Precision QCD calculations and geometry

Evgenij Pascual

July 20, 2018

From the lecture of Tao Han we heard that the scattering matrix can be written in the form S = 1 + iT, where T is the scattering part. As we do perturbative calculations, we want to expand T around small values of the strong coupling constant α_S , so

$$T = \sum_{l} \alpha_S^{n(l)} T_{(l)}.$$
 (1)

Since QCD is asymptotically free, the value of α_S decreases with rising center-of-mass energy

and since run two of the LHC produced some results, α_S is actually so small, that we can see NNLO contributions (which correspond to l = 2 in (1))!

When we talk about NNLO we distinguish between real corrections, so if we have more particles in the final state, and virtual corrections, which means loop Feynman diagrams. I will stick to virtual corrections. To calculate the virtual part we could use the standard Feynman-diagrammatic approach, however there are some problems with that.

- 1. At one-loop the number of diagrams is still manageable, but at two-loop there are simply to many diagrams to perform efficient calculations.
- 2. We have to deal with complicated tensor integrals.

Numerical unitarity Luckily, in Tao Han's lecture we also got to know the starting point for a solution to the above problems, namely the unitarity of the S-matrix. We find that $1 = S^2 = (1 + iT)(1 - iT^{\dagger})$ so that we have the relation

 $i(T-T^{\dagger}) = 2imT = TT^{\dagger}$. Employing the expansion (1), we thus have a relation between loop diagrams and tree diagrams! This relation is made manifest in the Cutkosky cutting rules [1], which tell us to set propagators on-shell, that is, if ℓ is the loop momentum and p_{ij} a sum of external momenta, to replace

$$\int [d\ell] \frac{1}{(\ell - p_{ij})^2 - m^2} \to \int [d\ell] \delta ((\ell - p_{ij})^2 - m^2) = \int_X [d\ell]$$
(2)

where $X = \{(\ell - p_{ij})^2 = m^2\}$ is the space of solutions of the on-shell conditions for the loop momenta. Diagrammatically we can represent this using cut diagrams, which are hierarchically ordered, according to the number of propagators being set on-shell. In the following we present the application of numerical unitarity to two-loop calculations, where you can read more about in [2]. That is for example for a $2 \rightarrow 2$ process the hierarchy of the bubble-box cut is given by

In the first row we have diagrams, that is our scattering amplitude \mathcal{A} , so that $T \sim |\mathcal{A}|^2$ where every propagator has been set on-shell or cut. The cuts from the first row we call the maximum cuts and label them by Γ^{M} . The second line represents diagrams, where when applying the cutting procedure (2) one propagator has been left out. These are the next-to-maximal cut diagrams and we label them Γ^{NM} . Now we make an ansatz for the amplitude

$$\mathcal{A} = \sum_{\Gamma} \sum_{i \in \text{Basis}} c_{\Gamma i} I_{\Gamma i} \tag{3}$$

where $c_{\Gamma i}$ are some coefficients and

$$I_{\Gamma i} = \int [d\ell] \frac{m_{\Gamma i}(\ell)}{\rho_1 \cdots \rho_k} \tag{4}$$

are so-called master integrals. Here $m_{\Gamma i}(\ell)$ is the numerator depending on kinematics and ρ_i are the propagators, which are supposed to be cut. For simplicity we define the numerator of the integrand $N(\Gamma, \ell) = \sum_{i \in \text{Basis}} c_{\Gamma i} m_{\Gamma i}(\ell)$. So if every propagator is cut the numerator of the integrand $N(\Gamma, \ell)$ is given by a product of the tree diagrams corresponding to the vertices of the cut diagrams $N(\Gamma^{\rm M}, \ell) = \sum_{\rm states} \prod_j \mathcal{A}_j^{\rm tree} \equiv R(\Gamma^{\rm M}, \ell)$, where by states we mean the helicity states of the loop momenta ℓ . It is easy to compute the tree diagrams using for example Berends–Giele recursion relations. Doing so and evaluating the chosen integrands $m_{\Gamma^{\rm M}i}(\ell)$ for enough values of ℓ gives us a linear system of equations, where the coefficients $c_{\Gamma^{\rm M}i}$ are the unknown values for which we can solve.

