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In this lecture, I will describe the properties of the weak 
interactions at energies much greater than                   . 

Some important conceptual issues arise here, especially 
when we search for new physics beyond the Standard 
Model.   In particular, how do we parametrize possible 
deviations of the  W, Z properties from the Standard 
Model predictions ?   There are dangers if you do this in 
the wrong way. 

I would like to recommend a skeleton key for thinking 
about these issues, called the Goldstone Boson 
Equivalence Theorem.

mW , mZ



Let’s begin with the following question, which was one of 
the most difficult aspects to understand about 
spontaneously broken gauge theories: 

In the rest frame, a massive vector boson has 3 
polarization states 

representing the 3 possible states of a spin 1 particle 
with                   . 

Now boost along the 3 axis to high energy.   The boosts of 
the polarization vectors are 
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Note that, as E becomes large, the components of       grow 
without bound; in fact,  

Another way to express this is that the polarization sum is 

and the second term on the right has unbounded matrix 
elements. 

This potentially leads to very large contributions to vector 
boson amplitudes, even threatening violation of unitarity. 
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For example, the amplitude for production of a scalar in 
           annihilation is  

In                          , we might expect 

But, for longitudinally polarized W bosons, this extra 
factor becomes  

and this really does violate unitarity at high energy. 

So, the question is: When are these enhancements from 
the form of        real —  always, sometimes, or never ?
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The answer is given by the Goldstone Boson Equivalence 
Theorem of Cornwall and Tiktopoulos and Vayonakis: 

In the Higgs mechanism, a massive W boson acquired its 
longitudinal component by absorbing a Goldstone boson 
from the Higgs sector.  When the W is at rest, it is not so 
clear which polarization state comes from the original 
vector boson and which comes from the Higgs boson.  
However, for a highly boosted W, there is a clear 
distinction between the transverse and longitudinal 
polarization states.    Then, 

The proof is too complicated to give in this lecture; an 
excellent reference is  Chanowitz and Gaillard, Nucl. 
Phys. B261, 379 (1985).   The important point is the proof 
makes essential use of gauge invariance.
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I will discuss three examples that probe different aspects 
of the application of this theorem. 

The first is the theory of W polarization in top quark decay. 

The matrix element is 

It is a good approximation to ignore the b quark mass.  I 
will use coordinates in which the t is at rest with spin     
and the W moves in the 3 direction.   Then 
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For a        ,  

and the amplitude is :  
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Averaging over the t spin direction and integrating over 
phase space, we find 

Using the kinematic relation 
we then find 

and similarly 

so the enhancement of the longitundinal polarization 
state is really predicted.
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What does experiment say ?   We can test this by 
reconstructing                                  and measuring the 
angular distribution of the W decay products
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What does the GBET have to say ?  

According to the GBET, we should have  

The amplitude for emission of a Higgs boson should be 
proportional to the top quark Yukawa coupling, given by  

So, the       amplitude should be larger by the factor 

which is exactly what we found.
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Turn next to the process   

I argued earlier that the apparently enhancement in this 
process is probably spurious, since it violates unitarity. 

The GBET says:  

This implies   (using also the high energy limit of  
       SU(2) x U(1) and the Higgs quantum nos   
for          : 

for          :   

so some cancellation of the effect discussed above must 
occur.                  
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In fact, at leading order in the Standard Model, the 
amplitude is the sum of 3 diagrams. 

Work this out carefully for            , where the     diagram 
is absent.

e�Re
+
L ⌫

·

✏⇤�✏

⇤
+(k� � k+)

µ + ✏⇤µ� (�q � k�) · ✏⇤+ + ✏⇤µ+ (q + k+) · ✏⇤�
�

where                      and, in the 2nd line,        and       are 
the W polarizations.  Send

q = k� + k+ ✏⇤� ✏⇤+

✏⇤� ! k�
mW

✏⇤+ ! k+
mW

iM = (�ie)(ie)2E
p
2✏+µ


�i

s
+

�s2w
swcw

cw
sw

�i

s�m2
Z

�



Then the second term in brackets becomes 

On the other hand, the first term in brackets becomes 

Assembling the pieces and using                           ,  
we find 

which gives the predicted expression at high energy. 
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For         , we must work a little harder.   The first two 
diagrams contribute  

After the reductions described above, there is a term 
that does not cancel its high energy behavior
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However, now we must add the      diagram, which 
contributes 

Substitute                           and simplify 

Also                           and  

so, finally, we find 

which indeed cancels the term on the previous page.  In 
the end, these cancellations gives the GBET prediction.
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The cross section for                            was measured by 
the LEP experiments, with this result:
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Before these LEP measurements were made, theorists 
tried to predict how deviations from the Standard Model 
might show up.   One idea was to extend the 3-vector 
boson vertex by adding terms: 

and similarly for Z.  Here                                 .  Setting 

we have the Standard Model Lagrangian; any deviations 
are “extra”.   If CP conservation is relaxed, more terms 
can be added.
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It was quickly realized that the extra terms in the 
Lagrangian imply extra terms in the amplitudes enhanced 
by the factor            .   This would seem to imply high 
sensitivity to the new terms. 

