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@ Introduction

String Theory = a unified theory of quantum gravity

It has been still difficult to compute quantum corrections
in cosmological spacetimes like big bang, de-Sitter etc.

However, a generalization of AdS/CFT (or holography)
may be able to resolve this problem:

“Quantum Gravity = Quantum Many-body Systems”

For this, we need to understand the basic mechanism of
AdS/CFT. = A key concept is quantum entanglement.



What is the quantum entanglement ?

Consider the following states in two spin systems:

(i) A direct product state (unentangled state)

)= 1), +4), o), +[4), |
"

Independent

(ii) An entangled state (EPR pair)

w)=|[1) ®[) -|4) e[t | n2

One determines the other !

3 Non-local correlation



A measure of quantum entanglement is known as
the entanglement entropy defined as follows.

Divide a quantum system into two subsystems A and B.

H_ =H,®H, .

Define the reduced density matrix Oa by
0, :TrB“PX‘P‘ .

The entanglement entropy SA is now defined by

SA — —TI‘A pA logpA . (von-Neumann entropy)



It is also helpful to look at (n-th) Renyi entanglement
entropy (REE) which generalizes the EE :

1

l—n

S = ——-logTr|(p,)"].

lim S =-Tr[p, logp,]= . (Trlp,I=1).

n—1

If we know all of S( ") we find all eigenvalues of P 4.
(so called entanglement spectrum)



2 Entanglement Entropy in QFTs

We can define the EE in QFTs by taking the continuum
limit of the EE in qguantum many-body systems.

Quantum Many-body Systems Quantum Field Theories (QFTs)
N : timeslice
I
Continuum | ‘
Limit e-0
'.‘ » B @4— OA ¥ 0B
H,=H,®H; .

In gauge theories, since there is a gauss law constraint, the division
into A and B is highly non-trivial. [Casini-Huerta 13,....]



In QFTs, the entanglement entropy (EE) provides us
a universal physical quantity (Yorder parameter).

For example, we can characterize the degrees of freedom
of CFTs (~central charges) from the EE for ground states.

(i) 2d CFT c ]
S == log o [Holzhey-Larsen-Wilczek 94,
4 3 c ' Calabrese-Cardy 04,..]
I CFT
( ) 3d S _ [ F [F-th: Jafferis-Klebanov-Pufu-Safdi 11,
A(=S"y v ; ~ ©* Entropic proof: Casini-Huerta 12]
(iii) 4d CFT 2 ] [Ryu-TT 06, Solodukhin 08,
S —yv.— —4q-log —+ 5. Sinha-Myers 10,
A5ty =7 g’ S g Casini-Huerta-Myers 11,...]



Replica method in QFT

A basic method to compute EE in QFTs is replica method.

0 .
S,=—— logTt, (pA) -
on
In the path-integral formalism, the ground state wave

function |¥) (in 2d QFTs) can be expressed as follows:

Path integrate
=0 o X

} (P




Then we can express
0, :TrB‘\PX\P‘ as follows: [0al =

Glue each boundaries successively. —® o0

Tr (pA )n =

Z(Z.) n -sheeted
B Z(Z,)" " Riemannsurface X

n

n sheets {



Ex.2d CFT (A= an interval [u,v]) Twist operator

" /(2 L »// “Sn-1/n
" (pA) i (Z((Zln)))n i H <Oi(u)o-k (V)> e 6( ).

C 1
Aeachsheet — 24[1 o nz)

In this way, we reproduced the EE in 2d CFT :

S =ckgl

453 (l=v—-u).

a
[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04,..]
Note: the UV cut off a is introduced such that §, =0

at /=4 .