Having found the coefficients for maximal cuts, we can proceed to the nextto-maximal diagrams. Here the numerators of the integrands $N(\Gamma^{\text{NM}}, \ell)$ can also be calculated using the corresponding products of trees $R(\Gamma^{\text{NM}}, \ell)$, however when looking at the ansatz for the amplitude (3) we see that the cut propagators will also appear in the integrands corresponding to the maximum cuts Γ^{M} . That is why we have to subtract these contributions from the tree calculation result $R(\Gamma^{\text{NM}}, \ell)$ in order to obtain only $N(\Gamma^{\text{NM}}, \ell)$. Writing ρ_k for the propagator which is cut in the maximum cuts but uncut in the next-to-maximum this means

$$N(\Gamma^{\rm NM}, \ell) = R(\Gamma^{\rm NM}, \ell) - \sum_k N(\Gamma^{\rm M, k}, \ell) / \rho_k$$

Again, because $N(\Gamma^{\text{NM}}, \ell) = \sum_{i} c_{\Gamma^{\text{NM}}i} m_{\Gamma^{\text{NM}}i}(\ell)$, when we sample about enough values of ℓ we can solve for the coefficients $c_{\Gamma^{\text{NM}}i}$. This procedure has to be iterated to obtain all the coefficients needed in the amplitude ansatz (3).

Geometry Now that we talked about the coefficients of the master integrals, how about the actual master integrals $I_{\Gamma i}$? In order not to have to integrate to much it is a good thing to ask how many integrals are needed. This can be answered using the beautiful underlying structure of their spaces. You can read further on that in [3] and also in [4].

So if we want to ask the dimension of the integral space on-shell, we equivalently could ask, how many differential k-forms there are, where k is the dimension of the uncut loop momentum space X we had in equation (2) and the forms are the numerators $[d\ell]m_{\Gamma i}(\ell)$. These turn out to be closed forms. For a form $\omega \in \Omega^k(X)$ that means $d\omega = 0$, where d is the exterior derivative. However we actually do not want to count the forms $[d\ell]m_{\Gamma i}(\ell)$, where the integral vanishes, because these cannot contribute to the master integral basis. We call these terms spurious terms. If the integral of a form vanishes it is an exact form. Exact forms are the $\omega \in \Omega^k(X)$, so that there is an $\alpha \in \Omega^{k-1}(X)$ so that $\omega = d\alpha$. That means, in order to calculate the on-shell dimension of the master integrals, we calculate the dimension of the closed form space, where we factor out the exact form space. If we write for short $\omega = [d\ell]m_{\Gamma i}(\ell)$ In formulas

$$\dim\{I_{\Gamma i}\} = \dim\{\omega \in \Omega^k(X) \mid d\omega = 0\} / \{\omega \in \Omega^k(X) \mid \exists \alpha \in \Omega^{k-1}(X) \colon \omega = d\alpha\}$$
$$= \dim H^k(X) = h^k(X)$$

which is basically a definition of the de Rham cohomology groups $H^k(X)$ of the space X. By de Rham theorem we know that $h^k(X) = h_k(X)$ meaning we can get the dimensions of the cohomology groups also from the homology $H_k(X)$, which one can imagine as non-contractible k-dimensional subspaces disregarding their position within the space.

Example So assume we want to compute the dimension of the space of 1-forms on the two dimensional torus T^2

we first figure out what the elements of the homology groups $H_1(T^2)$ are. These are the cycles *a* and *b*, which you cannot transform into one-another by translating. This means dim $H^1(T^2) = \dim H_1(T^2) = \dim \langle a, b \rangle = 2$.

So this counting of cycles or the dimension of homology groups gives us the dimension of the form spaces on the on-shell spaces X of the loop momenta. The picture becomes more complicated when less legs are cut, because the dimension of X rises. Luckily there are techniques like Morse theory helping to calculate the homology groups then, when you cannot draw the space and count cycles as in the example above.

References

- [1] J. S. Rozowsky, "Feynman diagrams and cutting rules," hep-ph/9709423.
- S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier and B. Page, Phys. Rev. D 95, no. 9, 096011 (2017) doi:10.1103/PhysRevD.95.096011 [arXiv:1703.05255 [hep-ph]].
- [3] H. Ita, Phys. Rev. D 94, no. 11, 116015 (2016)
 doi:10.1103/PhysRevD.94.116015 [arXiv:1510.05626 [hep-th]].
- [4] S. Abreu, R. Britto, C. Duhr and E. Gardi, JHEP **1706**, 114 (2017) doi:10.1007/JHEP06(2017)114 [arXiv:1702.03163 [hep-th]].