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The purpose of this course is to describe the Standard
Model of weak interactions and its implications for the
properties of the Higgs boson. The outline of the course is:

1. The V-A structure of the weak interactions and the
precision electroweak experiments that support the
SU(2)xU(1) gauge theory of weak interactions.

2. The Goldstone Boson Equivalence Theorem, and related
ideas and applications

3. The properties of the Higgs boson within the Standard
Model

4. The description of effect of physics beyond the Standard
Model by Effective Field Theory.



Some useful references for this material are:
my CERN school lecture notes:

M. E. Peskin, “Lectures on the Theory of the Weak
Interactions”, arXiv:1708.09043 .

my forthcoming book on elementary particle physics:
M. E. Peskin, “Concepts of Elementary Particle Physics”,
http://www.slac.stanford.edu/~mpeskin/

Physics152/theBook.pdf

a very useful introduction to the Standard Model Effective
Field Theory:

B. Henning, X. Lu, and H. Murayama, arXiv:1412.1837



You all know that the weak interactions are described by a
Yang-Mills theory based on the group SU(2)xU(1).

In Yang-Mills theory, the coupling of any field to the vector
bosons is determined by the covariant derivative

D, =0, —igA,t"

The gauge charges t“depends on the quantum numbers of
the field.

For SU(2)xU(1), an essential field is the Higgs field ¢(7),
which obtains a constant value throughout space. This
nonzero value gives mass to the weak interaction vector
bosons and to the quarks and leptons.



The mass spectrum of vector bosons is especially easy to
work out. We assigh ¢ the quantum numbers
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The action of SU(2)xU(1) is
o . 4 _a . o
(gb()) — exp|—ta®c® /2 —13/2] <¢O>

Then if ¢ obtains a nonzero vacuum value, we can write
this as

g a 0
ola) = expl-ia*(@)o/2] "5 )
The covariant derivative on ¢ is

Dy = (0 —ig(c®/2) A}, — (¢ /2)By) ¢
and this forms the kinetic term for ¢ in the Lagrangian

L= ‘Du90|2



Replacing ¢ by its vacuum value, this becomes

S0 o) gotaz+ g5 (D)
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The remaining terms give 1
g(—gAi —+ BM)Z’U2

So we find masses for the vector fields, of the form

1
L=-m; VIV
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The mass eigenstates are

W+ = (A 7i4%)/V2 my, = g°v° /4
Z=(gA° —¢B)/V @+ 9% my=(g"+g" /4
A= (JA’+gB)/\g*+g% my=0




We introduce the weak mixing angle 6,, , with
cos B, = c,, = g/\/92 g'?

sin 0, = 84 = g’/ /92 + g2

These factors will appear throughout all of the formulae
in this course.

An important relation is : MW = My Cy

This is a nontrivial consequence of the quantum number
assignment for the Higgs field. From the PDG values:

80.385 =~ 79.965

We will see in the next lecture that, when radiative
corrections are included, this relation is satisfied to
better than 1 part per mil.



The couplings of quarks and leptons to these vector
bosons is also given by the covariant derivative. For a
fermion with quantum numbers (I,Y)

D,f=(0,— igAZc“/Q —ig'B,Y)f
The W couples only to fermions with | = 1/2
. g _
Z\/i(W:J++WuO )

The diagonal elements give couplings both to Z and A

—igA>I° —ig'B,Y

— —i\/QQ -+ g/2 [Cw(CwZ,u + SwA,u)Ig + Sw(_SwZ,u - C’wA,u)]

= — i/ + ¢ [5wC0 A (IP +Y) + Zy (A TP — $2Y)

= —iVg? + 9" [swcw A (I +Y) + Z,(I° — 53, (I° +Y))]



From these relations, we find the following simple
prescriptions:

A couplesto Q = (I° +Y); the coupling strength is

e =Vg*+97? swcw =99 /V 9 + g7

This is the photon field, and we can identify e with the
electron charge and Q with the electric charge of f.

W couples only to SU(2) doublets, with the universal
strength g/\/§ | g=e/s.

