Collider Physics Tao Han @ MITP July 16,17,18,19, 2018

Chapt. 1: Introduction

Chapt. 2: Basic formalism

f Leet, 1

Chapt. 3: Kinematics & phase space

Chapt. 4: Particle detection @ colliders

Chapt. 5: Lepton colliders

Leet.3

Chapt. 6: Hadron colliders

Leet.4

Four 1.5-hr lectures

Approach:

- Pedagogical
- Self-contained
- Basic concepts & methods
- Avoid technicalities & specific models

References:

arXiv:hep-ph/0508097, TASI lecturer notes, Han;

arXiv:1002.0274, TASI lecture notes, Perelstein;

arXiv:0910.4182, TASI lecture notes, Plehn.

Book:

"Review of Particle Physics", PDG: Chin Phys C40 (2016);

"Collider Physics", Barger & Phillips (1987);

"The Black Book of QCD", Campbell, Huston, Krauss (2017).

Lecture 1: Introduction

THEORY <-> EXPERIMENT Connection

Argand diagram for partial wave unitarity

Lecture 2: Basic Formalism

heavy flavor tagging: the secondary vertex: displaced tracks Secondary vertex **Primary** vertex prompt tracks

Leptons	Vetexing	Tracking	ECAL	HCAL	Muon Cham.
e^{\pm}	×	$ec{p}$	E	×	X
$\mu^{\pm} \ au^{\pm}$	×	$ec{p}$		\checkmark	$ec{p}$
$ au^\pm$	√×	\checkmark	e^{\pm}	$h^\pm; \ 3h^\pm$	μ^{\pm}
$ u_e, u_\mu, u_ au$	×	×	×	×	×
Quarks					
u, d, s	×				×
$c \to D$	\checkmark	\checkmark	e^\pm	h's	μ^\pm
b o B			$e^{\pm} \ e^{\pm}$	h's	μ^\pm
$t o bW^\pm$	\dot{b}		e^\pm	b+2 jets	μ^\pm
Gauge bosons		· ·			
γ	×	×	E	×	×
g	×	\checkmark	$\sqrt{}$	\checkmark	×
$W^{\pm} \rightarrow \ell^{\pm} \nu$	×	$ec{p}$	e^\pm	×	μ^\pm
ightarrow qar q'	×	\checkmark	$\sqrt{}$	2 jets	×
$Z^0 ightharpoonup \ell^+\ell^-$	×	$ec{p}$	e^\pm	×	μ^\pm
$ ightarrow qar{q}$	$(bar{b})$	\checkmark	$\sqrt{}$	2 jets	×
the Higgs boson					
$h^0 o b \overline{b}$			e^{\pm}	h's	μ^{\pm}
$ ightarrow ZZ^*$	×	$\dot{ec{p}}$	$e^\pm \ e^\pm \ e^\pm$	\checkmark	μ^\pm
$\rightarrow WW^*$	X	$ec{p}$	e^{\pm}		μ^\pm

Lecture 3: Lepton colliders

	Collider	$\sqrt{s} \sqrt{s} (\text{GeV})$	\mathcal{L}	$\delta E/E$	f	polar.	L	
		(GeV)	$(cm^{-2}s^{-1})$		(kHz)		(km)	
	LEP I	M_Z	2.4×10^{31}	$\sim 0.1\%$	45	55%	26.7	
_	SLC	~ 100	2.5×10^{30}	0.12%	0.12	80%	2.9	
	LEP II	~ 210	10^{32}	$\sim 0.1\%$	45		26.7	
	ILC	0.5 - 1	2.5×10^{34}	0.1%	3	80,60%	6 14 -	- 33
(CEPC	0.25 - 0.35	2×10^{34}	0.13%			50-	100
	CLIC	3-5	$\sim 10^{35}$	0.35%	1500	80,60%	6 33 -	- 53

Model-independent recoil mass

Mono-chromatic, But boosted muon:

Kinematic cusps in M(mumu) & M(recoil)

Forward-backward Asymmetry @ LEP: Parity violation, sensitive to the chiral interactions @ given E

Lecture 4: Hadron colliders

Colliders	\sqrt{s} (TeV)	\mathcal{L} (cm ⁻² s ⁻¹)	$\delta E/E$	f (MHz)	#/bunch (10^{10})	L (km)
Tevatron	1.96	2.1×10^{32}	9×10^{-5}	2.5	p: 27, \(\bar{p}\): 7.5	6.28
HERA	314	1.4×10^{31}	0.1, 0.02%	10	e: 3, p: 7	6.34
LHC	14	10^{34}	0.01%	40	10.5	26.66

LHC Run (I) II	(7,8) 13	$(10^{32})\ 10^{33}$	0.01%	40	10.5	26.66
HL-LHC	14	7×10^{34}	0.013%	40	22	26.66
FCC_{hh} (SppC)	100	1.2×10^{35}	0.01%	40	10	100

	ATLAS		
Objects	η	p_T (GeV)	
μ inclusive	2.4	6 (20)	
e/photon inclusive	2.5	17 (26)	
Two e 's or two photons	2.5	12 (15)	
1-jet inclusive	3.2	180 (290)	
3 jets	3.2	75 (130)	
4 jets	3.2	55 (90)	
au/hadrons	2.5	43 (65)	
$ \not\!\!E_T$	4.9	100	
$Jets+ E_T$	3.2, 4.9	50,50 (100,100)	

$$(\eta = 2.5 \Rightarrow 10^{\circ}; \qquad \eta = 5 \Rightarrow 0.8^{\circ}.)$$

 M_{WW} invariant mass (WW fully reconstructable): ----- $M_{WW,\ T}$ transverse mass (one missing particle ν): ——— $M_{eff,\ T}$ effetive trans. mass (two missing particles): ----- $M_{WW,\ C}$ cluster trans. mass (two missing particles): ————