3 Holographic Entanglement Entropy
(3-1) AdS/CFT

[Maldacena 97]

AdS/CFT
Quantum Gravity (String theory) Conformal Field Theory
on d+2 dim. AdS spacetime — (CFT) on d+1 dim.
(anti de-Sitter space) Minkowski spacetime

‘ Classical limit ‘Lafge Nlimit =
Strong coupling limit

General relativity with A<0 Strongly interacting
(Geometrical) quantum many-body systems

Basic Principle .
ZGravity o ZCFT

(Bulk-Boundary relation) :




(3-2) Holographic Entanglement Entropy Formula

[Ryu-TT 06]
| Area(y,) _
SA — M|n O/A) CFT, | (Weomitthetime direction.)
0y a=0A 4G
yacA L N -

2

7a is the minimal area surface
B AdS

(codim.=2) such that 02 7

oA=0y, and A~y, . I < —

homologous z>¢ (UV cutoff)
Note: In time-dependent spacetimes, 2 2 d 1,2
, L, dzf—dt?+ ) dx

we need to take extremal surfaces. ds‘ =R*. = 1

[Hubeny-Rangamani-TT 07] VA



Verification of HEE

* Confirmations of basic properties:
Area law, Strong subadditivity (SSA), Conformal anomaly,....

e Direct Derivation of HEE from AdS/CFT:
(i) Pure AdS, A = a round sphere [Casini-Huerta-Myers 11]
(ii) Euclidean AdS/CFT [Lewkowycz-Maldacena 13, Faulkner 13, cf. Fursaev 06]
(iii) Disjoint Subsystems [Headrick 10, Faulkner 13, Hartman 13]
(iv) General time-dependent AdS/CFT - Not yet, but..
Hol. SSA [Evidences: Allais-Tonni 11, Callan-He-Headrick 12; A proof: Wall 13]
Causality [Headrick-Hubeny-Lawrence-Rangamani 14]

e Corrections to HEE beyond the supergravity limit:
[Higher derivatives: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,
, Fursaev-Patrushev-Solodukhin 13, Dong 13, Camps 13,... ; Camps’ talk]
[1/N effect: Barrella-Dong-Hartnoll-Martin 13, Faulkner-Lewkowycz-Maldacena 13,..]
[Higher spin gravity: de Boer-Jottar 13, Ammon-Castro-lgbal 13, Hijano-Kraus 14,..]



General Behavior of HEE [rRyu-TT 06]

G 7R [LJ [1]
4 2GYIT(d)2) P Pl

Gf d +1=odd) ——, Arealaw
divergence

b

] (if d+1=even)

where p, = (d A", p. X~(d -2)/[2(d =3)].....
..... g =) (@ =N (d 1)

A universal quantity (F) which
characterizes odd dim. CFT.
= A proof of c-theorem in 3 dim.

(F-theorem). [Casini-Huerta 12, Liu-
Mezei 12, Myers-Singh 12, ...]

Agrees with conformal anomaly

(central charge) in even dim. CFT
[Calabrese-Cardy 04, Solodukhin 08,
Hung-Myers-Smolkin 11 ...]



Holographic Strong Subadditivity [Headrick-TT 07]

We can easily derive the strong subadditivity, which is
the most important inequality satisfied by EE. [Lieb-Ruskai 73]

vy
I
O ® >

82

A
B
C

(D

— SA+B + SB+C 2 SA+B+C + SB

D

Note: This proof can be applied if § = Min[H(}/A )],
for any functional H. /4
= higher derivative corrections.



Pure VS Mixed State

B

A (Pure) AdS < Zero temp.CFT

P IS PUre & S, =3S;.

B

AdS BH < Finite temp.CFT
P 1S NOtpure < S, #S;.

4



Note: the HEE formula can be regarded as a generalization
of Bekenstein-Hawking formula of black hole entropy:

- Areaof BH

S
sH 4G,

A Killing horizon (time independent black holes)

< All components of extrinsic curvature are vanishing.

N

A minimal surface (or extremal surface)

<Traces of extrinsic curvature are vanishing.




Possible Generalizations of HEE
(i) Any closed surfaces in AdS — Differential entropy

[de Boer’s talk; Balasubramanian-Chowdhury-Czech-de Boer-Heller 13,...]