Z couples with strength g/c, = e/(cwSw) to the
quantum number

Qz=1°—520Q



To complete the specification of the Standard Model, we
assign the fermions in each generation of quarks and
leptons the quantum numbers

Ve, 13:+%,Y:—%,Q=O ver : I°=0,Y=0,Q=0
e; : I3:—%,Y:—%,Q:—1 ep : IP=0,Y=-1,Q=-1
ur, I3=+%, :é,ng UR : ]3:0,}/:%,@:;
dr, I3——%,Y=é,cz:—% dg I3:O,Y:—%,Q=—é

This gives the correct electric charge assignments for all
species.

The other important feature is that the left-handed
fermions are assigned to SU(2) doublets, while the right-
handed fermions are assigned to SU(2) singlets.



The fact that the W couples only to left-handed species
is a crucial property that shapes the Standard Model,
both positively and negatively. It is therefore important
to understand that this feature is extremely well
supported experimentally. In the next part of this

lecture, | will review some surprisingly strong pieces of
evidence for this structure.

For these applications, | will go to energies F < my
and approximate

~-

q2_ 2



In this limit, the W exchange can be written as the
dimension-6 operator 9

g _
0L = JtT J— ¢
Qm‘%v H

where J:{ — TaueL —I—uLUMdL + -

Ju_ — eTLEMVL + dTLJMuL + -

and the coefficient is conventionally defined as
> _ 4Gr
2y V2
This theory is called the V-A theory, since

It reflects maximal parity violation for the charge-
changing weak interactions.



To discuss the consequences of V-A theory, | should first
explain my conventions for fermions. For a Dirac

fermion, | set (U 0 o
U = v =1 _
: VR ot 0

with B
ot = (L6 T =(1,-5)"

Then, for example, a vector current takes the form

=y = L L + YR YR
and divides neatly into L and R pieces. The LandR
fields are linked by the fermion mass term. If we can

ighore masses, the L and R fermion numbers are
separately conserved.

The labels L,R here is called chirality. For a massless
fermion, this is identical to the fermion helicity; for a
massive fermion, there is a change of basis.



Some properties of these fermions are

For massive fermions moving in the 3 direction

p=(FE,0,0,p)

I :<\/E+p§L> V:<\/E—p€R>
T \WE-p & T\ —VE+pér
7 :<\/E_p§R) V:(VEH?&L)
"TA\VE+pér "T\-VE-p&

with
Er = (?) (R = <(1)>

Here Uy , for example, is the L helicity spinor, written in
the chirality basis. For massless fermions, we use only
the top (L) or the bottom (R) two components, which |

call u, v.



The matrix element (0] j* |e; ) s given by
UEEHUL = V2B(-10) (1, ~0', —0% —0°)" <(1)> V2E
—2F (0,1, —4,0)* — 2B 2

the polarization vector for the spin 1 virtual photon.

So for a current-current annihilation process such as

eLeR = Hp
we find (UEEMUR)(UEE“UL) = (2E)* 2 €_-e_
Another way to write this is

(u} @, vR) (VR ur) | = 4(2pe— - Pyt ) (2Pet - D)

It is a nice exercise to check this answer using the usual
trace theorems.



Now we can look into the consequences of the V-A
theory.

1. The V-A theory implies that electrons emitted in B8
decay are left-handed. More precisely, for an
electron that is not completely relativistic,

POZ(B_) _ (\/E__p)Q B (\/E_p) _ g —

(VE+p);+WE—-p) FE

By looking at a variety of B transitions, we can test the
dependence on V.
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2. The V-Astructure of the weak coupling leads to a
matrix element for muon decay

M(p~ — V€ Ve)‘Z ~~ (QPM - 7)) (2pe - Pu)
The neutrinos emitted in muon decay are not visible, but
still this expression leads to a characteristic shape.

Recall formulae for 3-body phase space:

—

Pu = (m,uao) = Pe T Dv T Prun

2 C o
T, = p’LQp“ T, +x, + 15 =2
ey

2¢ - Py = (Pe +pv)° = (P — pw)° = mi (1 — z7)

. ' 2
and (Dalitz!) / P "M dr.dxr-




Then the muon decay rate is proportional to

1 1
/ da:e/ dzy z5(1 — =)
0 l—xze

dl’ 1 12 3
~ dy V1 v ) — = =
i~ dema—an) = (-

This shape, with a double zero at x = 0 and zero slope
at the endpoint, is seen in the data.

that is,
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3. Charged pion decay is mediated by the V-A operator

4G g _ _ _
G (7" ur) V) Tuer + v} Tup)

At first sight, it might seem that the pion must decay
equally often to e and y. This would contradict

experiment, which says that almost all decays are to .
But, what is the real prediction of V-A?

