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From the lecture of Tao Han we heard that the scattering matrix can be
written in the form S = 1 + iT , where T is the scattering part. As we do
perturbative calculations, we want to expand T around small values of the
strong coupling constant αS , so

T =
∑
l

α
n(l)
S T(l). (1)

Since QCD is asymptotically free, the value of αS decreases with rising center-
of-mass energy

Ecm

αS

and since run two of the LHC produced some results, αS is actually so small,
that we can see NNLO contributions (which correspond to l = 2 in (1))!

When we talk about NNLO we distinguish between real corrections, so if we
have more particles in the final state, and virtual corrections, which means loop
Feynman diagrams. I will stick to virtual corrections. To calculate the virtual
part we could use the standard Feynman-diagrammatic approach, however there
are some problems with that.

1. At one-loop the number of diagrams is still manageable, but at two-loop
there are simply to many diagrams to perform efficient calculations.

2. We have to deal with complicated tensor integrals.

Numerical unitarity Luckily, in Tao Han’s lecture we also got to know the
starting point for a solution to the above problems, namely the unitarity of the
S-matrix. We find that 1 = S2 = (1 + iT )(1− iT †) so that we have the relation
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i(T −T †) = 2imT = TT †. Employing the expansion (1), we thus have a relation
between loop diagrams and tree diagrams! This relation is made manifest in
the Cutkosky cutting rules [1], which tell us to set propagators on-shell, that is,
if ` is the loop momentum and pij a sum of external momenta, to replace∫

[d`]
1

(`− pij)2 −m2
→
∫

[d`]δ
(
(`− pij)2 −m2

)
=

∫
X

[d`] (2)

where X = {(`− pij)2 = m2} is the space of solutions of the on-shell conditions
for the loop momenta. Diagrammatically we can represent this using cut dia-
grams, which are hierarchically ordered, according to the number of propagators
being set on-shell. In the following we present the application of numerical uni-
tarity to two-loop calculations, where you can read more about in [2]. That is
for example for a 2→ 2 process the hierarchy of the bubble-box cut is given by

In the first row we have diagrams, that is our scattering amplitude A, so that
T ∼ |A|2 where every propagator has been set on-shell or cut. The cuts from
the first row we call the maximum cuts and label them by ΓM. The second
line represents diagrams, where when applying the cutting procedure (2) one
propagator has been left out. These are the next-to-maximal cut diagrams and
we label them ΓNM. Now we make an ansatz for the amplitude

A =
∑

Γ

∑
i∈Basis

cΓiIΓi (3)

where cΓi are some coefficients and

IΓi =

∫
[d`]

mΓi(`)

ρ1 · · · ρk
(4)

are so-called master integrals. Here mΓi(`) is the numerator depending on kine-
matics and ρi are the propagators, which are supposed to be cut. For simplicity
we define the numerator of the integrand N(Γ, `) =

∑
i∈Basis cΓimΓi(`). So if

every propagator is cut the numerator of the integrand N(Γ, `) is given by a
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product of the tree diagrams corresponding to the vertices of the cut diagrams
N(ΓM, `) =

∑
states

∏
j Atree

j ≡ R(ΓM, `), where by states we mean the helicity
states of the loop momenta `. It is easy to compute the tree diagrams using for
example Berends–Giele recursion relations. Doing so and evaluating the chosen
integrands mΓMi(`) for enough values of ` gives us a linear system of equations,
where the coefficients cΓMi are the unknown values for which we can solve.

Having found the coefficients for maximal cuts, we can proceed to the next-
to-maximal diagrams. Here the numerators of the integrands N(ΓNM, `) can
also be calculated using the corresponding products of trees R(ΓNM, `), however
when looking at the ansatz for the amplitude (3) we see that the cut propagators
will also appear in the integrands corresponding to the maximum cuts ΓM. That
is why we have to subtract these contributions from the tree calculation result
R(ΓNM, `) in order to obtain only N(ΓNM, `). Writing ρk for the propagator
which is cut in the maximum cuts but uncut in the next-to-maximum this
means

N(ΓNM, `) = R(ΓNM, `)−
∑

k
N(ΓM,k, `)/ρk

Again, because N(ΓNM, `) =
∑

i cΓNMimΓNMi(`), when we sample about enough
values of ` we can solve for the coefficients cΓNMi. This procedure has to be
iterated to obtain all the coefficients needed in the amplitude ansatz (3).

Geometry Now that we talked about the coefficients of the master integrals,
how about the actual master integrals IΓi? In order not to have to integrate
to much it is a good thing to ask how many integrals are needed. This can be
answered using the beautiful underlying structure of their spaces. You can read
further on that in [3] and also in [4].

So if we want to ask the dimension of the integral space on-shell, we equiv-
alently could ask, how many differential k-forms there are, where k is the di-
mension of the uncut loop momentum space X we had in equation (2) and the
forms are the numerators [d`]mΓi(`). These turn out to be closed forms. For a
form ω ∈ Ωk(X) that means dω = 0, where d is the exterior derivative. How-
ever we actually do not want to count the forms [d`]mΓi(`), where the integral
vanishes, because these cannot contribute to the master integral basis. We call
these terms spurious terms. If the integral of a form vanishes it is an exact
form. Exact forms are the ω ∈ Ωk(X), so that there is an α ∈ Ωk−1(X) so that
ω = dα. That means, in order to calculate the on-shell dimension of the master
integrals, we calculate the dimension of the closed form space, where we factor
out the exact form space. If we write for short ω = [d`]mΓi(`) In formulas

dim{IΓi} = dim{ω ∈ Ωk(X) | dω = 0}/{ω ∈ Ωk(X) | ∃α ∈ Ωk−1(X) : ω = dα}
= dimHk(X) = hk(X)

which is basically a definition of the de Rham cohomology groups Hk(X) of the
space X. By de Rham theorem we know that hk(X) = hk(X) meaning we can
get the dimensions of the cohomology groups also from the homology Hk(X),
which one can imagine as non-contractible k-dimensional subspaces disregarding
their position within the space.
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Example So assume we want to compute the dimension of the space of 1-
forms on the two dimensional torus T 2

b

a

we first figure out what the elements of the homology groups H1(T 2) are. These
are the cycles a and b, which you cannot transform into one-another by trans-
lating. This means dimH1(T 2) = dimH1(T 2) = dim〈a, b〉 = 2.

So this counting of cycles or the dimension of homology groups gives us the
dimension of the form spaces on the on-shell spaces X of the loop momenta. The
picture becomes more complicated when less legs are cut, because the dimension
of X rises. Luckily there are techniques like Morse theory helping to calculate
the homology groups then, when you cannot draw the space and count cycles
as in the example above.
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