The String Theory Universe@ JGU Mainz, Sep. 22-26 th, 2014

Entanglement Entropy (EE) and Spacetime Geometry

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics (YITP), Kyoto University

<u>Contents</u>

- 1 Introduction
- 2 Entanglement Entropy in QFTs
- 3 Holographic Entanglement Entropy
- ④ Entanglement Entropy for (locally) Excited States
- **5** Entanglement Renormalization and AdS/CFT
- 6 Conclusions

1 Introduction

String Theory \Rightarrow a unified theory of quantum gravity

It has been still difficult to compute quantum corrections in cosmological spacetimes like big bang, de-Sitter etc.

However, a generalization of AdS/CFT (or holography) may be able to resolve this problem:

``Quantum Gravity = Quantum Many-body Systems''

For this, we need to understand the basic mechanism of AdS/CFT. \Rightarrow A key concept is **quantum entanglement**.

What is the quantum entanglement?

Consider the following states in **two spin systems**:

(i) A direct product state (unentangled state)

$$|\Psi\rangle = \frac{1}{2} \left[|\uparrow\rangle_A + |\downarrow\rangle_A \right] \otimes \left[|\uparrow\rangle_B + |\downarrow\rangle_B \right].$$

Independent

(ii) An entangled state (EPR pair)

$$|\Psi\rangle = \left[|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B\right] /\sqrt{2}.$$

One determines the other !

3 Non-local correlation

A measure of quantum entanglement is known as the **entanglement entropy** defined as follows.

Divide a quantum system into two subsystems A and B.

$$H_{tot} = H_A \otimes H_B$$

Define the reduced density matrix ρ_A by $\rho_A = \mathrm{Tr}_B |\Psi\rangle\langle\Psi|$.

The entanglement entropy S_A is now defined by

$$S_{A}=-\mathrm{Tr}_{A}~
ho_{A}~\mathrm{log}
ho_{A}$$
 . (von-Neumann entropy)

It is also helpful to look at (n-th) Renyi entanglement entropy (REE) which generalizes the EE :

$$S_A^{(n)} = \frac{1}{1-n} \cdot \log \operatorname{Tr}[(\rho_A)^n].$$

$$\lim_{n \to 1} S_A^{(n)} = -\text{Tr}[\rho_A \log \rho_A] = S_A \quad . \quad (\text{Tr}[\rho_A] = 1).$$

If we know all of $S_A^{(n)}$, we find all eigenvalues of ρ_A . (so called entanglement spectrum)

2 Entanglement Entropy in QFTs

We can define the EE in QFTs by taking the continuum limit of the EE in quantum many-body systems.

In gauge theories, since there is a gauss law constraint, the division into A and B is highly non-trivial. [Casini-Huerta 13,....]

In **QFTs**, the entanglement entropy (EE) provides us a universal physical quantity (~order parameter).

For example, we can characterize the degrees of freedom of CFTs (~central charges) from the EE for ground states.

(i) 2d CFT
$$S_A = \frac{c}{3} \log \frac{l}{\varepsilon}$$
.

[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04,...]

(ii) 3d CFT

$$S_{A(=S^{1})} = \gamma \cdot \frac{l}{\varepsilon} - F.$$
[F-th: Jafferis-Klebanov-Pufu-Safdi 11,
Entropic proof: Casini-Huerta 12]

(iii) 4d CFT $S_{A(=S^{2})} = \gamma \cdot \frac{l^{2}}{\varepsilon^{2}} - 4a \cdot \log \frac{l}{\varepsilon} + s.$ Sinha-Myers 10, Casini-Huerta-My

[Ryu-TT 06, Solodukhin 08, Casini-Huerta-Myers 11,...]