The pion matrix element is

1
(0] (d}, 5" ur) T (p)) = —Z§F7rp“

where F. is the pion decay constant, equal to 135 MeV.
Then the complete matrix element involves

Pu UZL (pv)guv (p£+)



The neutrino must be left-handed, by V-A. But, the
pion is spin 0, so the lepton must also be left-handed.
The neutrino and lepton spinors are

UL:(@&) VL:(\/Ee—pefR>

X

Then the matrix element is proportional to

ms m2 —ms?
M ~ (B = po) B, = 2L (T2

There is another factor of E,, from phase space. Then
V-A predicts

BR(r~ — e V) m? (m?r — m?

BR(m~ = p~v) m2 :

comppared to experiment:  1.23 x 10~*

2
; ) =1.28 x 107*
msz —m



4. The helicity structure of the V-A interaction between
leptons and quarks is also seen in neutrino deep inelastic
scattering. Electron deep inelastic scattering has the
Kinematics:

e\

< \nk -
\ \///\
in leading
N\ order in QCD: _ /3
- fk E | 2 V'

e

In neutrino deep inelastic scattering, we create this
kinematic situation by producing neutrinos from pion
decay, using an absorber (iron from a battleship) to
remove muons, and then impinging the beam on a large
target.



The kinematic variables of deep inelastic scattering are

s = (k+p)° Q° =—¢°
¢ 2P -gq _ Q’
y _— — = €T —
KO 2P .-k 2P - q
so, Q> ==xys . The quark is a parton with

momentum fraction § , 0 <& <1, Thenin the

lepton-parton reaction
s=2p-k=2tP -k

‘[/f\: 2 p— —QQ
=-=2p-k'=-26P-(k—q)=-3(1-y)
The final quark is on shell, so
0=(p+q)°=2p-q—Q*=26P -q—Q°

and & is equal to the observable x !



What concerns us here is the distribution in y. For the

reaction _
v+d—u +u

the basic current-current amplitudes would be
(uf, (pa)7" ur (V) (uf, (w)T,ur (d))
= 4(2p,, - pu)(2py - pa) = 45°

(ul (pp)a" ur (V) (ul (W)Fur(d)))?

=4(2p,, - pa) (2D, - Dy) = 4u® = 45%(1 — y)?
Neutrinos from 7 decay are L. V-A says that they
have no charge-changing weak coupling to R quarks.
Then the (1 —y)? term should be absent. Conversely,
antineutrinos are R, so the deep inelastic cross section
should be proportional to (1 — y)* .
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In the more modern era, we test these predictions in
collider physics. For example, the Standard Model

predicts that

d
dCOZQ (di— W~ = 47 7) ~u? ~ (14 cos,)?
dO' — i + 2 2
yp—"; (ud > W' = u"v) ~t* ~ (1 —cosb,)

These angular distributions are well verified at the LHC.



The neutral current amplitudes are more complex,
because the photon and Z couple to both L and R
fermions. In eTe~ annihilation (for example, at LEP),
the angular distributions are

dj;e(ezelg = fLfr) = 7TQ—OjFLL(S)(l + cos 0)°
CZ(C:XZ(ZTSH(GJEG_LF — fufr) = WQ—OjFRL(S)(l — cos )?
dj;H(egeR — [rfr) = 7TQ—OjFLR(S)(l — cos f)?
aljogsﬁ(ef;ve_LF — frfL) = %FRR(S)G + cos 0)?

where



o, 2= -2 s f
o F s2 c? s —m?
p o, CRE=E) s |
b F s2c2 s —m?,
2
o, s (2= s
/ s2 c2, s —m?,
2
(-2)(-2Q7) 8
F — w w
RR = \Qf s2 c? s —m%

Note, for s > m7 , constructive interference for LL
and RR, destructive interference for RL and LR. Then,
with unpolarized beams (as at LEP), we expect a positive
forward-backward asymmetry.
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It is interesting to explore the high energy limits of the
expressions Frj(s) . Begin with Fry(s). Inthe limit

s> m3% , this becomes

S%UC?U(I? +Yy) — S%UI]?Z + 54 (IJ?? +Y7)|°

FRL%

S Cu
2 2 2
s2 c? c2 e2

This is exactly the amplitude for s-channel B boson
exchange, in the situation where the original SU(2)xU(1)
symmetry of the model is not broken.

