 − v2ImH0
2 ) (16)

This model, the Weinberg-Wilczek model [2, 3], is super predictive! It tells us

ma '
fπmπ

v
' 100 KeV (17)

and the axion decay constant is 1/v, which is ruled out by direct searches.

Of course, the idea can be easily rescued by adding a singlet complex scalar S
also transforming under U(1)PQ as S → e2iαS, which allows additional potential
terms that are functions of |S|2 and H∗1H2S

2. Now in general H1, H2 and S all
acquire vevs, breaking the PQ symmetry, and the axion is

a ≡ 1

f
(v1ImH0

1 − v2ImH0
2 + vSImS) (18)

where f 2 ≡ v2
1 + v2

2 + v2
S. So if vS � v1, v2, the axion is lighter and more weakly

coupled, potentially beyond the reach of current searches. This is the DFSZ (Dine-
Fischler-Srednicki-Zhitnisky) axion [4, 5]. Its couplings to other SM fields are fixed
by the quantum numbers of SM fields transforming under U(1)PQ.

1.1.2 New quarks: KSVZ

The other option is to outsource the anomaly to new fermions charged under
QCD. Introduce a complex scalar Φ and a Dirac fermion Q in the fundamental
representation of SU(3), with couplings

ΦQ̄RQL + h.c (19)
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This is just like the toy model we sketched earlier. Now Φ can be given a vev,
and its modulus is the axion field, a = fArgΦ. One can imagine introducing more
than one extra quark, etc., giving more flexibility in the axion couplings. This is
the KSVZ (Kim-Shifman-Vainstein-Zakharov) axion [6, 7], which post-dates the
WW axion but pre-dates the DFSZ one.

The essential difference between the KSVZ and DFSZ models are the predic-
tions for couplings to things other than GG̃. For one thing, the axial anomaly
also induces couplings to photons that depend on the electromagnetic charges of
the relevant fermions. In the KSVZ model, the fermions can be electromagneti-
cally neutral, so this contribution is absent, while in the DFSZ it’s fixed by the
electromagnetic charges of SM fermions. However, there is also a contribution to
the two-photon coupling coming from mixing between the axion and pseudoscalar
mesons, so ultimately both couple. In addition, the DFSZ features derivative
couplings of the axion to SM fermions.

A historical aside: as I have come to understand it from one of the authors of
DFSZ, they came upon the model while working on supersymmetric techicolor,
and realized that the essential features could be distilled out from the larger
framework. At the time they didn’t think it would be tremendously exciting,
because it was not wildly different from the KSVZ model, but of course the
field felt otherwise. One lesson from this is that elaborate model-building can
be useful as a way of discovering simpler structures.

2 The Cosmological Constant Problem

Next we move to the other end of the dimensional spectrum, to the cosmological
constant, which we typically discuss in terms of a vacuum energy density,

L =
√−g

[
1

2
M2

PlR− ρvac + . . .

]
(20)

which we sometimes write as ρvac = M2
Plλ.

The initial evidence was accumulated in 1998 from observations of distance-
redshift relations for Type 1a supernovae, and further solidified by CMB meaure-
ments. The most recent CMB result from the Planck 2015 analysis gives

ρvac = (2.26× 10−3 eV)4 (21)
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(With an equation of state very near to w = −1, w = −1.006 ± 0.045 in Planck
2015 data, for all practical purposes it’s a cosmological constant rather than some
other exotica, and in what follows I’ll treat it as such.)

Now, what’s the problem from the perspective of naturalness? Well, Lorentz
invariance tells us that in the vacuum the energy-momentum tensor must take the
form

〈Tµν〉 = −〈ρ〉gµν (22)

Plugging this into Einstein’s equation

Rµν −
1

2
gµνR− λgµν =

1

M2
Pl

Tµν (23)

tells us that vacuum energy density contributes to the effective cosmological con-
stant,

ρvac = 〈ρ〉+M2
Plλ (24)

Purely on dimensional grounds, in a field theory with a cutoff Λ coupled to gravity
we expect ρvac ∼ Λ4. Radiatively, vacuum bubbles of a field of mass m in an EFT
with cutoff Λ contribute via diagrams of the form

Vacuum loop
Vacuum loop +

one ext. graviton
Vacuum loop +

two ext. gravitons

e e e
+ + +  … = ρV√−g√√−√−g√√√

Figure 1: An electron vacuum loop and its coupling to external gravitons
generate an effective cosmological constant.

gravitate in some situations. Fig. 2a shows the vacuum polarization contri-

bution to the famous Lamb shift, now coupled to an external graviton. Since

this is known to give a nonzero contribution to the energy of the atom, the

equivalence principle requires that it couple to gravity. The Lamb shift is

very small so one might entertain the possibility of a violation of the equiv-

alence principle, but this is a red herring, as there are many larger effects of

the same type.

