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String Theory ⇒ a unified theory of quantum gravity

It has been still difficult to compute quantum corrections 
in cosmological spacetimes like big bang, de-Sitter etc.

However,  a generalization of AdS/CFT (or holography) 
may be able to resolve this problem:  

``Quantum Gravity = Quantum Many-body Systems’’

For this, we need to understand the basic mechanism of 

AdS/CFT.  ⇒ A key concept is quantum entanglement.

① Introduction



What is the quantum entanglement ?

Consider the following states in two spin systems:

(i)   A direct product state (unentangled state)

(ii) An entangled state (EPR pair)
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Divide a quantum system into two subsystems A and B.

Define the reduced density matrix by  

The entanglement entropy            is now defined by

(von-Neumann entropy)

A

.   BAtot HHH 

A measure of quantum entanglement is known as 

the entanglement entropy defined as follows.



It is also helpful to look at  (n-th) Renyi entanglement   

entropy (REE) which generalizes the EE :

If we know all of          , we find all eigenvalues of       .

(so called entanglement spectrum)  



② Entanglement  Entropy in QFTs

We can define the EE in QFTs by taking the continuum

limit of the EE in quantum many-body systems.  
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Continuum 
Limit ε→0

ε

Quantum Many-body Systems Quantum Field Theories (QFTs)

In gauge theories, since there is a gauss law constraint, the division
into A and B is highly non-trivial.  [Casini-Huerta 13,….]  



In QFTs,  the entanglement entropy (EE)  provides us 

a universal physical quantity (~order parameter). 

For example, we can characterize the degrees of freedom

of CFTs  (~central charges) from the EE for ground states.

(i)   2d CFT

(ii)  3d CFT

(iii) 4d CFT

[Holzhey-Larsen-Wilczek 94, 
Calabrese-Cardy 04,..]

[Ryu-TT 06, Solodukhin 08, 
Sinha-Myers 10, 
Casini-Huerta-Myers 11,…]

[F-th: Jafferis-Klebanov-Pufu-Safdi 11,
Entropic proof: Casini-Huerta  12]



Replica method in QFT

A basic method to compute EE in QFTs is replica method.

In the path-integral formalism, the ground state wave 

function          (in 2d QFTs) can be expressed as follows:
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Ex.2d CFT  (A= an interval  [u,v])

In this way, we reproduced the EE in 2d CFT :

Note: the UV cut off a is introduced such that               
at           . 

Twist operator 

[Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04,..]



(3-1)  AdS/CFT  

[Maldacena 97]

Basic Principle 

（Bulk-Boundary relation）：



AdS/CFT

Classical limit Large N limit

Strong coupling limit 

CFTGravity ZZ 

Quantum Gravity (String theory) 
on d+2 dim.  AdS spacetime

(anti de-Sitter space)

Conformal Field Theory 
(CFT)  on d+1 dim. 
Minkowski spacetime

General relativity with Λ＜0
(Geometrical)

Strongly interacting 
quantum many-body systems

③ Holographic Entanglement Entropy



(3-2) Holographic Entanglement Entropy Formula   
[Ryu-TT 06]
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Note: In time-dependent spacetimes,   
we need to take extremal surfaces.
[Hubeny-Rangamani-TT 07]



Verification of HEE

• Confirmations of basic properties:
Area law,  Strong subadditivity (SSA),  Conformal anomaly,….

• Direct Derivation of HEE from AdS/CFT:

(i) Pure AdS, A = a round sphere [Casini-Huerta-Myers 11]

(ii) Euclidean AdS/CFT [Lewkowycz-Maldacena 13, Faulkner 13, cf. Fursaev 06]

(iii) Disjoint Subsystems [Headrick 10, Faulkner 13, Hartman 13]

(iv) General time-dependent AdS/CFT → Not yet, but..

Hol. SSA  [Evidences: Allais-Tonni 11, Callan-He-Headrick 12; A proof: Wall 13] 

Causality [Headrick-Hubeny-Lawrence-Rangamani 14]

• Corrections to HEE beyond the supergravity limit:
[Higher derivatives: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11, 

, Fursaev-Patrushev-Solodukhin 13, Dong 13, Camps 13,… ; Camps’ talk]                                

[1/N effect: Barrella-Dong-Hartnoll-Martin 13, Faulkner-Lewkowycz-Maldacena 13,..] 

