Diboson Interference Resurrection at LHC via subjets

Rafael Aoude and William Shepherd

MITP Summer School 2018 Mainz, 2018

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation to be publish soon..

focusing on distribution tails of WW/WZ production at LHC ...

new physics via **anomalous Triple Gauge coupling**

$$\sigma_{\rm int} \sim A^{\rm SM} (A^{\rm BSM})^*$$

for some ops: $2 \rightarrow 2$ don't interfere

...but the actual process $2 \rightarrow 4$ does

requires unfolding angular distribution !

$$\begin{array}{l} \text{WZ/WW production at LHC} & & & \\ \mathcal{L}_{\text{SM}} \supset -ig_{WWV} \left(g_{1,V}(W^{+\mu\nu}W^{-}_{\mu}V_{\nu} - W^{-\mu\nu}W^{-}_{\mu}V_{\nu}) + \kappa^{V}W^{+}_{\mu}W^{-}_{\nu}V^{\mu\nu}\right) \\ & = 1 \\ & = 1 \\ \end{array}$$
deviations from SM

 $\mathcal{L}_{BSM,1} = ig \, c_W \, \delta g_{1,Z} \, Z_\nu W^{+\mu\nu} W^-_\mu + \text{h.c.} + ig (c_W \, \delta \kappa_Z Z^{\mu\nu} + s_W \, \delta \kappa_\gamma A^{\mu\nu}) W^+_\mu W^-_\nu$

gauge invariance

 $\delta g_{1,\gamma} = 0$ $\delta \kappa_Z = \delta g_{1,z} - s_W^2 / c_W^2 \delta \kappa_\gamma$

$$\begin{array}{l} \text{WZ/WW production at LHC} \quad V_b \\ \downarrow & \downarrow \\ \mathcal{L}_{\text{SM}} \supset -ig_{WWV} \left(g_{1,V} (W^{+\mu\nu} W^-_{\mu} V_{\nu} - W^{-\mu\nu} W^-_{\mu} V_{\nu}) + \kappa^V W^+_{\mu} W^-_{\nu} V^{\mu\nu} \right) \\ = 1 \\ = 1 \\ \end{array}$$

deviations from SIM

 $\mathcal{L}_{BSM,1} = ig \, c_W \, \delta g_{1,Z} \, Z_\nu W^{+\mu\nu} W^-_\mu + \text{h.c.} + ig (c_W \, \delta \kappa_Z Z^{\mu\nu} + s_W \, \delta \kappa_\gamma A^{\mu\nu}) W^+_\mu W^-_\nu$

new op.
$$\mathcal{L}_{\rm BSM,2} = \frac{ig\,\lambda_Z}{M_W^2} W_\mu^{+\nu} W_\nu^{-\rho} W_\rho^{3\mu}$$

$$\begin{split} & \text{WZ/WW production at LHC} \quad \bigvee_{b} \qquad \bigvee_{a} \\ & \mathcal{L}_{SM} \supset -ig_{WWV} \left(g_{1,V}(W^{+\mu\nu}W^{-}_{\mu}V_{\nu} - W^{-\mu\nu}W^{-}_{\mu}V_{\nu}) + \kappa^{V}W^{+}_{\mu}W^{-}_{\nu}V^{\mu\nu}\right) \\ & = 1 \\ \text{deviations from SM} \\ & \mathcal{L}_{BSM,1} = ig \, c_{W} \delta g_{1,Z} \, Z_{\nu}W^{+\mu\nu}W^{-}_{\mu} + \text{h.c.} + ig(c_{W} \, \delta \kappa_{Z})Z^{\mu\nu} + s_{W} \, (\delta \kappa_{\gamma}A^{\mu\nu})W^{+}_{\mu}W^{-}_{\nu} \\ & \text{new op.} \\ & \text{Same helicities as SM} \\ & \mathcal{L}_{BSM,2} = \underbrace{g_{AZ}}_{MW} W^{+\nu}_{\nu}W^{-\rho}W^{3\mu}_{\rho} \\ & \text{different helicities} \\ & \underbrace{2 \rightarrow 2}_{\text{suppressed}} \\ & \text{operator} \end{split}$$

Diboson non-interference λ_Z

$$\mathcal{A}^{\mathrm{SM}}(q\bar{q} \to V_T W_T^+) \sim E^0$$

$$\mathcal{A}^{BSM,\lambda_Z}(q\bar{q} \to V_T W_T^+) \sim \frac{E^2}{m_W^2} \lambda_Z$$

2 → 2 scattering amplitudes don't interfere!!

[Dixon and Shadmi, 94]

[Azatov, Contino, Machado and Riva, 16]

Diboson Ressurection! λ_Z

2 → 4 scattering amplitudes interfere!!

> unfold angular distributions

Azimuthal angles are important !

Diboson interference resurrection

only
$$\frac{ig\,\lambda_Z}{M_W^2}W^{+\nu}_{\mu}W^{-\rho}_{\nu}W^{3\mu}_{\rho}$$

 $\sigma_{
m int}$

 $700 \text{GeV} \le m_{VV} \le 800 \text{GeV}$

 $\frac{ig\,\lambda_Z}{M_W^2} W^{+\nu}_{\mu} W^{-\rho}_{\nu} W^{3\mu}_{\rho}$

Can BSM² produce this pattern?

only λ_Z

 BSM^2

theory error

partonic case

some pattern but same sign const. + $A \cos[2\phi_{V_1} + 2\phi_{V_2}]$

all ops.

