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In this lecture, | will describe the properties of the weak
interactions at energies much greater than my, myz .

Some important conceptual issues arise here, especially
when we search for new physics beyond the Standard
Model. In particular, how do we parametrize possible
deviations of the W, Z properties from the Standard
Model predictions ? There are dangers if you do this in
the wrong way.

| would like to recommend a skeleton key for thinking
about these issues, called the Goldstone Boson
Equivalence Theorem.



Let’s begin with the following question, which was one of
the most difficult aspects to understand about
spontaneously broken gauge theories:

In the rest frame, a massive vector boson has 3
polarization states e = (1/\/_)(071’:@0)u

ey = (0,0,0,1)%

representing the 3 possible states of a spin 1 particle
with J° = +1,0 .

Now boost along the 3 axis to high energy. The boosts of
the polarization vectors are

el = (1/\/5)(0E1,__¢,0)“
ch = (+-,0,0,—)"




Note that, as E becomes large, the components of ¢; grow

without bound; in fact, 0
u p

el —
0 (e

Another way to express this is that the polarization sum is

y ,  D'p”
S =—(o -2k )

and the second term on the right has unbounded matrix
elements.

This potentially leads to very large contributions to vector
boson amplitudes, even threatening violation of unitarity.



For example, the amplitude for production of a scalar in
ete™ annihilation is

2
M(ete™ = ¢T¢7) =i—(2E)V2e_ - (ks — k-)
In eTe™ %W*W we mlght expect
MNZ—(QE)fe_ (ky —k_) (W) - (W)

But, for longltudmally polarized W bosons, this extra
factor becomes Lo
— ° _|_

s—2m%v

2 2
M, ZmW

and this really does violate unitarity at high energy.

50, the question is: When are these enhancements from

the form of ¢; real — always, sometimes, or never ?



The answer is given by the Goldstone Boson Equivalence
Theorem of Cornwall and Tiktopoulos and Vayonakis:

In the Higgs mechanism, a massive W boson acquired its
longitudinal component by absorbing a Goldstone boson
from the Higgs sector. When the W is at rest, it is not so
clear which polarization state comes from the original
vector boson and which comes from the Higgs boson.
However, for a highly boosted W, there is a clear
distinction between the transverse and longitudinal
polarization states. Then,

MX =Y + W (p) = M(X =Y +77(p)) (1+O(mw/Ew))

The proof is too complicated to give in this lecture; an
excellent reference is Chanowitz and Gaillard, Nucl.
Phys. B261, 379 (1985). The important point is the proof
makes essential use of gauge invariance.



| will discuss three examples that probe different aspects
of the application of this theorem.

The first is the theory of W polarization in top quark decay.

The matrix element is

M(t — bW ) = @'%ug(b)ﬁﬂw(t) e (W)

It is a good approximation to ignore the b quark mass. |
will use coordinates in which the t is at rest with spin

and the W moves in the 3 direction. Then

wnlt) = V2B () () = vim ¢



1
Fora W', te* =-—(0'4ic?)=+v20"
s = (0" +io?)

and the amplitude is : M = —ig\/2m.E}, &

1
Fora W, otel, = (0! —io?) = V20~

V2
and the amplitudeis: M =0
s » + FEo3
Fora Wy, o eh, = —( p— )
and the amplitude is : m
= ig\/2m By (—5) &




Averaging over the t spin direction and integrating over
phase space, we find

Lt — W) =

1 1 2
2
Sy 167 my 9 2P
2 2

Using the kinematic relation 2pm; = m; — my;,
we then find

T
Ft—owth)=—-= 1 B )2
(4= BWZ) = Sy (1= )
and similarly I(t — bW+) — ()
2 m?

2 2
m; 2myy,

so the enhancement of the longitundinal polarization
state is really predicted.

Lt —bW,)  mi/2m3,
['(t—bWt) 1+m;/2ms,

D(t — bW = % my (1 — W2

~ T0%




What does experiment say ? We can test this by
reconstructing  pp — tt — fv4y  and measuring the
angular distribution of the W decay products

T (1+cosf)* +
0

~ ¢ sin®6/2
d cos 0 (1—cosf)? —
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What does the GBET have to say ?

According to the GBET, we should have
M(t — bWS) — M(t — br)

The amplitude for emission of a Higgs boson should be
proportional to the top quark Yukawa coupling, given by

_w

T+ —
¢ NG

5o, the WOJr amplitude should be larger by the factor

2 2 /.2 2
y_t_th/v om;

g2 4m?, /v2 2m3,
which is exactly what we found.



Turn next to the process

ete” — Wy WiF
| argued earlier that the apparently enhancement in this
process is probably spurious, since it violates unitarity.