One of these is shown in Fig. 2b, a loop correction to the electrostatic

energy of the nucleus. Aluminum and platinum have the same ratio of grav-

itational to inertial mass to one part in 1012 [6, 7]. The nuclear electrostatic

energy is roughly 10−3 of the rest energy in aluminum and 3 × 10−3 in plat-

inum. Thus we can say that this energy satisfies the equivalence principle

to one part in 109. The loop graph shifts the electrostatic energy by an

amount of relative order α ln(meRnuc)/4π ∼ 10−3 due to the running of the

electromagnetic coupling. Thus we know to a precision of one part in 106

that the effect shown in Fig. 2b actually exists. In fact, the effect becomes

much larger if we consider quark loops rather than electrons, and we do not

need precision experiments to show that virtual quarks gravitate, but we

stick with electrons because they are cleaner [8].

3

Figure 1: Vacuum loop contributions from, say, an electron, to the effective CC.
Red lines are gravitons; contributions sum to ρvac

√−g. From [8].

giving

ρvac =

∫ Λ

0

4πk2dk

(2π)3

1

2

√
k2 +m2 ' Λ4

16π2
+
m2Λ2

32π2
+
m4 ln(Λ/m)

32π2
+ . . . (25)

In the Standard Model, if we take Λ ∼MPl, then we expect

ρvac ∼ 10120ρvac,obs,

an enormous violation of naturalness expectations.
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There are two things that might bother you about this. The first is the cutoff
dependence – we learn in QFT that cutoff dependence should be absorbed by our
regularization procedure. We’ll discuss this more when we get to the electroweak
hierarchy problem, but for now it suffices to note that we have an enormous prob-
lem even if we discard the power-law dependence on the cutoff and keep only the
finite and log-dependent parts, we have contributions of O(m4). Including only
the top quark means we already have

ρvac ∼ 1053ρvac,obs,

and if there are any fields of Planck-scale mass, we are back to our original estimate.

e
p e Z

eγ γ

γ

γ

a) b)

Figure 2: a) Vacuum polarization contribution to the Lamb shift, coupled
to an external graviton. b) A loop correction to the electrostatic energy of a
nucleus, coupled to an external graviton.

We can think of Fig. 2 to good approximation as representing the shift

of the electron zero point energy in the environment of the atom or the

nucleus. Thus we must understand why the zero point energy gravitates in

these environments and not in vacuum, again given that our vacuum is a

rather complicated state in terms of the underlying fields. Further, if one

thinks one has an answer to this, there is another challenge: why does this

cancellation occur in our particular vacuum state, and not, say, in the more

symmetric SU(2) × U(1) invariant state of the weak interaction? It cannot

vanish in both because the electron mass is zero in the symmetric state and

not in ours, and the subleading terms in the vacuum energy (1.1) — which

are still much larger than the observed ρV — depend on this mass. Indeed,

this dependence is a major contribution to the Higgs potential (though it is

the top quark loop rather than the electron that dominates), and they play

an important role in Higgs phenomenology.

I am not going to prove that there is no mechanism that can pass these

tests. Indeed, it would be counterproductive to do so, because the most

precise no-go theorems often have the most interesting and unexpected failure

modes. Rather, I am going to illustrate their application to one interesting

4

Figure 2: Vacuum loop polarization correction to the Lamb shift coupled to gravity.
From [8].

The second thing you might worry about is whether we misunderstand how
QFT couples to gravity – perhaps our estimate of radiative contributions to the
CC is flawed on the grounds that we misunderstand how gravity couples to virtual
particles. But this can’t truly be so. For example, we know that a virtual electron
contributes to the vacuum polarization correction to the Lamb shift, and by the
equivalence principle this must couple to gravity. Loops are real.