Replica method in QFT

A basic method to compute EE in QFTs is replica method.

$$S_A = -\frac{\partial}{\partial n} \log \operatorname{Tr}_A (\rho_A)^n |_{n=1}$$

In the path-integral formalism, the ground state wave function $|\Psi\rangle$ (in 2d QFTs) can be expressed as follows:

Ex.2d CFT (A= an interval [u,v]) Twist operator

$$Tr(\rho_A)^n = \frac{Z(\Sigma_n)}{(Z(\Sigma_1))^n} = \prod_{k=1}^n \langle \sigma_k(u)\overline{\sigma}_k(v) \rangle \propto (u-v)^{-\frac{c}{6}(n-1/n)}$$

$$\Delta_{each sheet} = \frac{c}{24} \left(1 - \frac{1}{n^2}\right)$$

In this way, we reproduced the EE in 2d CFT :

$$S_A = \frac{c}{3} \log \frac{l}{a} \qquad (l \equiv v - u).$$

[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04,..] Note: the UV cut off a is introduced such that $S_A = 0$ at l = a. **③** Holographic Entanglement Entropy

(3-1) AdS/CFT

Basic Principle

(Bulk-Boundary relation):

 $Z_{Gravity} = Z_{CFT}$

(3-2) Holographic Entanglement Entropy Formula [Ryu-TT 06]

$$S_{A} = \underset{\substack{\partial \gamma_{A} = \partial A \\ \gamma_{A} \approx A}}{\operatorname{Min}} \left[\frac{\operatorname{Area}(\gamma_{A})}{4G_{N}} \right]$$

 γ_A is the minimal area surface (codim.=2) such that $\partial A = \partial \gamma_A$ and $A \sim \gamma_A$. homologous

Note: In time-dependent spacetimes, we need to take extremal surfaces. [Hubeny-Rangamani-TT 07]

Verification of HEE

- Confirmations of basic properties: Area law, Strong subadditivity (SSA), Conformal anomaly,....
- Direct Derivation of HEE from AdS/CFT:
- (i) Pure AdS, A = a round sphere [Casini-Huerta-Myers 11]
- (ii) Euclidean AdS/CFT [Lewkowycz-Maldacena 13, Faulkner 13, cf. Fursaev 06]
- (iii) Disjoint Subsystems [Headrick 10, Faulkner 13, Hartman 13]
- (iv) General time-dependent AdS/CFT → Not yet, but..
 Hol. SSA [Evidences: Allais-Tonni 11, Callan-He-Headrick 12; A proof: Wall 13]
 Causality [Headrick-Hubeny-Lawrence-Rangamani 14]
- Corrections to HEE beyond the supergravity limit:

 [Higher derivatives: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11, , Fursaev-Patrushev-Solodukhin 13, Dong 13, Camps 13,...; Camps' talk]
 [1/N effect: Barrella-Dong-Hartnoll-Martin 13, Faulkner-Lewkowycz-Maldacena 13,..]
 [Higher spin gravity: de Boer-Jottar 13, Ammon-Castro-Iqbal 13, Hijano-Kraus 14,..]

(F-theorem). [Casini-Huerta 12, Liu-Mezei 12, Myers-Singh 12, ...]

[Calabrese-Cardy 04, Solodukhin 08, Hung-Myers-Smolkin 11 ...]

Holographic Strong Subadditivity [Headrick-TT 07]

We can easily derive the strong subadditivity, which is the most important inequality satisfied by EE. [Lieb-Ruskai 73]

Note: This proof can be applied if $S_A = Min_{\gamma_A} [H(\gamma_A)]$, for any functional H.

⇒ higher derivative corrections.

Pure VS Mixed State

(Pure) AdS \Leftrightarrow Zero temp. CFT ρ_{tot} is pure $\Leftrightarrow S_A = S_B$.

AdS BH \Leftrightarrow Finite temp. CFT ρ_{tot} is not pure $\Leftrightarrow S_A \neq S_B$. Note: the HEE formula can be regarded as a generalization of Bekenstein-Hawking formula of black hole entropy:

$$S_{BH} = \frac{\text{Area of BH}}{4G_N}$$

A Killing horizon (time independent black holes)⇔ All components of extrinsic curvature are vanishing.

A minimal surface (or extremal surface)

⇔Traces of extrinsic curvature are vanishing.

Possible Generalizations of HEE

(i) Any closed surfaces in AdS → Differential entropy [de Boer's talk; Balasubramanian-Chowdhury-Czech-de Boer-Heller 13,...]