The simplicity of this expression tells us that it is useful
to analyze the high-energy limit of the weak interactions
from the viewpoint that broken symmetry is restored at
high energy.



Here is the same analysis for F(s) :

SwCow(I7 +Yy) + (1/2 = s3,) (17 — 55, (I} + Yy))

Frp — 202
- |(1/2)c I3+ (1/2)s2 Y |?
B s2 c?
2 /2 2
9 g

so the result is a coherent sum of A° and B exchanges
as expected in the theory with unbroken symmetry.

Here is the approach to the limit of the symmetric
theory as measured at LEP:
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The Z boson appears as a resonance ine'e
annihilation. In the 1990’s, the accelerators LEP and
SLC tuned their energy to the Z mass to produce large
numbers of Z bosons at rest in the lab, in an appropriate
setting for precision measurements.

LEP also operated above 200 GeV, to study the
electroweak pair production of W and Z bosons. | will
discuss that program in the next lecture.

| will now review the precision weak interaction
experiments at the Z, which continue to provide
important constraints on the Standard Model and its
generalizations.



The eTe™ cross
section in the
vicinity of the Z
resonance.
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To begin, we should work out the Z width and branching
fractions at leading order.

The leading order matrix element for Z decay to fL?R is
M(Z — fLTR) — Zcﬁ Qzf UEE’M?}R €Z u

Qr=1°—s.Q
Recall from the previous lecture that
ul ror = (2E) V2 (")

We can integrate over the fermion direction, but it is
simpler, and equivalent, to average over the direction of
the Z polarization. Then

with



Then

— 1 1
(Z = frLfr) = M|?
So, finally, 2mz 8T < >
— oy 7
I'Z = fofr) = 602 QQZ Ny
where w
g° 1 lepton
T 4 Nf:{3(1+043/77+---) quark

The widths to right-handed species frJf; obey the same

formulae. Now we only need to evaluate these formulae
and sum over all Standard Model species that can appear

in Z decays.



It is worth pausing to ask what values of coupling
constants we should use to evaluate this formula.

Begin with & . You all know that a = 1/137

However, « 1is a running coupling constant that takes
larger values as the length scale on which it is considered
decreases. At @ =91. GeV, «a(Q)=1/128 . Later
in the lecture, | will defend a value of s,

s2 = 0.23
For this value, we find
1 , 1
Ny = ——— o = —
29.6 8.
It is interesting to compare these to other fundamental
Standard Model couplings at the same scale:

2
_ 1 Yy
g = (¢ T

1
8.5  A4r 127



We combine with these values the values of the @z .
It is useful to tabulate these for one Standard Model
generation:

species @z, Q7R St Ay
v +3 — 0.250 1.00
e —5+ 82 s2  0.126 0.15
U +3— 252 —252 0.144 0.67

0.185 0.94

=
|
DNO|—
_I_
W[
Va
SN
_|_
Qo=
Va
SN



In this table, the quantities evaluated numerically
are

2 Q2
Sf:QZZL""QZZR Ay = QZZL szR
7L 7R

The first of these gives the total decay rate for the
species f . The second gives the polarization
asymmetry, the preponderance of fr over fr inZ
decays.

It is possible to measure both the rates and the
asymmetries in Z resonance experiments.



The S, are tested by the Z total width and branching
ratios. At the level of our leading-order theory, the
width is

r, — w2 13 095 + 3.0.126
6c?, | y .
1 2.(3.1)-0.144 + 3-(3.1)-0.185
U d

The separate terms in this formula give the branching
ratios BR(v.v,) = 6.7% BR(ete™) = 3.3%

BR(uu) = 11.9% BR(dd) = 15.3%
The numerical value of the totalis I'y, = 2.49 GeV

This can be compared to the value obtained from the Z
resonance lineshape

I'y =2.4952 4 0.0023 GeV




The precision of the Z resonance measurements is quite
remarkable, reaching parts per mil for many variables.
To discuss the rapport between theory and experiment
at this level, we need to include electroweak radiative
corrections, which typically are of order 1%.