On top of this, phase transitions contribute to the cosmological constant at
tree level – as we have already seen, we should expect a contribution of order
Λ4
QCD from the QCD phase transition alone, much less contributions from the

electroweak phase transition or potential earlier phase transitions associated with
unification or sectors other than our own. So there are classical contributions to
the CC that are equally problematic.
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In addition to the fact that the observed value of the CC differs dramatically
from our EFT expectation, there is a second cosmological constant problem: the
fact that it is remarkably close to the matter density in the universe, so that it is
only now beginning to dominate. This poses an additional obstruction to models
that appear capable of tackling the first CC problem.

2.1 Anthropics

The explanation that is both most popular and most controversial among high-
energy physicists is related to the formation of observers. For observers to be
present in order to see a universe with a small CC, the CC must be small enough
that sufficiently large gravitationally bound systems can form. By sufficiently
large, we have in mind something that forms stars and planets, which requires
heavy elements – so the structures of interest are galaxies or globular clusters.

The anthropic argument for the CC is often credited to Weinberg ’87 [9], but a
general sketch of the argument was made by Banks in 1985 [10], and a qualitative
bound along the lines of Weinberg’s was made by Barrow & Tipler in ’86 [11].
In any event, let us go with Weinberg’s argument. Weinberg’s argument in ’87
was detailed, but a simpler version suffices for illustration: We known that in our
universe gravitational condensation had already begun at redshift zc ≥ 4 (from
the redshifts of the oldest quasars), when the energy density was greater than the
present mass density ρM0 by a factor (1 + zc)

3. A CC has little effect as long as
the non-vacuum energy density is larger than ρvac, so this implies

ρvac ≤ (1 + zc)
3ρM0 (26)

The detailed form of the argument gives

ρvac ≤
π2

3
(1 + zc)

3ρM0 ' 410ρM0 (27)

We know in reality ρvac ∼ 3ρM0 , so this bound within two orders of magnitude of
the observed value. At this stage one can apply more detailed statistical reasoning
to obtain a typical value closer to the observed value.

For this to be truly explanatory, we should envision a landscape of vacua over
which the CC varies, all of which can be realized, but only a small number of
which produce observers to witness them. Thus the landscape.

When I was first taught about the anthropic argument for the CC, I was told
that (1) it was a true prediction and (2) that, unlike other anthropic arguments
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in physics (which we will soon encounter), it did not involve making assumptions
about what quantities could or could not vary across an anthropic landscape. Both
of these points would seem to make the anthropic argument for the CC unavoid-
ably appealing! But neither are true.

At the time of Weinberg’s anthropic argument, Loh and Spillar ’86 [12] had
set a limit ρvac/ρM0 = 0.1−0.4

+0.2 from surveys of galaxies as a function of redshift
(and other arguments for ρvac ∼ 0.7ρc were being kicked around to resolve some
cosmological tensions). Weinberg’s assessment of this result at the time was

This is more than 3 orders of magnitude below the anthropic upper
bound discussed earlier. If the effective cosmological constant is really
this small, then we would have to conclude that the anthropic principle
does not explain why it is so small.

before going on to discuss possible problems with the experimental result. Of
course, we know this bound was off by an order of magnitude of the true value,
but it is far from obvious that two orders of magnitude is better than three. So
is the anthropic prediction of the CC a success or not? And given that Weinberg
had a bound (or a range) in hand, does it count as a prediction? One could argue
that Weinberg was unique in positing a mechanism for a small but nonvanishing
CC, but as we will see, he was not the first.

Another loophole is that this is not a one-parameter argument. If gravitational
condensation occurred at much higher redshift, the bound would be much weaker.
This is possible if the amplitude of primordial density perturbations δρ/ρ ∼ 10−5

were allowed to increase, which could indeed be increased by at least an order
of magnitude before impacting anthropic viability, and significantly impacts the
anthropic bound.

2.2 Abbott

Abbott’s idea, introduced in 1985 [13], is to introduce a new confining sector
coupled to an axion-like particle with a classical shift symmetry ϕ → ϕ + c (not
necessarily that of a Goldstone from a compact symmetry group) and the usual
coupling

g2

32π2

ϕ

fϕ
F aF̃ a (28)

Non-perturbative effects give an axion potential

V1 = −Λ4
ϕ cos(ϕ/fϕ) (29)
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which break the classical shift symmetry to the discrete subgroup ϕ→ ϕ+2πNfϕ.
We will need Λϕ to be quite small, Λϕ ≤ 10−34 eV, but this is not so hard to engi-
neer by virtue of dimensional transmutation; it corresponds to α(MPl) ≤ 0.006 for
a copy of QCD, within an order of magnitude of the QCD coupling at the same
scale, or for an SU(2) theory with six quarks, no worse than α(MPl) ≤ 0.01. The
symmetry breaking scale is taken to be large, perhap fϕ ∼MPl.