(i) Minimal surfaces which divide internal manifolds (eg.S>).
¥a = [AdS5 DO Ha4(t=0)] X [S> D S%]

=  Area(¥a)/4Gn = EE between two CFTs

~N2:[d=g-d [Volume law] A ,
(Nothern Hemisphere)
y qn'/q;
SU(N) Yang-Miills ;H@AA (DAB
= SU(N/2) YM X SU(N/2)YM AT

[Mollabashi-Shiba-TT 14, Taylor’s talk]
B (Southern Hemisphere)



@ Entanglement Entropy for (locally) Excited States

The entanglement entropy is also a useful quantity

to characterize excited states. Instantaneous excitations

/
Well-studied examples are quantum quenches:

[CFT: Calabrese-Cardy 05, 07, ..; HEE: Arrastia-Aparicio-Lopez 10,...]

(a) Global quantum quenches in 2d CFTs M)

(b) Local qguantum quenches in 2d CFTs

Joint

Si¥ cc-log(t/e) . -3 N —




Here we want to focus on more elementary excited
states (which give very instructive results):

(c) Local operator insertions at a time

= Excited states are defined by local operators O(x):

We study

0(x)) = 0(x)|0).

AS( =sP[o(x))]-sM|0Y].

ASX]) ~ "degrees of freedom’ of operator O(x).




(4-1) Two limits of Subsystem A

B

D
[1]/ — 0 limit (~ small energy limit)

In this case, we find a property analogous to

AS™[|0)]oc AE,

[Bhattacharya-Nozaki-Ugajin-TT 12, Blanco-Casini-Hung-Myers 13,

the first law of thermodynamics:

Wong-Klich-Pando Zayas-Vaman 13 ]

[2] ] — oo limit (~ large energy limit)
This leads to a very entropic’ quantity !

= We will choose this limit below.

[Nozaki-Numasawa-TT 14, He-Numasawa-Watanabe-TT 14,
Caputa-Nozaki-TT 14]




(4-2) Replica Method for Excited States

We want to calculate Tr(p,)" for

pa(t,x) =e""'e™"O(x)|0)(0|O(x)e~"e""
- 0(6.0]0)(0101 )

(z,=—e—1t, 1, =—c+I1),

where ¢ iIs the UV regulator for the operator.

Here we consider ad +1dim. CFT on R,

(7,%, X%, -+, X)) € R = Weset x, +ir=re”.



In this way, the Renyi EE can be expressed in terms of
correlation functions (2n-point function etc.) on 2n :

AS{? == log(O(r, 7)0(1,.07)-+-0(1, 4)0(r,.0)),

~n-1og(0(r, 6, O 4,)), |

‘

O(ri, 0F)O(re, 6F)

I

I
r/ \~.;// ,_\: J
K \_.’ A /

X1 I

4
|
(9(7‘1, HZIH—I) O(Tea 9§+1):
|
7

T e v
\A/, r D
K L |
|

/ =— 2N
n-sheets




(4-3) Free scalar CFTs in any dimensions
[Numasawa-Nozaki-TT 14]

We focus on the free massless scalar field theory on 2n
d+1
S = [d*x]o,¢0"g]
and calculate 2n-pt functions using the Green function:

1 a1/n _a—lln
dnzrs(a—1/a) a'"+a " —2cos((@—¢)/n)’

rs
= _ i AT
1+a® |X—y[ +r*+s° O.(T’H’:E) 9

Gy [(r, 0, %) (s, 0, )] =

where

The operator O Is chosen as
O, =g




Time evolution in free massless scalar theory

AS for O=¢: (ie.k=1) [

2t
E.g. AS{gm = Iog[ )

t*+1°
Note:
ASX‘” is topologically invariant’
under deformations of A.

Wechose x, =-1 with =10

|

| and X, =---=X, =0.
2 dim. (O=¢"?)
.3_5'_ Operator
[ (n)f i
Interested A a
. Entangled pair
quantities ! B
50 60 70 t t <




ASIVT for O=¢" in d+1>2dim.

