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Large Scale Success of CDM
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 Matter power spectra

 Expansion history of the universe



Baryonic Tully Fischer Relation
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CDM predicts

Observed with little scatter

McGaugh (2015)
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MOND (a brief introduction)
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Three Approaches

CDM with 

Feedback

Stellar evolution

Black Holes

AGN feedback

Supernovae

Modified gravity

Bekenstein and Milgrom (1984)

Zlosnik et al. (2007)

Hossenfelder (2017)

Verlinde (2017)

Hybrid

approach

Blanchet (2007)

Zhao (2008)

Ho et al. (2008)

This work!
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Motivation For Superfluid DM from MOND 



Condensate Properties
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Predomiant 3-body interactions
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Bose Gas with 3-Body Contact Interactions
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First study in detail a Bose gas with 2 body contact interactions
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Bose Einstein Condensation at T = 0

∫ d3x ψ †(x) − !
2∇2

2m
⎛
⎝⎜

⎞
⎠⎟
ψ (x)− µψ †(x)ψ (x)+ 1

2
g(ψ †(x))2 (ψ (x))2

⎡

⎣
⎢

⎤

⎦
⎥H − µN =

ψ (x) = Ψ(x)+ψ 1(x)

At T=0, ψ 1(x) = 0 ⇒ |Ψ(x) |2 = µ
g



Evaluate the Hamiltonian order by order in the normal field.

Linear term vanishes (similar to the one loop calculation in QFT).


Fourier transform the field to Ladder operators:               .

Diagonalize the resulting Hamiltonian. 

Find the energy spectrum in terms of momenta.

K
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Bose Einstein Condensation at Finite T
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Finite T analysis continues
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Hohenberg-Martin Dilemma

Solution can either be made to obey the 
equation of motion or be gapless

lim
k→0
εk = 0

Analogous to the problem in QFT for one loop 
correction to the effective potential of a 
scalar field

Fujimoto et al.
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Resolution!
Yukalov (2006)

Separate chemical potentials for the two phases,

since the particles in each phase are conserved 

for a given T, V, N.

K

Equation of Motion

Gapless Spectra

µ0 = (2n − n0 +σ )g

µ1 = (2n − n0 −σ )g

σ = 1
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(a) Pressure versus density (b) Pressure versus temperature

Figure 1: Plots showing the equation of state. Pressure is normalized by the ideal gas pressure
at the critical point. Density and temperature are normalized by the respective quantities at the
critical point.

Figure 1(a) shows the pressure as a function of density. For small n, we get, P / n, which is
reassuring since at low densities we would expect the system to behave like an ideal gas. For high
densities, we get P / n2, because of the contact interactions.

Figure 1(b) shows the pressure as a function of temperature. We see that at large temperature,
P / T again confirming the ideal gas behavior.

4.3 Superfluid Fraction

At this stage, we need to make a distinction between the condensate and the superfluid. In general,
the two phenomena are related to di↵erent aspects of the system. A BEC refers to the macroscopic
occupation of the ground state. A superfluid, on the other hand, is a fluid whose long-wavelength
excitations are phonons, i.e., excitations whose dispersion relation is linear, !k ⇠ k. While super-
fluidity is related to strong pair correlation between particles, BEC relates to the coherence of the
system. In this section, we give a brief description of superfluidity and the superfluid fraction [21].

In order for a liquid to exhibit superfluidity, its flow in a medium must be accompanied by zero
friction, i.e., no part of its kinetic energy should be dissipated into heat. A quantum liquid heats
up via discrete thermal excitations and so we’d like to find the condition when the liquid cannot
undergo the lowest energy excitation. Let the liquid be moving with a velocity v at T = 0 and the
energy of these excitations to be ✏(p) with associated momentum p. Then in the reference frame
of the medium in which the liquid is flowing the energy of such an excitation would be

E(p) = ✏(p) + p.v. (56)

If E(p) < 0, then this excitation will be energetically favorable. For E(p) < 0, the best case scenario
would be for the momentum of the excitation to be in the opposite direction of the velocity of the
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Well Behaved Equation of State

Comparison with 
Slepian and 

Goodman (2011)



Illustrations
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Density profiles 

Cored density profiles.

In MW sized galaxies, the superfluid core

For Galaxy clusters and larger scales, DM described by CDM 

⇒ MOND


