Four-Dimensional F-Theory Compactifications with Discrete Gauge Symmetries via Higgsing joint work with E. Palti, O. Till and T. Weigand: arXiv:1408.6831

Christoph Mayrhofer

Arnold Sommerfeld Center, LMU München

22nd September, 2014

General motivation for F-theory GUT models

- SU(5): 10 10 5 (top) Yukawa difficult to get in IIB (only via instantons);
- SO(10): quarks and leptons sit in 16 of SO(10); cannot be realized with pert. open strings;
- *E*₆ gauge groups are excluded in type IIB;
- Takes back-reaction of D-branes into account;
- Allows for 'local models'—do not take any gravitational interaction into account;
 M_{pl, 4}/µ → ∞ and g²_{YM}(µ) = const
 ...

Possibility of **exceptional groups** and **locality** are the crucial reasons to consider F-theory!

Motivation for additional symmetries

Have to forbid dim. 4 proton decay operators;

- ▶ R-parity violating terms $u_R^c d_R^c d_R^c$, LLe_R^c , QLd_R^c ($\leftrightarrow 10\bar{5}_m\bar{5}_m$) must be absent due to experimental bound;
- ▶ Necessary condition: $\bar{\mathbf{5}}_m$, $\bar{\mathbf{5}}_H$ on different curves otherwise: $10 \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_H$ implies $10 \, \bar{\mathbf{5}}_m \bar{\mathbf{5}}_m$
- Note: Not sufficient; To forbid effective dim. 5 operators (from triplet exchange) need H_u and H_d on two different curves;
- In general, want selection rules to exclude unwanted stuff;

Will omit references here; Can be found in arXiv:1408.6831;

Basics of F-theory: From IIB to F-theory

Type IIB string theory with varying axion-dilaton:

$$\tau := C_0 + i e^{-\phi} \qquad \qquad g_s = e^{\phi}$$

▶ Add conjectured exact SL(2,ℤ) S-duality of IIB

$$\tau \to \frac{a\tau + b}{c\tau + d}, \left(\begin{array}{c} H\\ F\end{array}\right) \to \left(\begin{array}{c} d & c\\ b & a\end{array}\right) \left(\begin{array}{c} H\\ F\end{array}\right), \begin{array}{c} \tilde{F}_5 & \to & F_5\\ g_{MN} & \to & g_{MN}\end{array}$$

- Led to idea of 12d theory—F-theory—where information of τ encoded into elliptic curve over every point of M₄ × B;
- F-theory basically 'book-keeping' device to describe vacua of IIB;
- From duality via M-theory and assumptions on non-compact 4d space, we find that compact space Y₄ has to be elliptically fibred CY₄;

,

Picture of elliptically fibred CY₄

U(1)-fibration vs. \mathbb{Z}_2 -fibration I

Fibration with U(1) given by non-generic quartic in \mathbb{P}_{112} :

$$w^{2} + b_{0}wu^{2} + b_{1}uvw + b_{2}v^{2}w + c_{0}u^{4} + c_{1}u^{3}v + c_{2}u^{2}v^{2} + c_{3}uv^{3} = 0$$

with $[u:v:w] \in \mathbb{P}_{112}$ and b_i 's and c_i 's base sections;

Curve has two rational points:

$$Sec_0: [0:1:0], Sec_1: [0:1:-b_2];$$

Hence, describes torus fibrations with two sections; Such a fibration gives a U(1);

• If we add $c_4 v^4$, above rational points become

$$[0:1:-\frac{1}{2}(b_2-\sqrt{b_2^2-4c_4})], \qquad 0:1:-\frac{1}{2}(b_2+\sqrt{b_2^2-4c_4})];$$

Not rational any more, hence, no sections but bi-section; Obtain \mathbb{Z}_2 -fibration instead of U(1)-model;

U(1)-fibration vs. \mathbb{Z}_2 -fibration II

- What are the geometric changes?
- ► U(1)-fibration: two codim-two loci, C₁ and C₂, over which fibre degenerates/factorises in two distinct ways:

 Z₂-model: only one distinct degeneration/factorisation (over C)

fibre over C

U(1)-fibration vs. \mathbb{Z}_2 -fibration III

- What is field theoretically going on?
- ► All factorised fibre P¹'s can be wrapped by M2-branes; Obtain additional DOF, which at codim-two interpreted as matter states;
- Intersection pattern of this M2 branes with sections/fibral divisors gives U(1)-charge/weights of these states;
- Hence, for U(1)-model two states:
 - over C_1 : $\mathbf{1}_2$;
 - ▶ over *C*₂: **1**₁;
- ▶ Going from U(1)-fibration to Z₂-fibration, lose 1₂-state;
- ▶ Interpreted as Higgsing of U(1) where $\langle \mathbf{1}_2 \rangle \neq 0$; Therefore $U(1) \rightarrow \mathbb{Z}_2$ because Higgsing with charge two state;

