

An Introduction to Optical Doping and Improved Carrier Lifetime in Graphene

Samuel D. Lane University of Kansas

Outline

- Motivation
- Introduction to Band Structure
- Introduction to Pump-Probe Spectroscopy
- Band Alignment Engineering
- Experiment and Results
- Conclusion

2D Materials

Graphene family	Graphene	hBN 'white graphene'			BCN	Fluorograph	ene	Graphene oxide
2D chalcogenides	M-0, W0	Semiconducting dichalcogenides: MoTe ₂ , WTe ₂ , ZrS ₂ , ZrSe ₂ and so on		Metallic dichalcogenides: NbSe ₂ , NbS ₂ , TaS ₂ , TiS ₂ , NiSe ₂ and so on				
	M05 ₂ , W5 ₂			Layered semiconductors: GaSe, GaTe, InSe, Bi ₂ Se ₃ and so on				
2D oxides	Micas, BSCCO	MoO ₃ , WO ₃		Perovskite-1 LaNb ₂ O ₇ , (Ca,Sr Bi ₄ Ti ₃ O ₁₂ , Ca ₂ Ta ₂ TiC		type:) ₂ Nb ₃ O ₁₀ ,	Hydroxides: Ni(OH) ₂ , Eu(OH) ₂ and so on	
	Layered Cu oxides	TiO_2 , MnO_2 , V_2O_5 , TaO_3 , RuO_2 and so on				D_{10} and so on	Others	

A. K. Geim & I. V. Grigoreiva, *Van der Waals Heterostructures*. Nature **499** 419-425

Van der Waals Heterostructures

A. K. Geim & I. V. Grigoreiva, *Van der Waals Heterostructures*. Nature **499** 419-425

Outline

- Motivation
- Introduction to Band Structure
- Introduction to Pump-Probe Spectroscopy
- Band Alignment Engineering
- Experiment and Results
- Conclusion

Formation of Electronic Bands

More About Electronic Bands

Outline

- Motivation
- Introduction to Band Structure
- Introduction to Pump-Probe Spectroscopy
- Band Alignment Engineering
- Experiment and Results
- Conclusion

Basics of Pump-Probe Spectroscopy

Basics of Pump-Probe Spectroscopy Pump Probe \sim Sample

Basics of Pump-Probe Spectroscopy

Differential Reflection Example

N. Kumar, Q. Cui, F. Ceballos, D. He, Y. Wang, and H. Zhao, Phys. Rev. B 89, 125427 (2014)

Outline

- Motivation
- Introduction to Band Structure
- Introduction to Pump-Probe Spectroscopy
- Band Alignment Engineering
- Experiment and Results
- Conclusion

Band Alignment Engineering

S. Lee and Z. Zhong, *Nanoelectronics circuits based on two dimensional atomic layer crystals*. Nanoscale 2014, 6, 13283-13300

Band Alignment Engineering

Band Alignment Engineering

Example 3

Outline

- Motivation
- Introduction to Band Structure
- Introduction to Pump-Probe Spectroscopy
- Band Alignment Engineering
- Experiment and Results
- Conclusion

Experimental Setup

Layer Selective Pump Probe

Layer Selective Pump Probe

Layer Selective Pump Probe

Carrier Dynamics in Multiple layers

Carrier Dynamics in Multiple layers

Carrier Dynamics in Multiple layers

Sample

Results $Gr-MoS_2 \cdot 0.9 \text{ ps}$ 1.00.7 ps

10⁰

Acknowledgements

Questions?