Charmonium Contribution to $B \rightarrow X_s \ell^+ \ell^-$

Jack Jenkins (Indiana University)

Collaborators:Enrico Lunghi(Indiana University)Tobias Hurth(MITP)Tobias Huber(Siegen)Keri Vos(Siegen)Qin Qin(Siegen)

Anomalies in Exclusive Channels

- Anomalies in theoretically clean observables
- Region of interest is (1, 6) GeV
- Exclusive channels

	Observables	Belle	Belle II	
		(2014)	5 ab-1	50 ab-1
UT angles	sin 2 β	0.667 ± 0.023 ± 0.012 [56]	0.012	0.008
	α[°]	85 ± 4 (Belle+BaBar) [24]	2	1
	γ[°]	68 ± 14 [13]	6	1.5 🔫
Gluonic penguins	$S(B \rightarrow \phi K^0)$	0.90+0.09 [19]	0.053	0.018
	$S(B \rightarrow \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$ [57]	0.028	0.011
	$S(B \rightarrow K_S^0 K_S^0 K_S^0)$	$0.30 \pm 0.32 \pm 0.08$ [17]	0.100	0.033
	$\mathcal{A}(B \rightarrow K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$ [58]	0.07	0.04
UT sides	V _{cb} incl.	$41.6 \cdot 10^{-3}(1 \pm 1.8\%)$ [8]	1.2%	
	V _{cb} excl.	$37.5 \cdot 10^{-3}(1 \pm 3.0\%_{ex} \pm 2.7\%_{th})$ [10]	1.8%	1.4%
	V _{ub} incl.	$4.47 \cdot 10^{-3}(1 \pm 6.0\%_{ex} \pm 2.5\%_{th})$ [5]	3.4%	3.0%
	Vab excl. (had. tag.)	$3.52 \cdot 10^{-3}(1 \pm 9.5\%)$ [7]	4.4%	2.3%
Missing E decays	$\mathcal{B}(B \rightarrow \tau \nu) [10^{-6}]$	$96(1 \pm 27\%)$ [26]	10%	5%
	$\mathcal{B}(B \rightarrow \mu \gamma) [10^{-6}]$	< 1.7 [59]	20%	7%
	$R(B \rightarrow D\tau \nu)$	$0.440(1 \pm 16.5\%)$ [29] [†]	5.2%	3.4%
	$R(B \rightarrow D^* \tau \gamma)^{\dagger}$	$0.332(1 \pm 9.0\%)$ [29] [†]	2.9%	2.1%
	$\mathcal{B}(B \rightarrow K^{*+} \nu \overline{\nu}) [10^{-6}]$	< 40 [31]	< 15	20%
	$\mathcal{B}(B \rightarrow K^+ \nu \overline{\nu}) [10^{-6}]$	< 55 [31]	< 21	30%
Rad. & EW penguins	$\mathcal{B}(B \to X, \gamma)$	$3.45 \cdot 10^{-4}(1 \pm 4.3\% \pm 11.6\%)$	7%	6%
	$A_{CP}(B \rightarrow X_{refy}) [10^{-2}]$	$2.2 \pm 4.0 \pm 0.8$ [60]	1	0.5
	$S(B \rightarrow K_c^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07[20]$	0.11	0.035
	$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$ [21]	0.23	0.07
	$C_7/C_9 (B \rightarrow X_s \ell \ell)$	~20% [37]	10%	5% 🧹
	$\mathcal{B}(B_s \rightarrow \gamma \gamma) [10^{-6}]$	< 8.7 [40]	0.3	
	$\mathcal{B}(B_s \rightarrow \tau \tau) [10^{-3}]$	-	< 2 [42]‡	-
Charm Rare	$\mathcal{B}(D_{*} \rightarrow \mu\nu)$	5 31 - 10-3(1 + 5 3% + 3 8%) [44]	2.9%	0.9%
	$\mathcal{B}(D, \rightarrow \tau \gamma)$	$5.70 \cdot 10^{-3}(1 \pm 3.7\% \pm 5.4\%)$ [44]	3.5%	3.6%
	$\mathcal{B}(D^0 \rightarrow \gamma \gamma)$ [10 ⁻⁶]	< 1.5 [47]	30%	25%
Charm CP	$A_{co}(D^0 \rightarrow K^+K^-)[10^{-2}]$	-0.32 + 0.21 + 0.09 [61]	0.11	0.06
	$A_{cn}(D^0 \to \pi^0 \pi^0) [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$ [62]	0.29	0.09
	$A_{CP}(D^0 \rightarrow K_c^0 \pi^0)$ [10 ⁻²]	$-0.21 \pm 0.16 \pm 0.09$ [62]	0.08	0.03
Charm Mixing	$x(D^0 \rightarrow K_s^0 \pi^+ \pi^-) [10^{-2}]$	$0.56 \pm 0.19 \pm 0.07_{0.13}$ [50]	0.14	0.11
-	$y(D^0 \rightarrow K_s^0 \pi^+ \pi^-) [10^{-2}]$	$0.30 \pm 0.15 \pm \frac{0.08}{0.08}$ [50]	0.08	0.05
	$ q/p (D^0 \rightarrow K_s^0 \pi^+ \pi^-)$	$0.90 \pm 0.16 \pm 0.08 \\ 0.05 \pm 0.06 $ [50]	0.10	0.07
	$\phi(D^0 \rightarrow K^0_S \pi^+ \pi^-) [\circ]$	$-6 \pm 11 \pm \frac{4}{5}$ [50]	6	4
Tau	$\tau \rightarrow \mu \gamma [10^{-9}]$	< 45 [63]	< 14.7	< 4.7
	$\tau \rightarrow e\gamma [10^{-9}]$	< 120 [63]	< 39	< 12
	$\tau \rightarrow \mu\mu\mu [10^{-9}]$	< 21.0 [64]	< 3.0	< 0.3

P. Urquijo / Nuclear and Particle Physics Proceedings 263-264 (2015) 15-23