

SUSY Observables in an $A_4 \times SU(5)$ model of muon g - 2 and dark matter

Jordan Bernigaud[†], Björn Herrmann[†], Stephen F. King^{*}, Sam Rowley^{*}

[†] Univ. Grenoble Alpes, USMB, CNRS, LAPTh, 9 Chemin de Bellevue, F-74000 Annecy, France * School of Physics and Astronomy, University of Southampton, United Kingdom

27 July 2018

To be published soon ... hopefully !

Outline

- 1 The $A_4 \times SU(5)$ SUSY model
- Objectives and method
- O Numerical setup

The $A_4 \times SU(5)$ SUSY model

From : arXiv[1801.00514v1], Alexander S. Belyaev, Setphen F. King et al. (2018)

Representations under SU(5) where $T = \mathbf{10}$ and $F = \overline{\mathbf{5}}$:

$$T = \begin{pmatrix} 0 & u_g^c & -u_b^c & u_r & d_r \\ \cdot & 0 & u_r^c & u_b & d_b \\ \cdot & \cdot & 0 & u_g & d_g \\ \cdot & \cdot & \cdot & 0 & e^c \\ \cdot & \cdot & \cdot & \cdot & 0 \end{pmatrix}, \quad F = \begin{pmatrix} d_r^c \\ d_b^c \\ d_g^c \\ e^- \\ -\nu_e \end{pmatrix}$$

Under $A_4 \rightarrow T = \mathbf{1}$ and $F = \mathbf{3}$

Relations from symmetries (GUT scale)

$$y_u = y_u^{\dagger}, \quad y_d = y_e^{\dagger}, \quad A_u = A_u^{\dagger}, \quad A_d = A_e^{\dagger}, \quad (m_F)_{ii} = m_F$$

 $m_F \to (M_{\tilde{d}})_{RR} \text{ and } (M_{\tilde{\ell}})_{LL}.$
 $m_T \to (M_{\tilde{q}})_{LL}, \ (M_{\tilde{u}})_{RR} \text{ and } (M_{\tilde{\ell}})_{RR}$

The $A_4 \times SU(5)$ SUSY model

In the SCKM basis*, neglecting the $D\mbox{-terms}$ and SM parameters, the GUT scalars mass matrices are :

$$\begin{split} M_{\tilde{d}}^2 &= \begin{pmatrix} m_T^2 & A_d^{\dagger} \\ A_d & m_F^2 \end{pmatrix}, \quad M_{\tilde{u}}^2 &= \begin{pmatrix} V_{CKM}^{\dagger} m_T^2 V_{CKM} & V_{CKM}^{\dagger} A_u^{\dagger} V_{CKM} \\ V_{CKM}^{\dagger} A_u V_{CKM} & V_{CKM}^{\dagger} m_T^2 V_{CKM} \end{pmatrix} \\ M_{\tilde{\ell}}^2 &= M_{\tilde{d}}^2 \ (L \longleftrightarrow R) \end{split}$$

Typical characteristics of the benchmark points (arXiv[1801.00514v1])

- . Minimal flavour violation framework
- . Really light $\tilde{\mu}_R$, needed for g-2.
- . Very close $\tilde{\chi}_1^0$ mass, needed for DM relic density.

* We neglected the running of the CKM, the rotation can be performed either at GUT or SUSY scale.

Objectives and method

The initial paper (arXiv[1801.00514v1]) focused on $(g - 2)_{\mu}$ and DM and they neglected the off-diagonal elements.

Some reasons to go beyond :

- . In general the diagonal elements can be non zero
- . This model needs additional particles : flavons. If not \to No down yukawas/trilinear soft terms allowed.
- . Including flavons \rightarrow off-diagonal elements.

Goal

What are the allowed ranges for the flavour violating parameters?

Objectives and method

$$(\delta_{AA})_{ij} = \frac{(M_{AA})_{ij}^2}{(M_{AA})_{ii}(M_{AA})_{jj}} \text{ with } A = L, R$$
$$(\delta_{RL})_{ij} = \frac{v_{u/d}}{\sqrt{2}} \frac{A_{u/d}}{(M_{RR})_{ii}(M_{LL})_{jj}}$$

The δ parameters at SUSY scale :

$$\Rightarrow \quad \delta_{LL}^{M_{\tilde{q}}}, \ \delta_{RR}^{M_{\tilde{u}}}, \ \delta_{RR}^{M_{\tilde{d}}}, \ \delta_{LL}^{M_{\tilde{\ell}}}, \ \delta_{RR}^{M_{\tilde{\ell}}}, \ \delta_{RL}^{M_{\tilde{u}}}, \ \delta_{RL}^{M_{\tilde{d}}}, \ \delta_{RL}^{M_{\tilde{d}}}, \ \delta_{RL}^{M_{\tilde{d}}}$$

The δ parameters at GUT scale :

. Using the SU(5) relations and the T, F notation for the representations we end with the following δ (15 free parameters) :

$$\delta^{T}, \ \delta^{F}, \ \delta^{TT}, \ \delta^{FT}$$

Objectives and method

- 1) Initial benchmark point
- 2) Scan over δ parameters at GUT scale
- 3) Check leptonic, hadronic and DM relic density constraints.
- 4) Investigate cancellation effects.