(ii) Minimal surfaces which divide internal manifolds (eg.S⁵).

$$\mathbf{Y}_{A} = [AdS_{5} \supset H_{4}(t=0)] \times [S^{5} \supset S^{4}]$$

⇒ Area(Y_A)/4G_N = EE between two CFTs ~N²•I^d•ε^{-d} [Volume law]

SU(N) Yang-Mills \Rightarrow SU(N/2) YM \times SU(N/2) YM [Mollabashi-Shiba-TT 14, Taylor's talk]

④ Entanglement Entropy for (locally) Excited States

- The entanglement entropy is also a useful quantity to characterize **excited states**. Instantaneous excitations Well-studied examples are **<u>quantum quenches</u>**:
 - [CFT: Calabrese-Cardy 05, 07, ..; HEE: Arrastia-Aparicio-Lopez 10,...]

(a) Global quantum quenches in 2d CFTs $figure{} M(t)$ $S_A \propto c \cdot (t/\varepsilon)$. (b) Local quantum quenches in 2d CFTs

$$S_A^{2d} \propto c \cdot \log(t/\varepsilon)$$
. Joint

Here we want to focus on more elementary excited states (which give very instructive results):

- (c) Local operator insertions at a time
- \Rightarrow Excited states are defined by local operators O(x):

$$|O(x)\rangle \equiv O(x)|0\rangle.$$

We study
$$\Delta S_A^{(n)} \equiv S_A^{(n)} \left[O(x) \right] - S_A^{(n)} \left[0 \right]$$
.

$\Delta S_A^{(n)}$ ~ `degrees of freedom' of operator O(x).

(4-1) Two limits of Subsystem A

[1] $l \to 0$ limit (\approx small energy limit) In this case, we find a property analogous to the first law of thermodynamics: $\Delta S_A^{(n)} [| O \rangle] \propto \Delta E_A$

[Bhattacharya-Nozaki-Ugajin-TT 12, Blanco-Casini-Hung-Myers 13, Wong-Klich-Pando Zayas-Vaman 13]

[2] $l \rightarrow \infty$ limit (\approx large energy limit) This leads to a very `entropic' quantity !

⇒ We will choose this limit below.

[Nozaki-Numasawa-TT 14, He-Numasawa-Watanabe-TT 14, Caputa-Nozaki-TT 14]

(4-2) Replica Method for Excited States

We want to calculate $\operatorname{Tr}(\rho_A)^n$ for

$$\begin{split} \rho_A(t,x) &= e^{-iHt} e^{-\varepsilon H} O(x) \big| 0 \big\rangle \big\langle 0 \big| O(x) e^{-\varepsilon H} e^{iHt} \\ &= O(\tau_e,x) \big| 0 \big\rangle \big\langle 0 \big| O(\tau_l,x), \\ &(\tau_e \equiv -\varepsilon - it, \quad \tau_l \equiv -\varepsilon + it), \end{split}$$
where ε is the UV regulator for the operator.

Here we consider a d + 1 dim. CFT on \mathbb{R}^{d+1} . $(\tau, x_1, x_2, \dots, x_d) \in \mathbb{R}^{d+1} \implies \text{We set } x_1 + i\tau = re^{i\theta}.$ In this way, the Renyi EE can be expressed in terms of correlation functions (2n-point function etc.) on Σn : $\Delta S_A^{(n)} = \frac{1}{1-n} \cdot \left[\log \left\langle O(r_l, \theta_l^n) O(r_e, \theta_e^n) \cdots O(r_l, \theta_l^1) O(r_e, \theta_e^1) \right\rangle_{\Sigma_n} - n \cdot \log \left\langle O(r_l, \theta_l^n) O(r_e, \theta_e^n) \right\rangle_{\Sigma_n} \right].$

(4-3) Free scalar CFTs in any dimensions [Numasawa-Nozaki-TT 14]

We focus on the free massless scalar field theory on Σ_n

$$S = \int d^{d+1} x \Big[\partial_{\mu} \phi \partial^{\mu} \phi \Big]$$

and calculate 2n-pt functions using the Green function:

Time evolution in free massless scalar theory

Α

Note :

 $\Delta S_A^{(n)f}$ is `topologically invariant' under deformations of A.

$$\Delta S_A^{(n)f}$$
 for $O = \phi^k$ in $d+1 > 2$ dim.