In addition, a tilt is given to the cosine via a second term,

V2 = ε
ϕ

2πfϕ
(30)

where ε < Λ4
ϕ. Here we have taken a linear perturbation, but various other defor-

mations would also work, as long as they don’t introduce additional minima over
the field range we’ll discuss. Since ε breaks the discrete symmetry, its smallness
can be technically natural, and all radiative corrections to ε are guaranteed to be
proportional to it.

Then we have
ρvac = −Λ4

ϕ cos(ϕ/fϕ) + ε
ϕ

2πfϕ
+ . . . (31)

The minima are at ϕn ≈ 2πnfϕ for small ε, and in these minima ρvac ≈ nε−Λ4
ϕ +

. . . . Now by assumption, ε < (10−34 eV)4, so we are guaranteed there is always
a minimum where the total energy density is ∼ ε, which we can make arbitrarily
small.

To account for the CC, we must explain why the universe is in one of the states
with a small CC, instead of another one. If we imagine starting at some arbitrary
point on the potential with large, positive CC, we are in a de Sitter spacetime and
over time ϕ will evolve down the potential, decreasing the vacuum energy density
at each step. Initially, when ρvac > M2

PlΛ
2
ϕ the barriers are irrelevant because of

the non-zero Hawking temperature in de Sitter space, T 2
H = 2

3π
ρvac
M2

Pl
, so the field

can undergo thermal fluctuations over the barriers (and instantons generating the
barriers are moreover suppressed). Eventually, we will hit

ρvac < M2
PlΛ

2
ϕ ≤ (10−3 eV)4 (32)

(This is the reason for our Λϕ, and hence ε1/4, to be much smaller than ρvac – it’s
not the step size that matters, but the point at which the barriers switch on.) At
this point the barriers become relevant, and field evolution proceeds via tunneling,
i.e., bubble nucleation. For ρvac �M2

PlΛ
2
ϕ the tunneling rate per unit volume is

Γ/V ∼ Λ4
ϕe
− 3

8
M4

Pl/ρvac (33)
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and eventually the evolution becomes quite slow.

This all takes a long time, 10450 years for ρvac ∼ M4
Pl to get reduced to the

observed value. However, once we get there, we remain in a series of states with
acceptable CC for a far longer time, 1010248 years. Eventually we tunnel to a state
with small, negative vacuum energy, but this is expected to undergo gravitational
collapse and the game’s over. In the meantime, we have a doubly exponentially
long time in a realistic vacuum.

The problem is that the universe only contains vacuum energy. Any initial
matter density is rapidly inflated away, and any matter density generated during
a tunneling event is inflated away while awaiting the next transition. The last
transition to the current vacuum can’t reheat above TRH ∼ ε1/4, and even matter
created from this is unlikely to be isotropic because the energy released by the
tunneling event is primarily stored in the bubble wall. Even if you imagine raising
the scales so that the step size is of order ρ

1/4
vac, you are still impossibly far away

from getting a realistic universe. Recently, attempts have been made to develop
constructions inspired by the Abbott model (e.g. Creminelli et al. ’16 [14]) that
solve the reheating problem by more radical means, e.g. violation of the null energy
condition.

2.3 Discrete Symmetry

The idea, which originates with Linde ’88 [15] but was fleshed out further by
Kaplan and Sundrum ’05 [16], is to introduce parity partners of all normal fields
with opposite-sign Lagrangian density,

L =
√−g

[
M2

PlR− ρvac + Lmatter(ψ,Dµ)− Lmatter(ψ̂,Dµ) + . . .
]

(34)

where . . . denotes visible-ghost couplings that are taken to be small, and possibly
gravitational higher-derivative terms. The radiative contributions from the normal
matter sector and its wrong-sign partner to the CC cancel, leaving only the bare
contribution. We can think of this as arising from a Z2 energy-parity symmetry P
that anticommutes with the Hamiltonian, {H,P} = 0, so that an energy eigenstate
(H|E〉 = E|E〉) is transformed into one with opposite energy, HP |E〉 = −EP |E〉.