As | continue to discuss the experimental results, | will
make reference to radiative corrections that are
particularly important.

To give a complete accounting of radiative corrections,
| should give a precise account of the renormalization
conventions used. Please let me postpone that
discussion to later in the lecture (where, in any event,
| will still not treat it completely).



To begin the review of experiments, | should discuss the
measurement of the Z mass and width in more detail.

|deally, the Z is a Breit-Wigner resonance,
1 2
S — mZZ +1mzl'»

g v

however, the line shape is distorted by initial state
radiation. The magnitude of collinear photon radiation
is given by the parameter

b =

In addition, since the Z is narrow, the effect is magnified,

since relatively soft radiation can push the CM energy off

resonance. The size of the correction on the Z peak can
1 T

be roughly estimated as _3-log "Mz _ 409

200 S
— (1
W(Ogmg

1) =0.108 at the Z



To make a proper accounting, we need to resum
collinear photon radiation just as we resum collinear
gluon radiation in parton distributions.

Fadin and Kuraev computed the parton distribution of
an electron in the electron and computed this in QED

3 _ 3 1
fe(z,8) = 5(1 — )27 (1 + gﬁ) - 15(1 +2)+ -
This function, for each electron, would be convolved
with the Breit-Wigner. The theory was extended to
include 2 orders of subleading logs and finite

corrections of order o2



The experimental aspects of the measurement were also
very challenging. The energy of the LEP ring was
calibrated using resonant depolarization of a single beam
and then corrected for 2-beam effects.

However, this calibration was found to depend on the
season and the time of day. Some contributing effects
were the changes in the size of the LEP/LHC tunnel due to
the annual change in the water level of Lake Geneva and

current surges in the magnets due to the passage of the
TGV.



To measure the branching ratios, we need only collect Z
events and sort them into categories.

The major backgrounds are from Bhabha and 2-gamma
events; these do not resemble Z events (unlike the
situation at LHC !). Nonresonant annihilations are at the
level of parts per mil (except for tau - few %).

The various leptonic and hadronic decay modes have
different, characteristic, forms.
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ALEPH DELPHI L3 OPAL
qq final state
acceptance s'/s > 0.01 s'/s > 0.01 s'/s>0.01 | §/s>0.01
efficiency [%] 99.1 94.8 99.3 99.5
background [%)] 0.7 0.5 0.3 0.3
ete” final state
acceptance —0.9 < cosf < 0.7 lcosf| < 0.72 lcosf| < 0.72 | |cosf| < 0.7
s’ > 4m? n < 10° n < 25° n < 10°
efficiency [%] 97.4 97.0 98.0 99.0
background [%)] 1.0 1.1 1.1 0.3
ptp~ final state
acceptance lcosf| < 0.9 lcosf| < 0.94 lcosf| < 0.8 | [cosf| < 0.95
s’ > 4dm? n < 20° n < 90° mZ /s > 0.01
efficiency [%] 08.2 95.0 92.8 97.9
background [%)] 0.2 1.2 1.5 1.0
777~ final state
acceptance lcosf| < 0.9 0.035 < |cosf| < 0.94 | |cosf| < 0.92 | |cosf| < 0.9
s’ > 4m? s’ > 4m? n < 10° mg/s > 0.01
efficiency [%] 92.1 72.0 70.9 86.2
background [%)] 1.7 3.1 2.3 2.7

final LEPEWWG Phys. Rept. 2005







— | | : | |
-E I 0
] - ymEeessssssssssssssssses :'-‘I'
- 40 - -
= i
et ALEPH
DELPHI
i L3 s _
,“} n OPAL : _
20 |- . :
O rehsed by tactor 10
10 [ ——  from fit N
: ----- QED unfolded
R R T N I S S S N .\ifIFIh L ]
36 388 90 92 94
E.  [GeV]

composite of the four LEP experiments, showing the effect of ISR



Total Hadronic Cross-Section (nbarn)

40

35

30

25

20

15

10

wn

0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|

1 1 I | | | I | | 1 I 1 1 I | | 1 I | 1 | I | 1 | I | | | j

OPAL

87

88

89

90

91 92 93 94 95 96
Center-of-Mass Energy (GeV)



Two particular branching ratios merit special attention.