TABLE I. $\Delta S_A^{(n)f}$ and $\Delta S_A^f \left(=\Delta S_A^{(1)f}\right)$ for free massless scalar field theories in dimensions higher than two (d > 1).

Heuristic Explanation

First , notice that in free CFTs, there are definite (quasi) particles moving at the speed of light.

$$\Rightarrow \phi \approx \phi_{L} + \phi_{R} \cdot L = A R = B$$

$$\phi^{k} | \operatorname{vac} \rangle \approx \sum_{j=0}^{k} C_{j} \cdot (\phi_{L})^{j} \cdot (\phi_{R})^{k-j} | \operatorname{vac} \rangle$$

$$= 2^{-k/2} \sum_{j=0}^{k} \sqrt{k} C_{j} | j \rangle_{L} | k - j \rangle_{R}.$$

$$\Rightarrow \Delta S_{A}^{(n)f} = \frac{1}{1-n} \log \left[2^{-nk} \sum_{j=0}^{k} (k C_{j})^{n} \right]$$

$$\Delta S_{A}^{f} = k \log 2 - 2^{-k} \sum_{j=0}^{k} C_{j} \cdot \log[k C_{j}].$$
Agree with replica Calculations !

(4-4) Rational 2d CFTs [He-Numasawa-Watanabe-TT 14]

We can prove the simple relation

$$\Delta S_A^{(n)f} = \log d_O$$

, where do is the quantity called quantum dimension.

[\cdot n=2 \rightarrow four point functions, described by the cross ratio (z,\overline{z}). Time evolution = Chiral fusion transformation (z,\overline{z}) \rightarrow (1- z,\overline{z})]

(4-5) Free U(N) Yang-Mills at large N [Caputa-Nozaki-TT 14]

We choose $O(x) = \text{Tr}[\Phi(x)^{J}]$. ($\Phi = N \times N$ Hermitian matrix scalar)

For example, when J = 2, we find the exact result :

$$\Delta S_A^{(n)f} = \frac{1}{1-n} \log \left[2^{1-2n} + 2^{-n} \cdot N^{2(1-n)} \right]$$

can be neglected **only if n>1**

In general, we find

if
$$n > 1 \implies \Delta S_A^{(n)f} = \frac{Jn-1}{n-1}\log 2 + O(N^{-2})$$
.
if $n = 1 \implies \Delta S_A^{(1)f} = \frac{J}{2}\log N + O(N^{-2})$.
Enhance
at n=1
"deconfinement?

(4-6) Holographic Results for locally excited states

 $\Delta S_A^{(n>2)} \text{ in } d \dim \text{CFTs } \stackrel{\Rightarrow}{\to} \text{Holographic 2n-point function} \\ \text{in (d+1) dim. topological AdS BH}$

Assuming 1<< Δ << we get: $\Delta S_A^{(n)} \approx \frac{4n\Delta_O}{d(n-1)}\log\left(\frac{t}{\varepsilon}\right)$.

[Caputa-Nozaki-TT 14]

[This calculation is based on the `naïve' large N limit.

Thus the n=1 limit and the late time limit $t=\infty$ are not trustable.]

For n=1 (EE), we can employ the HEE to find $\Delta S_A^{(1)}$. [Nozaki-Numasawa-TT 13; 2d CFT derivation: Bernamonti's talk]

For 2d CFT (AdS $_3$ /CFT $_2$),

$$\Delta S_A^{(1)} \approx \frac{c}{6} \log \left(\frac{t}{\varepsilon}\right)$$

(5) Entanglement Renormalization and AdS/CFT

(5-1) Tensor Network (TN) [See e.g. Cirac-Verstraete 09(review)]

Tensor network states

 Efficient variational ansatz for the ground state wave functions in quantum many-body systems.
 [A tensor network diagram = A wave function]

⇒ An ansatz is good if it respects the quantum entanglement of the true ground state.

Ex. Matrix Product State (MPS) [DMRG: White 92,...,

Rommer-Ostlund 95,..]