The obvious problem is that a Minkowski vacuum is unstable to the pair
production of positive- and negative-energy states. The idea is that if the two
can be completely decoupled, this pair production process is suppressed and the
Minkowski vacuum is effectively stable. If there is a Poincare-invariant state that
is P invariant, P |0〉 = |0〉, then 〈0|{H,P}|0〉 = 2〈0|H|0〉 = 0, corresponding to
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vanishing CC.

At the level of fields, the transformation under energy-parity is

gµν(x)→ gµν(x) (35)

ψ(x)↔ ψ̂(x) (36)

H → −H (37)

so that the matter action respects energy-parity, but the gravitational action vio-
lates it.

Since gravity violates the parity, there will be a gravitational contribution to
the CC of order Λgrav, a scale corresponding to the cutoff of graviton momenta –
so the scale at which a quantized EFT of Einstein gravity must break down. To
reproduce the observed CC, this implies Λgrav . 2× 10−3 eV, or a length scale of
∼ 100 microns, which is in tension with current short-distance tests. One should
also worry about vacuum decay induced by gravitational interactions.

2.4 UV/IR Mixing

Another possibility is that there is a breakdown in effective field theory, corre-
sponding to some mixing between UV and IR physics. This is not at all absurd:
we have examples of UV/IR mixing. Perhaps the most famous is in quantum grav-
ity. We can imagine accelerating two protons to Planckian energies and smashing
them together to create Planck-length-sized black holes. You might then hope to
probe distances shorter than the Planck length by increasing the energy of the two
protons above the Planck energy. But when you do so, you create larger and larger
black holes. More energetic protons mean more massive black holes, which have
larger radii. Instead of probing shorter distances, you produce large black holes
which resolve only longer distances – exciting the theory in the UV really probes
the physics of the IR. A more precise version of the same thing happens with T du-
ality, which relates string theories propagating on some circle of radius R and 1/R.

Various ideas about UV/IR mixing and the CC have been put forward, most
notably by Banks ’96 [17] and Horava ’97 [18]. Here I’d like to sketch an accessible
proposal by Cohen, Kaplan, and Nelson ’98 [19]. If there is UV/IR mixing present
in the theory of quantum gravity, one might hope to put it to work by inferring
long-distance properties that might be felt at lower energies. One such avenue is
via entropy bounds.
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Normally, an EFT in a box of size L (an IR cutoff) with UV cutoff Λ has
extensive entropy, S ∼ L3Λ3. Inspired by black hole thermodynamics, Bekenstein
(’73-’93) made a series of conjectures about entropy in field theory, namely that
the entropy in a box of volume L3 only grows as the area of the box. Any EFT
would violate this bound in a sufficiently large box, so if the bound is true, it
implies that conventional field theories vastly overcount degrees of freedom.

One way to reconcile these would be if there is a connection imposed between
the UV and IR cutoffs of an EFT by requiring it to satisfy the conjectured bound.
This would mean

L3Λ3 . SBH = πL2M2
Pl ⇒ L .

M2
Pl

Λ3
(38)

We can actually make a more refined condition. Note that an EFT satisfying this
bound contains many states with Schwarzschild radius larger than the box, which
should probably not be described by a local QFT. We can exclude those by requir-
ing the Schwarzschild radius of the maximum energy configuration (corresponding
to an energy L3Λ4) not to exceed the size of the box, i.e.,

Ls ∼
L3Λ4

M2
Pl

. L⇒ L .
MPl

Λ2
(39)

This would imply that any EFT with a cutoff Λ has a correlated IR cutoff L.

The conjectured application to the CC is as follows: if the IR cutoff of the
Standard Model (and everything else) is taken to be comparable to the current
horizon size, the corresponding UV cutoff is Λ ∼ 10−2.5 eV, surprisingly close to
the observed value of the CC. Now, this is not wholly satisfying – as effective field
theorists we therefore expect to see something at the cutoff, which we do not. But
it illustrates how conjectured properties of a theory of quantum gravity might be
brought to bear to constrain otherwise-independent parameters of an EFT.