First, the Z decays invisibly, to neutrinos, 20% of the
time. This decay affects the cross section

o(eTe” — Z — hadrons)

by decreasing the Z peak height and increasing the
width. Measurement of these parameters and
comparison to Standard Model predictions gives

n, = 2.9840 4= 0.0082




o |

Second, the Z branching ratio to b quarks is of special
interest, particularly because the b belongs to the same
SU(2)xU(1) multiplet as the 7y, .

An observable that specifically tracks this effect is
I'(Z — bb)
['(Z — hadrons)

In the leading-order model, this quantity has the value
Ry = 0.22

However there is a large radiative correction from
diagrams involving the top quark

W b b\ X /b 1

1, a  m?
t w Qzor = (2 3w 1672, m%v)
L L

Ry =
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b-tag working points used in these studies.

ALEPH | DELPHI | L3 | OPAL | SLD

b Purity [%] 97.8 08.6 |84.3] 96.7 | 98.3
b Efficiency [%] | 22.7 29.6 | 23.7| 255 | 61.8

The performance of SLD was much better due to its

pixel vertex detector at 2 cm; however, the SLD
statistics was 10 times smaller.

Final LEP/SLC results:

Ry = 0.21629 = 0.00066 (-2% from LO)
R, =0.1721 == 0.0030




Now turn to the Z asymmetries. These take very

different values for |, ¢, b — all predicted by a common

value of s, .

There are three very different methods to measure the
lepton asymmetries:

from forward-backward asymmetries, esp. to quarks
from direct measurement using beam polarization

from tau lepton polarimetry



For unpolarized beams, the angular distribution for
ete” — ff is:

do L — 1+ A, 1—|—Af 5
dcosé’(e e — ff) ( 5 )( 5 )(1+COSH)
—|—<1_2A6>(1+2Af>(1—0059)2
+<1+2A6><1_2Af>(1—(:059)2
| <1_2A6> <1_2Af>(1+(1059)2

This leads to
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4 km to the right, measure a cross section asymmetry.

Ap = 0.1513 4+ 0.0021



Since t leptons decay through V-A weak interactions,
their decays are sensitive to the t polarization.

The easiest case to understandis 7= — v.m~ . ATat

rest with s2 — _% decays to a forward v, and a

backward 7.

< <

o <@ ‘—)V
T =
A highly boosted t has then has
dI dI’
. — ~ (1= D =
TT, 7 ( $) TR 7 X

where == E./E.  Similar asymmetries appear in
the other prominent Tt decay modes.



events/0.05

N ALEPH |, |
2000 | T — TV
3000 |
I..l-
"t l.l'l 2000 }
1000 } ST -
-
poll
=¢*I r: '
- L '
:_!' - 1000 }
1! !!
0 : - - 0 : : - -
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X X
’CL """
T — .



There is also a correlation between t polarization and
cos 6 that can be used to improve the measurement.

01 | ALEPH ¢
P DELPHI +
0 ;—‘~ L3 + __

OPAL + :

-0.1
-0.2
i —— A
03 no universality N
-------- universality
_0.4 | L T B T

| | | | | L1
1 -08 -06 04 02 0 02 04 06 08 1
coser_



0,

A(P.)

0.23099 = 0.00053

—— 0.23159 = 0.00041
—V— 0.23221 = 0.00029

* 0.23220 = 0.00081

X 0.2324 + 0.0012

glis 0.23153 = 0.00016

x°/d.of.:11.8/5

2 Aoy) = 0.02758 + 0.00035
ZZm,=178.0 + 4.3 GeV

t

A L B
0.232 0.234

sin0'®"" final LEPEWWG
eff Phys. Rept. 2006
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Here is a summary of the LEP and SLC precision
measurements, compiled in the LEP EWWG summary

report: Phys.Rept. 427, 257 (2006).

Measurements are shown in terms of the pull (in o)
with respect to the best-fit Standard Model

parameters.