We now understand the origin of these terms.   Modifying 
the Yang-Mills vertices breaks gauge invariance.  Then the 
GBET does not apply, and the delicate cancellations that 
is requires do not happen.    

Today, we have strong evidence for SU(2)xU(1).  So, is are 
tests for these terms useless, or do they give some 
measure of the presence of new physics ? 

I will address this question in my lecture #4. 
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For the next topic in this lecture, I will describe an 
analysis in which the GBET might be expected to apply, but 
actually it does not.  This is in collinear W radiation from a 
quark line. 

In QCD, quarks easily radiate photons and gluons in 
collinear directions, giving rise to initial- and final-state 
radiation described by the Altarelli-Parisi equations. This is 
the mechanism by which quarks become jets at the LHC. 

At high energy, W bosons can also be radiated.  An 
interesting question is:  can the         be radiated ?  By the 
GBET, this is a Higgs boson state that does not couple to 
light quarks.
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Consider the almost-collinear radiation 

This can yield a W parton distribution in the proton, 
allowing W-induced reactions at the LHC.  

 An important one is WW fusion:  

To produce the Higgs boson, we would like to have W 
partons in states of longitudinal polarization.
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Write the momentum vectors of  u, d, W  for                , 
with u, d on shell and W off shell 
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Now we must compute the matrix elements for W emission 

to first order in                      .    Use the explicit spinors 

The W polarization vectors are 
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With these ingredients, it is straightforward to work out 
the matrix elements 

The first two lines here are exactly what one finds in the 
derivation of the Altarelli-Parisi equations, with the 
substitution                        .  The last line is new for a 
massive vector boson.
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Now let’s embed these results into the formula for the 
cross section.   We begin from 

Using the collinear kinematics, 
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The last line is                             .
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So we have an expression for the cross section in the 
form 

where  

We can evaluate this using the formulae for the matrix 
element given on a previous slide.
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The result is: 

For the transverse W polarizations, we find a result very 
similar to the Altarelli-Parisi splitting functions. 

Integrating over       ; we find
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For a longitudinal W, the        integral is not divergent.  
The emission is restricted to an interval of       where 
the W can be thought to be approximately at rest in a 
collinearly moving frame.   Here, despite the GBET, we 
get a nonzero answer  

with the W having characteristic                .   This 
formula (due to Sally Dawson) is the basis for the 
analysis of W fusion processes at the LHC.
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Finally, I would like to point out that            
enhancements often occur in perturbation theory. 

As an example, let’s look back at the top quark 
contributions to the S and T parameters of 
precision electroweak. 

To do this, we compute the vacuum polarization 
diagrams with chiral currents.
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Recall that the QED vacuum polarization for a charge 1 
massive fermion (the electron) is  

This expression is explicitly transverse (current-
conserving).   But, for massive particles, chiral currents 
are not conserved, so, in the vacuum polarizations of 
chiral currents, more terms can appear.    
 
Let’s now compute the electroweak vacuum 
polarizations of the (t,b) multiplet.   I include the color 
factor of 3.   I quote only the terms proportional to      . 
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Compute the T parameter:
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Compute the S parameter:
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If we had a very heavy 4th generation quark doublet, the 
log terms would cancel but the last term in the previous 
calculation, again from non-transverse terms, would 
survive.   In this case we would find 

a nonzero constant, even when the 4th generation quark 
masses go to infinity.
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The moral of the story is that we must watch out for 
fermions chirally coupled to the Standard Model that are 
taken to be very heavy. 

Without the top quark, the Standard Model is incomplete.  
Then we can expect to find factors            in loop 
diagrams. 

For any fermion whose mass is generated by the Higgs 
field but nevertheless becomes large, we can expect to 
find terms                                in perturbation theory.  
Sometimes we will even find  

so that the heavy fermions do not decouple but rather 
leave ghostly remnants. 
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