3 The Electroweak Hierarchy Problem

Now we turn to the electroweak hierarchy problem. There are various levels to the
problem, but the essential issue is that the observed Higgs mass is some seventeen
orders of magnitude smaller than the apparent cutoff of the Standard Model EFT
associated with the scale of quantum gravity,

m2
H

M2
Pl

∼ 10−34 (40)
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While this would not be a concern if the mass parameter were technically natural
in the Standard Model, we are not so fortunate, and so we are faced with a striking
violation of our notions of naturalness.

Of course, not all mass parameters need be problematic. Consider, for example,
the mass of a Dirac fermion Ψ with a mass term of the form

mΨ̄Ψ . (41)

As we have already discussed, this mass term is invariant under a vector-like U(1)
global symmetry under which Ψ → eiαΨ, but in the limit m → 0 there is an
additional symmetry, namely axial transformations of the form Ψ → eiαγ5Ψ. We
could equivalently think of the symmetries in the massless limit as the two U(1)
symmetries of two free Weyl fermions.

Quantum corrections respect the symmetries of the quantum action, so pro-
vided that this axial symmetry is a good symmetry of the quantum theory (i.e., is
not anomalous), when when m = 0 this implies that quantum corrections will not
generate a mass term. Moreover, when the chiral symmetry is broken by m 6= 0,
quantum corrections will be proportional to the symmetry-breaking term. Thus a
large hierarchy between fermion masses is a curiosity, but not a deeply troubling
one. If the fundamental theory of the universe generates fermions with very dif-
ferent masses, quantum corrections need not disturb the hierarchy.

The same does not in general hold for the mass terms for scalar fields. In
particular, in the Standard Model the mass term

m2H†H (42)

is in general a complete invariant under any gauge or global symmetry acting on
H, and no symmetry is enhanced when the mass is zero. Thus we are without
any argument to justify the stability of the Higgs mass parameter against radia-
tive corrections. Indeed, we find in any theory with multiple mass scales that the
Higgs accumulates radiative corrections from every scale with which it interacts,
proportional to those scales. Unlike the case of spin-1/2 or spin-1, we do not have
δm2 ∝ m2, but rather δm2 ∝ Λ2, where Λ stands for all other scales probed by
the Higgs.

The hierarchy problem is often framed in the language of quadratic divergences.
The idea is to consider the Standard Model as an effective field theory up to some
cutoff Λ. One can infer the sensitivity of the Higgs mass parameter to the cutoff by
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computing one-loop radiative corrections up to the scale Λ, which give the famous
quadratic divergence,

δm2
H =

Λ2

16π2

[
6λ+

9

4
g2

2 +
3

4
g2
Y − 6y2

t + . . .

]
(43)

On top of this, one should include a bare term, so that the expectation for the
Higgs mass in the Standard Model EFT is

m2
H = cΛ2 + δm2

H (44)

There is a great deal of confusion about quadratic divergences and their signifi-
cance, so it is worth parsing this result very carefully.

The first question is whether we need to treat the Standard Model as an EFT
in the first place. In general, this is a sensible thing to do – even if it were not for
the apparent cutoff imposed by strong gravity at the scale MPl, if the Standard
Model were run up to arbitrarily high energies, it would hit a Landau pole in the
hypercharge gauge coupling around 1041 GeV. More precisely, given the measured
value of the hypercharge coupling at the Z pole, and the beta function

∂αY
∂ lnµ

=
41

10

α2
Y

2π
+ . . . (45)

the hypercharge coupling is fated to diverge around 1041 GeV. If this were to occur,
then Standard Model fermions would form non-zero vacuum condensates in the
UV, which is inconsistent with the long-range degrees of freedom in the IR. So the
Standard Model is genuinely an effective field theory with cutoff Λ whether or not
one is concerned about the implications of quantum gravity.

The second question is what to think of the quadratic divergence itself. We
learn at an early age how to deal with divergent results in quantum field theory –
we introduce counterterms and fix their coefficients according to some renormal-
ization scheme, and then use this scheme to make finite predictions for observables
at other scales. So at first glance, one might not be too troubled by the quadratic
divergence. But even if one doesn’t ascribe physical significance to the quadratic
divergence alone, it signals the existence of sensitivity to UV physics.