Measurement Fit

Aot (m,) 0.02758 = 0.00035 0.02767
m,[GeV] 91.1875+0.0021 91.1874
,[GeV]  2.4952+0.0023 2.4965
o4 [Nb]  41.540+0.037  41.481
R, 20.767 £ 0.025  20.739
Ay 0.01714 + 0.00095 0.01642
A(P,) 0.1465 = 0.0032  0.1480
R, 0.21629 + 0.00066 0.21562
R, 0.1721 £0.0030  0.1723
ALP 0.0992 + 0.0016  0.1037
AL 0.0707 = 0.0035  0.0742
A, 0.923 + 0.020 0.935
A, 0.670 = 0.027 0.668
A (SLD) 0.1513£0.0021  0.1480
sin057'(Q,,) 0.2324 +0.0012  0.2314
m, [GeV] 80.425:0.034  80.389
r,[GeV]  2.133=0.069 2.093
m, [GeV] 178.0 + 4.3 178.5

meas fit, ; _meas
1O -0O'l/o

0

1

2

3

0

A +

2

3

final LEPEWWG
Phys. Rept. 2006



Now we must discuss the renormalization prescription for
the computation of 1-loop radiative corrections.

The Standard Model has a large number of parameters.
However, for the specific processes that | have discussed
in this lecture, the tree-level predictions depend only on
3 parameters

g, g ,v

The 1-loop corrections will include divergent corrections,
included quadratically divergent corrections from Ve .
However, when the corrections to these three parameters
are fixed, all 1-loop corrections are made finite. Each
specific reaction will obtain a finite correction, which is a
prediction of the Standard Model.



Different schemes are used to fix the three underlying
divergent amplitudes. Each gives different expressions
for the cross sections. These expressions become
identical when observables are related to other
observables. Three common schemes are

Marciano-Sirlin: fix «a(mz), mz, my  to their
experimental values

on-shell Z: fix a(myz),Gr,mz to their experimental
values

M S subtraction

In most analyses today, the 3 unknown constants in each
scheme are varied to give the best global fit to the corpus
of precision data.



There are many possible definitions of 6, .

Marciano-Sirlin scheme: define 6, by c, = mw/mz

this leads to: 57 = 0.22290 + 0.00008

on-shell Z scheme: define 6, by

dra(my)

. 9 2
sin” 20, = (2¢cySyw)” = ;
this leads to V2Grmy

s2 = 0.231079 4 0.000036

Both definitions lead to the same expressions relating
observables to observables, but only when finite 1-loop
corrections are included.



One particular class of radiative corrections is very
simple to analyze. This is the case in which new
particles have no direct coupling to light fermions but
appear in Z processes only through vector boson
vacuum polarization amplitudes.

These are called oblique radiative corrections .

They are most simply discussed as a power series in
2 2
m7, /M

where M is the mass of a new particle from beyond
the Standard Model.



Define the vacuum polarization amplitudes

— i@ZHQQg“V

A\/\.\J\
Z v\‘v\ = iswcw (Msq — 53 I1pq) g™
Z \/\.\/\

\/\.\/\

— (H33 — 28 H3Q —+ S HQQ)

— i_Hllglﬂ/




Of the 6 constants on the previous slide, 3 contribute
to the renormalizationsof ¢, ¢’ , v . This leaves
3 combinations that are finite at 1 loop. These are

10

S = m — |II33(m 2) — I33(0) — IEYs) (m%)]
T = [ (0) ~ I (0)
U = 12;; II11(m%) — 11 (0) — Isg(my) + II33(0)]

Roughly, T parametrizes the correction tomy /mzcy,,
S parametrizes the ¢°/M - correction, and U, with
both suppressions, is very small in most BSM models.



The leading oblique corrections to electroweak
observables can then be expressed as, for example,

2 2
M, 0 oc 1 0
— —=S T
m?, 0T 2 ( 2 T )

1
57 — 8¢ - (—S — 3202T>

c?2 —s?2 \ 4

This allows experiment to place constraints that can
then be applied to a large class of models.



Some guidance about the expected sizes of Sand T is
given by the result for one new electroweak doublet:

S:i T — mg —mp

67T mZ
The effects of the SM top quark and Higgs boson can also
be expressed (approximately) in the S, T framework

1 m? 3 m2
top: S =" log —% T = L
s 6 2Z 167822 m2Z
. 1 2 3 2
Higgs:  § = _—log mg T = log mg

127 ms, 167c? ms,



S, T fit c. 1991
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S, T fit c. 2008

0.2 -0.1 0 0.1 0.2 0.3

LEP EWWG: within the MSM  my, < 144 (182) GeV (95% CL)



S, T fit c. 2014
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