TABLE 1. AS™Y and ASY, (: ASDT ) for free massless

scalar field theories in dimensions higher than two (d > 1).

nlk=1 k=2 k=1
2 lflog 2 logg — log (5%1‘ Z;:u (ICJ)Q)
ASTY | 3fl10g2 | Llog 32 = log (2—1; >0 (16'3)3)
Ren\li :
Entr :
2m—1 ™
m\ log 2 ﬁlogﬁn—_iﬁ ﬁlog(g_rjr_ﬂ Z;:D(ij) )
AS% |1 Nog: = log 2 |l log 2— o7 Z;—:DECJ log1C;
EE

EPR state !

[For a proof: Nozaki 14]




Heuristic Explanation

First , notice that in free CFTs, there are definite
(quasi) particles moving at the speed of light.

= o= @ + ¢ - |L=A|R=B

left-moving  right -moving
#|vac) = 3" Ci- () (4:)" | vac)
_ k : :
=2 klsz:O’\/ ij ‘ J>L‘k_ J>R'

= AS{' =ilog[2‘”thzo(ij)”] Agree with
f 1-n - — replica
AS, =klog2-2- ijo C;-10g[,C;1. | calculations !



(4-4) Rational 2d CFTs [He-Numasawa-Watanabe-TT 14]

We can prove the simple relation
AS{V' =logd,

, where do is the quantity called quantum dimension.

[*." n=2 - four point functions, described by the cross ratio (z,z).
Time evolution = Chiral fusion transformation (z,z)=>(1-z,z)]



(4-5) Free U(N) Yang-Mills at large N [Caputa-Nozaki-TT 14]

We choose O(x) = TI‘[CI)(X)J ]. (@=NxN Hermitian matrix scalar)

For example, when J =2, wefind theexactresult:

1 _ _ _
Asg\n)f _ Iog[zl 2n -I—g n.NZ(lJn)]
1-n g ,
can be neglected only if n>1
In general, we find

if n>1 = AS("' :Jn—_11I092+O(N2).
Jn_ Enhance
if n=1 = ASP" ==logN +O(N™). at n=1
2 ~deconfinement ?



(4-6) Holographic Results for locally excited states

AS (n>2) ind dim CETs ™ Holographic 2n-point function
in (d+1) dim. topological AdS BH

Assuming 1<<A<<c we get: AS{" = 4nAO g(ij.
d(n-21) g

[Caputa-Nozaki-TT 14]
[This calculation is based on the 'naive’ large N limit.

Thus the n=1 limit and the late time limit t=oc are not trustable.]

For n=1 (EE), we can employ the HEE

. 1
to find AS,&) . [Nozaki-Numasawa-TT 13; A !
2d CFT derivation: Bernamonti’s talk] |
I/2

For 2d CFT (AdS,/CFT,),

t b >
1)
AS 6 |Og ( j . Boundary : ’ 20 1 \fm




®) Entanglement Renormalization and AdS/CFT

(5-1) Tensor Network (TN) [See e.g. Cirac-Verstraete 09(review)]

Tensor network states
= Efficient variational ansatz for the ground state
wave functions in quantum many-body systemes.

[A tensor network diagram = A wave function]

= An ansatz is good if it respects the quantum
entanglement of the true ground state.



Ex. Matrix Product State (MPS) [DMRG: white 92,...,

Rommer-Ostlund 95,..]

T e M0

a =12,..., 7,
[6-162 dn] o =T or .

Spin chain

W)= ) TIM(e))M(c,)M(o,)] |0y, 05, 0,)

01,09, 0} n Spins




MPS and TTN are not good near quantum critical points
(CFTs) because entanglement entropies are too small:

CFT )

S,<2logy (<<logL~S;

S, ~ Ni; -log 7,

In general,

N.. = min[# Intersections of y,].