From the Wilsonian perspective, the quadratic divergence is really all there
is. The underlying idea is that the fundamental theory is finite, and divergences
in the EFT are physical (e.g. cutoff = lattice spacing, or mass scale of particles
rendering the Higgs mass finite), and counterterms just manifest fine-tuning.
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A less ambitious reading, but one that is much clearer to interpret than musings
about cutoffs, is that the quadratic divergence is just a placeholder for physical
thresholds. The detailed relationship between the cutoff and the mass of new
physical particles is a bit subtle, but as an order of magnitude relationship, it
typically holds true. And, indeed, when we know what those thresholds are, we
can go ahead and compute explicitly to see what’s going on. To see this, it helps
to construct a toy model.

3.1 A toy model

Concretely, consider as a toy model a real scalar coupled to a Dirac fermion,

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 + Ψ̄i 6∂Ψ−MΨ̄Ψ + yφΨ̄Ψ (46)

The yukawa coupling of this particular toy model breaks the continuous chiral
symmetry we discussed earlier, but retains a discrete chiral symmetry under which

Ψ→ γ5Ψ φ→ −φ (47)

Under this symmetry Ψ̄Ψ→ −Ψ̄Ψ, so the fermion mass M is rendered technically
natural. But there is no additional symmetry that is manifest when m→ 0, so we
expect to see a hierarchy problem.

We would like to imagine that we keep the scalar much lighter than the fermion,
and to consider matching between the full theory and an effective theory in which
the fermion has been integrated out. To avoid any confusion about quadratic di-
vergences, we will work in terms of a mass-independent renormalization scheme,
dimensional regularization with minimal subtraction (MS). In this scheme, the
mass parameters of the theory can be thought of as Lagrangian parameters that
evolve as a function of scale. We deform the theory by non-integer dimension (e.g.
d = 4 − ε) to tame divergences, and the divergences are parameterized by 1/ε
poles. The renormalization prescription is to choose our counterterms to cancel
those poles plus some superfluous factors of 4π and γ.

We would like to carry out a matching procedure between the full theory and
the effective field theory, matched at the scale M . To do so, we match the scalar
two-point function in the EFT to the scalar two-point function in the full theory, at
whatever order we care to compute. At one loop, the matching involves tree-level
diagrams plus a one-loop diagram
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φ

ψ

ψ

φ

which evaluates to a contribution to the scalar self-energy of the form

Σ2(p2) =
4y2

16π2

[(
3

ε
+ 1 + 3 log(µ2/M2)

)(
M2 − p2

6

)
+
p2

2
− p2

20M2
+ . . .

]
(48)

where 1
ε̄

= 1
ε
− γ + log(4π). Note that there are no logarithms involving m2 or

p2, as these diagrams match on to an EFT that contains only a free scalar field at
tree level, so there are no loop diagrams that could reproduce the logarithm.

Now we renormalize by adding counterterms to cancel the 1/ε̄ pole and match
at the scale µ = M . The matched Lagrangian in the scalar theory is thus

L =

(
1− 4

3

y2

16π2

)
· 1

2
(∂φ)2 −

(
m2 − 4y2

16π2
M2

)
· 1

2
φ2 + . . . (49)

where . . . includes higher-derivative terms and interactions.

It’s clear that the mass in the effective field theory contains a threshold cor-
rection relative to the UV theory proportional to 4y2

16π2M
2. We could have also

calculated the above loop diagram with a hard momentum cutoff, and found a
quadratically divergent contribution to the mass-squared

δm2 ⊃ 3λ2

4π2
Λ2 (50)

In this sense, the quadratic divergence is just a stand-in for the finite threshold
corrections. If we were infinitely powerful, we could compute everything explicitly
and see the finite effects. But if we are not, and are only working from the bottom
up, the quadratic divegences are a handy way to estimate the effects of new physics.

We can also see technical naturalness at play by reversing the setup, and con-
sidering a theory in which the fermion is light while the scalar is heavy. In this
version, the threshold correction to the fermion mass is proportional to the fermion
mass, rather than the scalar mass, a manifestation of the technical naturalness of
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the discrete chiral symmetry.

In any event, now we can extract the appropriate lesson from the naive quadratic
divergence in the Standard Model. If physics enters to render the Higgs mass finite
and calculable, then it will of course give contributions of this form. Indeed, this
occurs for every theory in which the Higgs mass is rendered calculable, where the
finite contributions are precisely from whatever new degrees of freedom render the
Higgs mass finite. We will see such contributions in explicit examples.
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