The GBET says:
M(ete™ = WiW,) = M(ete™ — atn™)

This implies (using also the high energy limit of -
SU(2) x U(1) and the Higgs quantum nos (1,Y) = (3, 7)
for el_%ez: 02 1

M = —i(2E)V2ey - (k_ — ky) -

_ 2¢2 S
for e e PIEERP
M= —i@B)WVae (b~ k) (175 + 1y )

so some cancellation of the effect discussed above must
oCcCur.



In fact, at leading order in the Standard Model, the
amplitude is the sum of 3 dlagrams

TR

Work this out carefully for ere} , where the v diagram

is absent.

— =52 ¢, —1

iM = (—1e) (Z'e)QEﬂEJrM | = 2

et (ko — k)P + e (—q—k_) - + el (gt ky) el
where ¢ = k_ + k, and, in the 2nd line, ¢ and €% are’
the W polarizations. Send k_ i k.

€_ — €y —
mw mw




Then the second term in brackets becomes

, i,
- k+.k_(k k) = S—Zm%‘/(k k) _
o m‘%v B * - Zm%[/ B} i

On the other hand, the first term in brackets becomes

— . . . . 2
—1 —1 1m

s s—m%| s(s—m%)

Assembling the pieces and using m7, /mi, = 1/c.,,
we find
iM = i(e2)2EV 2, (k- — k)"

1 )\ S—Zm%V
2c?,

)

s(s —m?)

which gives the predicted expression at high energy.



For ¢y, GE, we must work a little harder. The first two

diagrams contribute ) , _
iM = (—ie)(ie)2EV2e_, " 12— 5) € : 2

letei (b — k) + e (—q—k-) €L + el (gt k)€

After the reductions described above, there is a term
that does not cancel its high energy behavior

iM = (—ie*)2EV2e_, L (— 5y (ko — ki )")

232 | 2my,

2E\fe_u (k— — k)"

mW

(432 )




However, now we must add the v diagram, which
contributes

M = (i\%)QUTRE-e* Z( (P II)C )7 € ur(p)
Substitute ¢* — k_/my and simplify
o-(p—k-)_ k- _op—k)_(k-—p) . _ 1
(p B k_)g g - Wu(p) — (p - k_)g o M (p) — mw (p)

Also €} — ky/mpy and

ky = (ky —k—+(p+D))/2
so, finally, we fmd

M= —ig 5 (QE)\[G—M (ke — k)" —5- mZ

which indeed cancels the term on the previous page. In
the end, these cancellations gives the GBET prediction.

1




The cross section for ete™ — WTW ™~ was measured by
the LEP experiments, with this result:
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Before these LEP measurements were made, theorists
tried to predict how deviations from the Standard Model
might show up. One idea was to extend the 3-vector
boson vertex by adding terms:

0L = eligiy A (W, W — WIW ™M) + ik, W, WAL

-1

and similarly for Z. HereV,, = (9,V, —0,V,). Setting
g1y = Ky =1

we have the Standard Model Lagrangian; any deviations
are “extra”. If CP conservation is relaxed, more terms
can be added.



It was quickly realized that the extra terms in the
Lagrangian imply extra terms in the amplitudes enhanced
by the factor s/ms;, . This would seem to imply high
sensitivity to the new terms.

We now understand the origin of these terms. Modifying
the Yang-Mills vertices breaks gauge invariance. Then the
GBET does not apply, and the delicate cancellations that
is requires do not happen.

Today, we have strong evidence for SU(2)xU(1). So, is are
tests for these terms useless, or do they give some
measure of the presence of new physics ?

| will address this question in my lecture #4.



For the next topic in this lecture, | will describe an
analysis in which the GBET might be expected to apply, but
actually it does not. This is in collinear W radiation from a
quark line.

In QCD, quarks easily radiate photons and gluons in
collinear directions, giving rise to initial- and final-state
radiation described by the Altarelli-Parisi equations. This is
the mechanism by which quarks become jets at the LHC.

At high energy, W bosons can also be radiated. An
interesting question is: can the W(jr be radiated ? By the
GBET, this is a Higgs boson state that does not couple to
lisht quarks.



Consider the almost-collinear radiation
u(p) — d(k) + W (q)

This can yield a W parton distribution in the proton,
allowing W-induced reactions at the LHC.

] Y
KX o
WY
w TP
An important one is WW fusion: WTW~ — h

To produce the Higgs boson, we would like to have W
partons in states of longitudinal polarization.