(5-2) AdS/CFT and MERA

MERA (Multiscale Entanglement Renormalization Ansatz):
= An efficient variational ansatz for CFT ground states.
[Vidal 05]
To increase entanglement in a CFT, we add (dis)entanglers.

gitary transf.
Neen 2 spins



An Estimation of EE in 1+1 dim. MERA

S, o Min[#Bonds] oc log L
—> agrees with 2d CFTs.




Indeed, the HEE also suggests that

A spacetime in gravity
= Collections of bits of quantum entanglement

_ Area(y,) Area(y,)

S
A 4G 2

Planck length

A framework for this is the entanglement renormalization.



A conjectued relation to AdS/CFT [swingle 09]

Min[# Bonds] _
/ Min[Area]
1

/
uﬂ__ﬁo(zji I Y A

Equivalent Ad Sd+2
-1 C/Fﬂm
2u 2 A2 G2
Metric = ds® + c > (—dt® + dX*) = 4z dt2 X ,
g Z

—u

where z=¢-e



(5-3) cMERA and Holographic Metric

To relate to the AdS/CFT, take a continuum limit of MERA:

Formulation of cMERA [Haegeman-Osborne-Verschelde-Verstraete 11]

P (U)) = P-exp(—i [ as[K(s)+ L])- Q)

—— —
State at scaleu IR state

with the UV cutoff k<A (=1/¢).
K(u) : disentangler, L: scale transformation

|Q2) : unentangled state in real space — S, =0 forany A.
L : non - relativistic scale transformation (= coarse - graining)
s.t. L|Q)=0.



(5-4) Emergent Metric from cMERA [Nozaki-Ryu-TT 12,
Miyaji-TT work in progress]

We focus on gravity duals of translational invariant
static states, which are not conformal in general.

A conjecture: holographic metric in the extra direction

= 9,007 = N-{-[(0@) | o + ) ).

1 q Ae" g
N = Idx 'IO dk® = The total volume of phase space
(A =1/ & : cut off) at energy scale u.

ds?

Gravity

2U

e™
=g, du’ +—--dx* — g, dt”
&



Ex. cMERA for a Quantum Quench of a free scalar
[Mollabashi-Nozaki-Ryu-TT 13]

gzz (u t) ngh'l: Co.ne: looks like a
gravitational wave.

We can also (analytically) confirm the linear growth: SAcct
because guuoct? at late time. This is also true in higher dim.

This is consistent with the known CFT (2d) [Calabrese-Cardy 05].
and with the holographic result (any d). [Hartman-Maldacena 13]



®) Conclusions

 EE for ground states of CFT describes the degrees of freedom,
related to the central charges etc.

 EE for excited states describe how the system gets thermalized.
If we consider locally excited states, the growth of EE can be
interpreted as the degrees of freedom of the operator
(=quantum dimension in 2d RCFT).

 HEE suggests a deep connection between quantum
entanglement and spacetime geometry.

This speculation gets manifest in the idea of entanglement
renormalization (MERA).



Future Problems

* Precise definition of EE dual to HEE for extremal surfaces
which divide internal manifolds. (Democratic formulation of HEE ?)
[cf. Taylor’s talk]

 More analysis of EE for locally excited states in higher dim.
(Quantum dimension in higher dimensions ?)

 More understandings of the connection between MERA and
AdS/CFT. (Construction of full metric ?, Einsteineq.?,....)
[cf. Perturbative Einstein eq. from 1% [aw of EE:
Lashkari-McDermott-Raamsdonk 13,.... ]



Appendix: Relation to (discrete) MERA

By adding dummy states, we keep the dimension of
Hilbert space for any u to be the same.
= We can formally describe the renormalization

by a unitary transformation.




It is useful to introduce a ‘unrescaled state’

(I)(u)> ;

—ij“ K (s)ds

o)) =e"|W(u))=P-e ™ |Q),

where K(u)=e""K(u)e™" (= rescaled disentangler).

(i) Interpretation of | ®(u))

Cut off :

(ii) Interpretation of |\ (u))

Cut off :
k<A