10

Resurrection at (sub)jet level

Resurrection at (sub)jet level

fat jets: anti-kt, R = 1.0

harder jets clustered first

sub jets: N-subjettiness

$$egin{aligned} & au_N = rac{1}{d_0} \sum_k p_{T,k} \min\{\Delta R_{1,k}, \Delta R_{2,k}, ..., \Delta R_{N,k}\} \ & au_N o 0 \quad ext{with N prong} \end{aligned}$$

[Thaler and Van Tilburg, 11]

2 prong - W/Z/h fat jet

3 prong - top fat jet

 \mathcal{A}

 $au_2/ au_1
ightarrow 0$ for 2 prong jet

QCD: $q/g \rightarrow 1$ -prong jets

[Thaler and Van Tilburg, 11]

Resurrection at (sub)jet level

 $\sigma_{
m SM}$

hadronic case

Backgrounds

Background at (sub)jet level

dangerous 🛕

needs tagging and topology cuts

tt production

Background at (sub)jet level

could be dangerous but easily removed with tagging

jets

@ reconstruction level

Topology and tagging cuts	channel	efficiency
$(p_{T1} - p_{T2})/(p_{T1} + p_{T2}) < 0.15$	signal λ_Z	~ 15%
$40 \text{ GeV} \le m_{j_1} \le 100 \text{ GeV}$		
$40 \text{ GeV} \le m_{j_2} \le 100 \text{ GeV}$	SM	~ 5%
$\tau_2/\tau_1 < 0.45$	jets	~0.002% 🛕
$7_3/7_2 > 0.45$ acoplanarity < 0.5	tĨ	~0.3% 🛕
	V+jets	~0.4%
Calorimeter granularization	t+W	~1%
cannot resolve tracks in the same cell (0.1 \times 0.1 in $\varphi \times \eta$)		

and does not trigger soft jets (pT < 0.5)

@ reconstruction level after reco cuts Bkg 104 Bkg 10⁵ BSM BSM 100 [dd] [qd] -- tt tt 10D -- W w 6 6 0.1 jets jets 0.0 Vjets ťW I 1 1200 800 1000 1400 800 1200 600 600 1000 1400 ---- Vjets ---- tW $\sqrt{s} \, [\text{GeV}]$ $\sqrt{s} \, [\text{GeV}]$

jets still dominate bkg !

... after reconstruction cuts

keeps the angular distribution

Conclusions

unfolding angular distributions with subjet

energy growth of suppressed ops

Asymmetry can probe λ_Z at high energies

sensitive to only one dim-6 op.

jet contaminates but vanishes in asymmetry ttbar loses angular dependence

*semileptonic case not shown

Backup slides

Helicity structures

W decay amplitudes

	V_1	V_2
0	no ϕ_{V_1}	no ϕ_{V_2}
+	$\sim e^{+i\phi_{V_1}}$	$\sim e^{-i\phi_{V_2}}$
	$\sim e^{-i\phi_{V_1}}$	$\sim e^{+i\phi_{V_2}}$

 $\sigma_{\rm int} \sim 2 \ \Re \epsilon [\mathcal{A}_{\rm SM} \mathcal{A}_{\rm BSM}^*]$

 $\mathcal{A}_{\rm SM} \sim \mathcal{A}_{\rm SM}^{q\bar{q} \to V_1 V_2} \mathcal{M}^{V_1} \mathcal{M}^{V_2}$ $\mathcal{A}_{\rm BSM} \sim \mathcal{A}_{\rm BSM}^{q\bar{q} \to V_1 V_2} \mathcal{M}^{V_1} \mathcal{M}^{V_2}$

"flatness" of backgrounds

jets

Recombination scheme

subjet - WTA scheme

WTA scheme

sum of pT: $p_{Tr} = p_{T1} + p_{T2}$,

direction of hardest pseudo-jet: $\hat{n}_r = \begin{cases} \hat{n}_1 & \text{if } p_{T1} > p_{T2}, \\ \hat{n}_2 & \text{if } p_{T2} > p_{T1}. \end{cases}$

Disobon Interference Resurrection via subjets

SM and BSM appear in different helicity

- high-energy limit
- tree level
- at least one transversely-polarized vector boson

 $2 \rightarrow 2$ scattering amplitudes don't interfere

A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\rm BSM}) $
VVVV	0	4,2
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2
$\psi\psi\psi\psi\psi$	2,0	2,0
$\psi\psi\phi\phi$	0	0
øøøø	0	0

... but $2 \rightarrow 4$ can interfere

For a n-point amplitude: $|h(A_{n>5}^{SM})| \le n-4$

dim-6 op.

\mathcal{O}_i	$h_{min}^{\mathcal{O}}$	$h_{max}^{\mathcal{O}}$
F^3	6-n	n
$F^2\phi^2,F\psi^2\phi,\psi^4$	6-n	n-2
$\psi^2 ar{\psi}^2,\psi ar{\psi} \phi^2 D,\phi^4 D^2$	0	n-4
$\psi^2 \phi^3$	6-n	n-4
ϕ^6	0	n-6

 $h(A_6^{SM}) = 0, \pm 2$

... but $2 \rightarrow 4$ can interfere

For a n-point amplitude: $|h(A_{n>5}^{SM})| \le n-4$

dim-6 op.

 $h(A_6^{SM}) = 0, \pm 2$

 $\sigma_{
m int}$

 $700 \text{GeV} \le m_{VV} \le 800 \text{GeV}$

 $\frac{ig\,\lambda_Z}{M_W^2} W^{+\nu}_{\mu} W^{-\rho}_{\nu} W^{3\mu}_{\rho}$

Resurrection at (sub)jet level