[Higher spin gravity:  de Boer-Jottar 13,  Ammon-Castro-Iqbal 13,  Hijano-Kraus 14,..] 



General Behavior of HEE [Ryu-TT 06]

divergence

 law Area

Agrees with conformal anomaly      
(central charge) in even dim. CFT
[Calabrese-Cardy 04, Solodukhin 08, 

Hung-Myers-Smolkin 11 …]

A universal quantity (F) which 
characterizes odd dim. CFT.
⇒A proof of c-theorem in 3 dim. 
(F-theorem). [Casini-Huerta 12,  Liu-

Mezei 12,  Myers-Singh 12, …]

A



Holographic Strong Subadditivity [Headrick-TT 07]

We can easily derive the strong subadditivity, which is 

the most important inequality satisfied by EE. [Lieb-Ruskai 73]
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Note:  This proof can be applied if
for any functional H.  

⇒ higher derivative corrections.



Pure VS Mixed State   
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A Killing horizon (time independent black holes)

⇔ All components of extrinsic curvature are vanishing.                        

∩
A minimal surface (or extremal surface)

⇔Traces of extrinsic curvature are vanishing.

Note: the HEE formula can be regarded as a generalization 
of Bekenstein-Hawking formula of black hole entropy:



(ii) Minimal surfaces which divide internal manifolds (eg.S5). 

ɤA = [AdS5 ⊃ H4 (t=0)]  × [S5 ⊃ S4 ]

⇒ Area(ɤA)/4GN  =  EE between two CFTs  

~N2・ld・ε-d [Volume law]

SU(N) Yang-Mills  

⇒ SU(N/2) YM × SU(N/2) YM

[Mollabashi-Shiba-TT 14, Taylor’s talk]

Possible Generalizations of HEE

(i) Any closed surfaces in AdS → Differential entropy
[de Boer’s talk;  Balasubramanian-Chowdhury-Czech-de Boer-Heller 13,…]



④ Entanglement Entropy for (locally) Excited States 

The entanglement entropy is also a useful quantity 

to characterize excited states.

Well-studied examples are quantum quenches: 

[CFT: Calabrese-Cardy 05, 07, ..; HEE: Arrastia-Aparicio-Lopez 10,…]

(a)  Global quantum quenches in 2d CFTs

(b)  Local quantum quenches in 2d CFTs
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Instantaneous excitations



Here we want to focus on more elementary excited 
states (which give very instructive results):

(c)  Local operator insertions at a time 

⇒ Excited states are defined by local operators O(x):

We study

~ `degrees of freedom’ of operator O(x).
)(n
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(4-1) Two limits of Subsystem A

[1]

In this case, we find a property analogous to 

the first law of thermodynamics:    

[Bhattacharya-Nozaki-Ugajin-TT 12, Blanco-Casini-Hung-Myers 13,

Wong-Klich-Pando Zayas-Vaman 13 ]

[2]

This leads to a very `entropic’ quantity !

⇒We will choose this limit below.
[Nozaki-Numasawa-TT 14, He-Numasawa-Watanabe-TT 14, 

Caputa-Nozaki-TT 14]                                                                            
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(4-2) Replica Method for Excited States

We want to calculate                   for  

 operator. for theregulator   UV theis   where
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In this way, the Renyi EE can be expressed in terms of

correlation functions (2n-point function etc.) on Σn :
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We focus on the free massless scalar field theory on Σn

and calculate 2n-pt functions using the Green function:
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(4-3) Free scalar CFTs in any dimensions
[Numasawa-Nozaki-TT 14]



Time evolution in free massless scalar theory

)1 (i.e.    ::for    )2(  kOSA  












.0   and    

   10  with     chose We

2

1

dxx

llx



2 dim.

4 dim.
6 dim.

l
t

Note：
is `topologically invariant’ 

under deformations of A.

fn

AS )(

.
2

log     ..
22

2
)2(

dim)4( 











lt

t
SgE A

Interested 
quantities !

:):( ieO 

fn

AS )(



dim. 21din     for     )(  kfn

A OS 

Renyi
Entropy

EE
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[For a proof:  Nozaki 14]



Heuristic Explanation

First , notice that in free CFTs, there are definite 
(quasi) particles moving at the speed of light.
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(4-4) Rational 2d CFTs

We can prove the simple relation

, where dO is the quantity called quantum dimension.

[∵ n=2 → four point functions, described by the cross ratio (z,z).