We also ran scans over individual δ

Improvements from previous studies

In most of the SU(5) SUSY models, δ scanned once at a time. We performed a simultaneous scan of the δ .

Numerical setup

Observable	Constraint
m _h	(125 ± 2.5) GeV
${ m BR}(\mu o e\gamma)$	$< 5.7 imes 10^{-13}$
${ m BR}(\mu ightarrow 3e)$	$< 1.0 imes 10^{-12}$
$BR(\tau \rightarrow e\gamma)$	$< 3.3 imes 10^{-8}$
${ m BR}(au o \mu \gamma)$	$<4.4 imes10^{-8}$
BR(au ightarrow 3e)	$< 2.7 imes 10^{-8}$
${ m BR}(au ightarrow 3\mu)$	$< 2.1 imes 10^{-8}$
BR($\tau \rightarrow e^- \mu \mu$)	$< 2.7 imes 10^{-8}$
BR($\tau \rightarrow e^+ \mu \mu$)	$< 1.7 imes 10^{-8}$
BR($\tau \rightarrow \mu^- ee$)	$< 1.8 imes 10^{-8}$
${ m BR}(au o \mu^+ ee)$	$< 1.5 imes 10^{-8}$
$BR(B \to X_s \gamma)$	$(3.43\pm0.22) imes10^{-4}$
$BR(B_s \rightarrow \mu \mu)$	$(2.8\pm 0.7) imes 10^{-9}$
BR($B\tau \to \mu\gamma$)	< 4.4 $ imes$ 10 ⁻⁸
ΔM_{B_s}	$(17.65 \pm 3.35) \; { m ps}^{-1}$
ϵ_K	2.228 ± 0.29
ΔM_K	$(3.1\pm1.6) imes10^{-15}$ GeV
$\Omega_{CDM} h^2$	0.1198 ± 0.0042

Numerical setup

Slightly different starting point

Not the same version of tools

No $(g-2)_{\mu}$ included in the constraints

- . Flavour conserving process \rightarrow small effect from the δ
- . We didn't find any reliable tool for $(g-2)_{\mu}$ in NMFV framework

Limitations

- . $\tilde{\chi}^{0}_{1}$ and $\tilde{\mu}$ masses \rightarrow impacted by $\delta,$ leads to set to 0 three of the δ
- . Computational time

Parameters (GUT scale)	Estimated allowed range	Most constraining observables
$(\delta^{T})_{12}$	[-0.015, 0.015]	$\mathrm{BR}(\mu ightarrow 3e), \mathrm{BR}(\mu ightarrow e\gamma), \Omega_{\tilde{\chi}_{1}^{0}}h^{2}$
$(\delta^T)_{13}$]-0.06, 0.06[$\Omega_{\tilde{\chi}^0} h^2$
$(\delta^T)_{23}$	[0, 0]*	prior
$(\delta^{F})_{12}$	[-0.008, 0.008]	${ m BR}(\mu ightarrow 3e), { m BR}(\mu ightarrow e\gamma)$
$(\delta^F)_{13}$]-0.01, 0.01[${ m BR}(\mu o e\gamma)$
$(\delta^F)_{23}$]-0.015, 0.015[${ m BR}(\mu o e\gamma), \Omega_{ ilde{\chi}_{f 1}^{f 0}} h^2$
$(\delta^{TT})_{12}$	[-3, 3.5] ×10 ⁻⁵	prior
$(\delta^{TT})_{13}$]-6, 7] ×10 ⁻⁵	prior
$(\delta^{TT})_{23}$]-0.5, 4[$ imes 10^{-5}$	prior, $\Omega_{\tilde{\chi}_1^0} h^2$
$(\delta^{FT})_{12}$	[-0.0015, 0.0015]	$\Omega_{\tilde{\chi}_1^0} h^2$
$(\delta^{FT})_{13}$]-0.002, 0.002[${ m BR}(\mu ightarrow e \gamma), \Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{21}$	[0,0]*	prior
$(\delta^{FT})_{23}$]-0.0022, 0.0022[${ m BR}(B o X_s \gamma), \Omega_{\tilde{\chi}^0_s} h^2$
$(\delta^{FT})_{31}$]-0.0004, 0.0004[$\Omega_{\tilde{\chi}^{0}}h^{2}$
$(\delta^{FT})_{32}$	[0,0]*	prior

Results : Study of cancellations effects

Conclusion

Summary

- . We studied the impact of flavour violation parameters on observables in a previous model
- . We emphasized the fact that these parameters must be studied together
- . We set different limits on the parameters. Help for further model building?

Currently under investigation

- . Extend range of the δ as much as possible
- Investigate physical reasons for the correlation (TeV scale, impact of kinematics...)

Going beyond

- . MCMC over the full parameters space in SU(5) (In progress)
- . Include neutrinos mass? (difficult if model independent)
- Analysis of a more complete model (including Flavons, neutrinos)? *Ex :* arXiv[1511.07886], Maria Dimou et al. (2016)