MPS and TTN are not good near quantum critical points (CFTs) because entanglement entropies are too small:

(5-2) AdS/CFT and MERA

<u>MERA</u> (Multiscale Entanglement Renormalization Ansatz):

- ⇒ An efficient variational ansatz for CFT ground states. [Vidal 05]
- To increase entanglement in a CFT, we add (dis)entanglers.

An Estimation of EE in 1+1 dim. MERA

 \Rightarrow agrees with 2d CFTs.

Indeed, the HEE also suggests that

A spacetime in gravity = Collections of bits of quantum entanglement

A framework for this is the **entanglement renormalization**.

where $z = \varepsilon \cdot e^{-u}$.

(5-3) cMERA and Holographic Metric

To relate to the AdS/CFT, take a continuum limit of MERA:

Formulation of cMERA [Haegeman-Osborne-Verschelde-Verstraete 11]

$$\underbrace{|\Psi(u)\rangle}_{\text{State at scale u}} = P \cdot \exp\left(-i \int_{u_{IR}}^{u} ds [K(s) + L]\right) \cdot \underbrace{|\Omega\rangle}_{\text{IR state}},$$

with the UV cutoff $k \leq \Lambda$ (=1/ ε).

K(u) : disentangler, L: scale transformation

 $|\Omega\rangle$: unentangled state in real space $\rightarrow S_A = 0$ for any *A*. *L*: non - relativistic scale transformation (= coarse - graining) s.t. $L|\Omega\rangle = 0$.

(5-4) Emergent Metric from cMERA [Nozaki-Ryu-TT 12, Miyaji-TT work in progress]

We focus on gravity duals of translational invariant static states, which are not conformal in general.

A conjecture: holographic metric in the extra direction

$$\Rightarrow g_{uu} du^2 = N \cdot \left(1 - \left| \left\langle \Phi(u) \, | \, \Phi(u + du) \right\rangle \right|^2 \right).$$

 $N^{-1} \equiv \int dx^{d} \cdot \int_{0}^{\Lambda e^{u}} dk^{d} =$ The total volume of phase space at energy scale u. $(\Lambda = 1/\varepsilon : \text{cut off})$

$$ds_{Gravity}^2 = g_{uu} du^2 + \frac{e^{-t}}{\varepsilon^2} \cdot d\vec{x}^2 - g_{tt} dt^2$$

Ex. cMERA for a Quantum Quench of a free scalar

 $z\sqrt{g_{zz}} = \chi(u,t)$

[Mollabashi-Nozaki-Ryu-TT 13]

Light cone: looks like a gravitational wave.

We can also (analytically) confirm the linear growth: $SA \propto t$ because guu $\propto t^2$ at late time. This is also true in higher dim.

This is consistent with the known CFT (2d) [Calabrese-Cardy 05]. and with the holographic result (any d). [Hartman-Maldacena 13]

6 Conclusions

- EE for ground states of CFT describes the degrees of freedom, related to the central charges etc.
- EE for excited states describe how the system gets thermalized. If we consider locally excited states, the growth of EE can be interpreted as the degrees of freedom of the operator (=quantum dimension in 2d RCFT).
- HEE suggests a deep connection between quantum entanglement and spacetime geometry.
 This speculation gets manifest in the idea of entanglement renormalization (MERA).

Future Problems

- Precise definition of EE dual to HEE for extremal surfaces which divide internal manifolds. (Democratic formulation of HEE ?) [cf. Taylor's talk]
- More analysis of EE for locally excited states in higher dim. (Quantum dimension in higher dimensions ?)
- More understandings of the connection between MERA and AdS/CFT. (Construction of full metric ?, Einstein eq. ?,....) [cf. Perturbative Einstein eq. from 1st law of EE: Lashkari-McDermott-Raamsdonk 13,....]

By adding dummy states, we keep the dimension of Hilbert space for any u to be the same.

⇒ We can formally describe the renormalization by a unitary transformation. It is useful to introduce a `unrescaled state' $|\Phi(u)\rangle$: $|\Phi(u)\rangle \equiv e^{iuL}|\Psi(u)\rangle = P \cdot e^{-i\int_{u_{IR}}^{u} \hat{K}(s)ds}|\Omega\rangle,$

where $\hat{K}(u) \equiv e^{iuL} K(u) e^{-iuL}$ (= rescaled disentangler).