Time evolution = Chiral fusion transformation (z,z)→(1-z,z)]

[He-Numasawa-Watanabe-TT 14]
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(4-5) Free U(N) Yang-Mills at large N
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(4-6) Holographic Results for locally excited states

CFTs dim in   )2( dS n

A

 ⇒ Holographic 2n-point function 
in (d+1) dim. topological AdS BH
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[This calculation is based on the `naïve’ large N limit. 
Thus  the n=1 limit and the late time limit t=∞ are not trustable.]

For n=1 (EE),  we can employ the HEE  
to find            . [Nozaki-Numasawa-TT 13;

2d CFT derivation: Bernamonti’s talk]  
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Assuming 1<<Δ<<c we get:



(5-1) Tensor Network (TN)  [See e.g. Cirac-Verstraete 09(review)]

Tensor network states

= Efficient variational ansatz for the ground state 

wave functions in quantum many-body systems. 

[A tensor network diagram = A wave function]

⇒ An ansatz is good if it respects the quantum 

entanglement of the true ground state.

⑤ Entanglement Renormalization and AdS/CFT



Ex. Matrix Product State (MPS) [DMRG: White 92,…, 

Rommer-Ostlund 95,..]
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MPS and TTN are not good near quantum critical points 

(CFTs) because entanglement entropies are too small:

In general,   
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(5-2)  AdS/CFT and MERA 

MERA (Multiscale Entanglement Renormalization Ansatz):

⇒ An efficient variational ansatz for CFT ground states. 

[Vidal 05]

To increase entanglement in a CFT,  we add (dis)entanglers.
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An Estimation of EE in 1+1 dim. MERA

A= an interval (length L)
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Indeed, the HEE also suggests that 

A spacetime in gravity 
=  Collections of bits of quantum entanglement

B
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A

Planck length

A framework for this is the entanglement renormalization.



A conjectued relation to AdS/CFT [Swingle 09]
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(5-3) cMERA and Holographic Metric

To relate to the AdS/CFT,  take a continuum limit of MERA:

Formulation of cMERA [Haegeman-Osborne-Verschelde-Verstraete 11]
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(5-4) Emergent Metric from cMERA

We focus on gravity duals of translational invariant  

static states,  which are not conformal in general. 

A conjecture: holographic metric in the extra direction

[Nozaki-Ryu-TT 12, 
Miyaji-TT work in progress]

The total volume of phase space 
at energy scale u.

off)cut :/1(

0

1



 



ue

dd dkdxN

22

2

2
22 dtgxd

e
dugds tt

u

uuGravity 




  .  )(|)(1
22 duuuNduguu 



Ex. cMERA for a Quantum Quench of a free scalar
[Mollabashi-Nozaki-Ryu-TT 13]

t

Light cone: looks like a 
gravitational wave.

zzgz

We can also (analytically) confirm the linear growth:  SA∝t
because guu∝t2 at late time. This is also true in higher dim.

This is consistent with the known CFT (2d) [Calabrese-Cardy 05].

and with the holographic result (any d). [Hartman-Maldacena 13]
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⑥ Conclusions

• EE for ground states of CFT describes the degrees of freedom,   

related to the central charges etc. 

• EE for excited states describe how the system gets thermalized.

If we consider locally excited states, the growth of EE can be 

interpreted as the degrees of freedom of the operator    

(=quantum dimension in 2d RCFT).

• HEE suggests a deep connection between quantum 
entanglement and spacetime geometry.   

This speculation gets manifest in the idea of entanglement   

renormalization (MERA). 



Future Problems

• Precise definition of EE dual to HEE for extremal surfaces 

which divide internal manifolds.  (Democratic formulation of HEE ?)

[cf. Taylor’s talk] 

• More analysis of EE for locally excited states in higher dim.

(Quantum dimension in higher dimensions ?)

• More understandings of the connection between MERA and 
AdS/CFT.  (Construction of full metric ? ,  Einstein eq. ? ,….)

[cf. Perturbative Einstein eq. from 1st law of EE:

Lashkari-McDermott-Raamsdonk 13,…. ] 

:



Appendix: Relation to (discrete) MERA
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0

By adding dummy states,  we keep the dimension of 
Hilbert space for any u to be the same.
⇒We can formally describe the renormalization 

by a unitary transformation. 



It is useful to introduce a `unrescaled state’              :

where 
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