U(1)-fibration vs. \mathbb{Z}_2 -fibration IV

- That there is such a Z₂ can be seen from circle compactification; Discrete Wilson lines around S¹ give two distinct vacua;
- Can identify these two vacua in geometry;
- Use that F-theory on CY plus S¹ is equivalent to M-theory on same CY;
- If we use this dictionary and shrink blue P¹ over C₁ to obtain massless Higgs mode, find that both P¹'s over C₂ remain massive/finite size;
- If we shrink gray P¹ over C₁ to obtain massless Higgs mode, find that one P¹ over C₂ must shrink too.
- Actually this are two different elements in the Tate-Shafarevich group (i.e. fibrations with same Jacobian fibration) of this fibration; Hence these are the two vacua;
- In S¹ compactification picture, Higgs modes are identified with different KK-modes (massless due to gauge field in S¹);
- In general: if 1_n Higgs, n different KK-modes for Higgs ; Can be checked for n = 3 in F₃-fibration where 1₃ appears;

 \mathbb{Z}_2 -selection rules in the presents of an SU(5) I

- To obtain further understanding of \mathbb{Z}_2 add SU(5);
- ► For toric torus hypersurfaces fibrations (such as P_{1,1,2}[4]) there exists canonical procedure—so-called tops constructions;
- For ℙ_{1,1,2}[4]-fibration this leads to three different embeddings of SU(5), one of which gives following matter spectrum:

$10, 5_A, 5_B, 1,$

with the Yukawa couplings:

$$10\,\bar{\mathbf{5}}_{A}\,\bar{\mathbf{5}}_{A}\,,\quad 10\,\bar{\mathbf{5}}_{B}\,\bar{\mathbf{5}}_{B}\,,\quad 10\,10\,\mathbf{5}_{B}\,,\quad \bar{\mathbf{5}}_{A}\mathbf{5}_{B}\,\mathbf{1}\,;$$

► There are no 10105_A, 5̄_A5_A1, 5̄_B5_B1 couplings which should be there if just an SU(5)-symmetry;

▶ These couplings naturally absent if assign Z₂-charges:

+ or 0 10, 5_B

- or 1 $\boldsymbol{5}_{\mathcal{A}}$, $\boldsymbol{1}$

 \mathbb{Z}_2 -selection rules in the presents of an SU(5) II

- To understand that look again at Higgsing picture;
- If we start from U(1)-model with same SU(5)-top, obtain matter spectrum:

$$10_{-2}\,, \qquad 5_{-6}\,, \qquad 5_{-1}\,, \qquad 5_{4}\,, \qquad 1_{5}\,, \qquad 1_{10}\,,$$

where subscripts are U(1)-charges; Furthermore, have all allowed Yukawas;

- Switching on VEV for 1₁₀ gives one massive and one mass-less combination of 5₋₆ and 5₄ via 5₋₄5₋₆1₁₀-coupling;
- ⇒ Get same amount of massless states as in \mathbb{Z}_2 -case whereupon the \mathbb{Z}_2 -charge is U(1)-charge mod 2 (up to subtleties involving the center of SU(5));

G_4 -flux in the recombination picture I

- Above described Higgsing is also known as brane recombination;
- ▶ Going from U(1)-fibration to Z₂-fibration changes Euler number by

$$\chi(CY_{U(1)}) - \chi(CY_{\mathbb{Z}_2}) = 3\chi(C_1)$$

where $\chi(C_1)$ is Euler characteristic of C_1 locus;

Under brane recombination charges must be conserved, e.g.

$$n_{D3} = \frac{1}{24}\chi(CY) - \frac{1}{2}\int_{CY}G_4 \wedge G_4$$

▶ Hence, if start w/o, flux must have flux after recombination;

G_4 -flux in the recombination picture II

Candidate for such flux:

$$G_4 = \sigma_1 - \frac{1}{2}[u] \wedge [\rho]$$

with $\sigma_1 = \{u = 0\} \cap \{w = -b_2v^2\} \cap \{\rho = 0\}$ and $[\rho] = \frac{1}{2}[c_4]$ where $c_4 = \tau \rho$ such that flux well quantised and F-flat;

► Generalisation to case where start w/ flux F:

$$G_4([\rho]) = \sigma_1 - \frac{1}{2}[u] \wedge [\rho]$$

with $[\rho] = 2F + \frac{1}{2}[c_4];$

Fits perfectly with states needed for recombination; Because need both chiralities for states along C₁ for recombination:

$$-\frac{1}{2}c_1(\mathcal{K}_{C_1}) \leq 2F \leq \frac{1}{2}c_1(\mathcal{K}_{C_1});$$

Summary & Outlook

- Showed you realisation of discrete gauge symmetries in F-theory via Higgsing in compactifications to 4d;
 - Details of identification of Higgs modes;
 - Appearance of discrete selection rules on Yukawas;
 - ► G₄-flux for Z₂-model;
- Extend flux computation by adding SU(5);
- ▶ Work out details for Z₃-case;

Thank you for your attention!