

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Leptophilic Dark Matter from Gauged Lepton Number

Phenomenology and Gravitational Wave Signatures

Eric Madge

in collaboration with Pedro Schwaller

Johannes Gutenberg Universität Mainz, Institute of Physics

MITP Summer School 2018 July 27, 2018

Gauged Lepton Number

 $SM + RH \nu + U(1)_{\ell}$ gauge group [Schwaller, Tait, Vega-Morales (2013)] $U(1)_{\ell}$ gauge boson $\mathcal{L} \supset -rac{1}{4} Z_{\ell \, \mu
u} Z_{\ell}^{\mu
u} - rac{1}{4} B_{\mu
u} B^{\mu
u} + rac{\epsilon}{2} B_{\mu
u} Z_{\ell}^{\mu
u}$ $\epsilon \longrightarrow$ kinetic mixing $pp \rightarrow Z' \rightarrow \ell^+ \ell^$ after SSB: Z - Z' mass mixing $\backsim~10^{-2}$ LEP-2: $m_{Z'} \gtrsim 200 \text{ GeV}$ ATLAS, 1707.02424 CMS, 1803.06292 LHC: ---- HL-LHC, 300 fb⁻¹ HL-LHC, 3 ab⁻¹ $\epsilon \neq 0 \Rightarrow \ell^+ \ell^-$ resonance 10^{-3}

Eric Madge (JGU Mainz)

eptophilic DM from Gauged Lepton Number MITP Summer School '18 1

1000

1500

 $m_{Z'}$ [GeV]

2000

2500

500

Dark Matter

Anomaly Cancellation

- \longrightarrow two generations of SM vector-like leptons (+ RH u)
- \longrightarrow after SSB: 4 additional fermions: e_4^- , e_5^- , ν_4 , ν_{DM}

Spontaneous Symmetry Breaking

 ℓ spontaneously broken by $\Phi=\frac{1}{\sqrt{2}}\left(\phi+i\eta\right)$ with $L_{\Phi}=3$

•
$$\phi \to \phi + v_{\Phi} \implies m_{Z'} \simeq 3g_{\ell}v_{\Phi}$$

- $h \phi$ mixing \implies signal strength reduced by $\cos^2 \theta_H$
- dark leptons $\Longrightarrow h \to \gamma \gamma$ modified
- LEP-2: four-fermion contact interactions $\implies v_{\Phi} > 1.88$ TeV choose $v_{\Phi} = 2$ TeV

For the rest of this talk:

neglect Higgs portal coupling and kinetic mixing \implies only Z', Φ , and dark leptons

$$\mathcal{L} = -\frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi + \mu_{\Phi}^2 \Phi^{\dagger} \Phi - \lambda_{\Phi} \left(\Phi^{\dagger} \Phi \right)^2 + \mathsf{Yukawa \ terms}$$

Symmetry Restoration effective Potential $V_{\text{eff}}(\phi, T) = V_{\text{tree}}(\phi) + V_{\text{loop}}(\phi)$

e.g. $\lambda \phi^4$ at 1-loop:

Symmetry Restoration

 $V_{\rm eff}(\phi,T) = V_{\rm tree}(\phi) + V_{\rm loop}^{T=0}(\phi) + V_{\rm loop}^{\rm thermal}(\phi,T)$

e.g. $\lambda \phi^4$ at 1-loop:

in the early Universe:

thermal corrections typically restore the symmetry

⇒ symmetry breaking phase transition

finite-T corrections restore symmetry at high T

 \Longrightarrow symmetry breaking phase transition in the early universe

finite-T corrections restore symmetry at high T

- \implies symmetry breaking phase transition in the early universe
- 2 types of phase transitions:

finite-T corrections restore symmetry at high T

- \implies symmetry breaking phase transition in the early universe
- 2 types of phase transitions:

finite-T corrections restore symmetry at high T

- \implies symmetry breaking phase transition in the early universe
- 2 types of phase transitions:

Gravitational Waves only from 1st-order Transition!

1st-Order Phase Transition

high- and low-T minima separated by barrier

- \implies 1st-order PT via tunneling
- \implies bubble nucleation

Nucleation Temperature

- nucleation rate \longleftrightarrow Hubble expansion $\Gamma(T) \iff H(T)$
- nucleation temperature (T_n) : $\Gamma/H^4 \sim 1$

Gravitational Waves

GW spectrum: $h^2 \Omega_{\rm GW} \simeq h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$

• $h^2\Omega_{\phi}$: collision of bubble walls

Gravitational Waves

GW spectrum: $h^2 \Omega_{\rm GW} \simeq h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$

- $h^2\Omega_{\phi}$: collision of bubble walls
- $h^2\Omega_{sw}$: sound waves in the plasma

Gravitational Waves

GW spectrum: $h^2 \Omega_{\rm GW} \simeq h^2 \Omega_{\phi} + h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$

- $h^2\Omega_{\phi}$: collision of bubble walls
- $h^2\Omega_{sw}$: sound waves in the plasma
- $h^2\Omega_{turb}$: turbulence, vortical fluid motion

Gravitational Wave Spectrum

Detectability

Detectability

Summary

- $\mathsf{SM} + U(1)_\ell + \mathsf{SM}$ vector-like fermions provide DM candidate
- LEP-2: $v_{\Phi} > 1880 \text{ GeV}$
- LHC: Higgs measurements, Z' searches Direct Detection: mixing angles
- ℓ breaking PT can be 1st order
- generated stochastic GW background can be probed by future experiments (LISA, B-DECIGO, DECIGO, BBO)

Summary

- $\mathsf{SM} + U(1)_\ell + \mathsf{SM}$ vector-like fermions provide DM candidate
- LEP-2: $v_{\Phi} > 1880 \text{ GeV}$
- LHC: Higgs measurements, Z' searches Direct Detection: mixing angles
- ℓ breaking PT can be 1st order
- generated stochastic GW background can be probed by future experiments (LISA, B-DECIGO, DECIGO, BBO)

Thank you for your attention!