Write the momentum vectors of u, d, W for pr << E,
with u, d on shell and W off shell

p:(E,0,0,E)
2
P
k= ((1—2)FE.— 0.(1 —z)F
(( Z) , —PT, 7( 2)2 2(1—Z)E)
P
= (zF 0.zF
q (Z s PT YU, 2 2(1—Z)E)

The denominator of the W propagator is

2
< P



Now we must compute the matrix elements for W emission

iM = ig up,(k)(@ - €y )ur(p)
to first order in (pr,mw)/E . Use the explicit spinors

) = VILZE (P 7)) =B ()

1
The W polarization vectors are

et = (0,1, Fi, —pr/2E)*/V2
GSM — (Q7pT7 07 ZE)M/mW

with :
(A F)2 — 2 11/2 p_Mw
g = [(2B)? = my]"? = 25— T
Then
— 1 —TZE 0
o €_|_:_( p2/ pT/ZE>

1



With these ingredients, it is straightforward to work out
the matrix elements

\/1(—27 p)T
z(1—z
IM =g Y1=Z DT +

1Z vV1—2z mw 0
V2 2

The first two lines here are exactly what one finds in the
derivation of the Altarelli-Parisi equations, with the

substitution ¢,t* — ¢g/v/2 . The last line is new for a
massive vector boson.



Now let’s embed these results into the formula for the
cross section. We begin from

1 d3k
c(uX — dY) = 2_3/ 2n)3%% /dHY 2m)*W(p + px — k — py)

2

M(u — Wd)

1
pr— MWTX =Y)
— My

Using the collinear kinematics,

1 e 1 / dzEd°pr 1 / dzdprm 2
25 | (2m)32k  2(8/z) ) 1673E(1 —2) 23 16m3 (1 — 2)
Then
o(uX — dY) /dz/ de - M(u — Wtd)|? !
(1—2) (p7/(1 = 2) + miy)?

'Tg/dﬂy(zw)‘*é(‘”(wpx —py) IM(WFX = Y)J?

The last lineis oc(WT(¢)X —7Y) .



So we have an expression for the cross section in the
form

r(uX — dY) = / 02 fureu(2) o(WHQX = V)

where
dp3 =z (1—2)?

) = | G T T G M WD

We can evaluate this using the formulae for the matrix
element given on a previous slide.



The result is:

C Qy dp2T pzT 1
W)= 5 | T -

Qy dp%p% (1 — 2)2
sl =5 | G

 Qy dpQTm%V (1 — z)2
fwo(2) = 87 / P+ (1 — z2)m3,]? 2

For the transverse W polarizations, we find a result very
similar to the Altarelli-Parisi splitting functions.

Integrating over pr ; we find

Q% 1+ (1 —2)

s
—
fWT(Z) 47 05 m‘%v z




For a longitudinal W, the pr integral is not divergent.
The emission is restricted to an interval of pr where
the W can be thought to be approximately at rest in a

collinearly moving frame. Here, despite the GBET, we
get a nonzero answer
Oy 1 — 2

fWO(Z) — 7

with the W having characteristic pr ~ mw. This
formula (due to Sally Dawson) is the basis for the
analysis of W fusion processes at the LHC.




Finally, | would like to point out that m; /my
enhancements often occur in perturbation theory.

As an example, let’s look back at the top quark
contributions to the S and T parameters of
precision electroweak.

To do this, we compute the vacuum polarization
diagrams with chiral currents.



Recall that the QED vacuum polarization for a charge 1
massive fermion (the electron) is

1 ! A?
14 (¢%) = — dz 1 8x(1—z) - (¢*g"* — q*q”
Qe (47T)2/o ' Og{mz —z(1 —x)¢” el =2) (09" ~a"0")
This expression is explicitly transverse (current-
conserving). But, for massive particles, chiral currents
are not conserved, so, in the vacuum polarizations of
chiral currents, more terms can appear.

Let’s now compute the electroweak vacuum
polarizations of the (t,b) multiplet. | include the color
factor of 3. | quote only the terms proportional to g"






Compute the T parameter:

47
T = (1111 (0) — 33(0))
$2 M3,
—3 ! A2 A2 1
— dr |1 —xm?) — log[—](—=
e [ (og[mtzx om?) ~ logl 7] (5 m
—3 1
B 4#5%0771%‘/( 4mt)
_ 3 This comes entirely from the
16782 m3,, additional non-transverse terms

in the numerator.



Compute the S parameter:

S = 167 [Il33(0) — I3, (0)]

d —3/1d . A2
= — — z lo
dg? | ™ J, g_m%—aj




If we had a very heavy 4th generation quark doublet, the
log terms would cancel but the last term in the previous
calculation, again from non-transverse terms, would

survive. In this case we would find

3
S=—
s
a nonzero constant, even when the 4th generation quark

masses g0 to infinity.



The moral of the story is that we must watch out for
fermions chirally coupled to the Standard Model that are
taken to be very heavy.

Without the top quark, the Standard Model is incomplete.
Then we can expect to find factors log mt in loop
diagrams.

For any fermion whose mass is generated by the Higgs
field but nevertheless becomes large, we can expect to
find terms yf/g — mf/ZmW in perturbation theory.
Sometimes we will even find

ys/m$ — const. # 0

so that the heavy fermions do not decouple but rather
leave ghostly remnants.



