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Introduction

The still controversial BICEP2 results indicate a large
tensor-to-scalar ratio r = 0.2− 0.1, a mass scale of inflation
of Minf ∼ 1016 GeV and an inflaton mass of mθ ∼ 1013 GeV.
The Lyth bound

∆φ

Mpl
= O(1)

√

r

0.01

implies a rolling of the inflaton φ over trans-Planckian
distances ∆φ > Mpl.

• Makes it important to control Planck suppressed
operators (eta-problem)

• Invoking a symmetry like the shift symmetry of axions
helps
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Introduction

Axions are ubiquitous in string theory so that many scenarios
have been proposed

• Natural inflation with a potential

V (θ) = V0(1− cos(θ/f)) .

Hard to realize in string theory, as f > 1 lies outside
perturbative control

• Aligned inflation with two axions, feff > 1, (talk by H.P

Nilles)

• N-flation with many axions and feff > 1

• Monodromy inflation: Shift symmetry is broken by
branes or fluxes unwrapping the compact axion →
polynomial potential for θ, (talk by G. Shiu)
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Introduction

Proposal: Realize axion monodromy inflation via the F-term
scalar potential induced by background fluxes.
(Marchesano.Shiu,Uranga)

Advantages

• Avoids the explicit supersymmetry breaking of models
with the monodromy induced by branes

• Supersymmetry is broken spontaneously by the very
same effect by which usually moduli are stabilized

• Generic in the sense that the potential for the the axions
arise from the type II Ramond-Ramond field strengths
Fp+1 = dCp +H ∧ Cp−2 involving the gauge potentials
Cp−2 explicitly.
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Introduction

Recently, a couple of a priori possible string realizations have
been discussed. To name a few, the inflaton was given by:

• Wilson line and (B2, C2) modulus with potential
generated by geometric flux (Marchesano.Shiu,Uranga)

• The universal axion c in type IIB flux compact. →
natural reheating mechanism (Bhg, Plauschinn)

• D7-brane deformation modulus in the large complex
structure limit (Hebecker, Kraus, Wittkowski)

• Higgs inflation (Ibanez, Valenzuela)

More proposals by Mc Allister, Gao, Grimm, Ibanez, Li, Long, Mc Guirk,

Shukla, Silverstein, Valenzuela, Westphal,..
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Introduction

Learned from talks by (Ibanez, Kallosh, Nilles, Shiu, Zavala) that, for a
consistent inflationary scenario, all moduli need to be
stabilized in the window H < mσ < Minf .

Aim: Systematic study of realizing single-field fluxed F-term
axion monodromy inflation, taking into account the interplay
with moduli stabilization.

Note:

• There exist a no-go theorem for having an unconstrained
axion in supersymmetric minima of N = 1 supergravity
models (Conlon)

• In the LVS scenario, the (Kähler) axion ab is massless
with all other moduli massive
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The set-up

Investigate whether the landscape of minima of the
flux-induced scalar potential admits solutions with the
following properties:

1. All moduli are stabilized such that a single axion is
parametrically lighter than the other moduli and the
axion admits a shift symmetry.

2. For this inflaton candidate, the tree-level scalar potential
in the trans-Planckian regime still realizes large-field
inflation.

Work in the large complex structure limit ImU = v → ∞ so
that axion (like) fields

• universal axion c

• real parts of complex structure moduli ReUi = ui
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Review: flux induced potential

3-form flux in Type IIB orientifolds

G3 = F3 + τ H3 ,

with the axio-dilaton

τ = C0 + ie−φ = c+ is .

In terms of symplectic basis (αΛ, β
Λ) of H3(X,Z), the

covariantly constant (3, 0)-form can be expanded as

Ω3 = XΛ αΛ − FΛ βΛ,

where the periods XΛ and FΛ are functions of the complex
structure moduli U i, with i = 1, . . . , h2,1.
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Review: flux induced potential

3-form flux can be written as

1
(2π)2α′

G3 = eΛβ
Λ +mΛαΛ ,

eΛ = τ hΛ + fΛ ,

mΛ = τ h
Λ
+ f

Λ
,

The superpotential

W =

∫

Ω3 ∧G3 = XΛeΛ + FΛm
Λ

induces the no-scale scalar potential

VF = −
M4

pl

4π

1

V2 Imτ
(e+mN )(ImN )−1(e+Nm) .
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Review: flux induced potential

NΛΣ is called the period matrix, and with FΛΣ = ∂FΛ/∂XΣ it
is defined as

NΛΣ = FΛΣ + 2i
Im(FΛΓ)X

Γ Im(FΣ∆)X
∆

XΓ Im(FΓ∆)X∆
.

Therefore, minima of V are at

eΛ +mΣNΣΛ = 0 ,

(equivalent to DΛW = 0).
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Review: flux induced potential

In the large complex-structure regime, the prepotential has
the simple form

F =
κijkX

iXjXk

X0
,

with κijk denoting the triple intersection numbers of the
mirror Calabi-Yau manifold.
The complex structure moduli U i ≡ ui + ivi are defined via

X0 = 1 , F0 = −κijk U i U j Uk ,

Xi = U i , Fi = 3κijk U j Uk .

Mainz, 26.09.2014 – p.11/29



Review: flux induced potential

Mainz, 26.09.2014 – p.12/29



Review: flux induced potential

Tree-level Kähler potential for the complex structure moduli

Kcs = − log

(

−i

∫

X

Ω3 ∧ Ω3

)

= − log
(

κijkv
i vj vk

)

,

featuring the continuous shift symmetry ui → ui + ci.
The period matrix becomes

ImNij = 4κGij , ReNij = 6κijk u
k ,

ImNi0 = −4κGij u
j , ReNi0 = −3κijk u

juk ,

ImN00 = κ
(

1 + 4Gij u
iuj

)

, ReN00 = 2κijk u
iujuk ,

where the Kähler metric reads

Gij = −3

2

κij
κ

+
9

4

κiκj
κ2

,

Mainz, 26.09.2014 – p.12/29



Search principle

Mainz, 26.09.2014 – p.13/29



Search principle

For parametrically controlling the mass of a massless field φ
we proceed as follows

• First, one identifies fluxes so that (only) θ is
unconstrained

• Then one identifies fluxes also constraining θ. Then,
these fluxes are the order parameters for the mass of θ

• Express the scalar potential for the canonically
normalized field θ after integrating out the heavy fields.

General question: Which parameters in the LEEA can be
dialed small/large by choosing hierarchical fluxes?

Problem: A hierarchical choice f1 ≫ f2 can be compensated
by an induced hierarchy between the VEVs m1 ≪ m2 so that
e.g. a f1m1 + b f2m2 = O(1).
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Examples

Findings by explicit computation for many models:

• In the paper we present concrete examples where this
program works. In a simple example with 4 moduli, the
canonically normalized field θ can be expressed as

Vval(θ) =
3M4

pl

π

κ

V2

f1 f1
f0 f0

sinh2
(

θ√
6

)

,

• Here, θ is a combination of axions and saxions. Can in
principle give small field inflationary models.

• It turns out to be hard to find a model where an axionic
direction is the only unconstrained field
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Conclusion

We conclude:

Proposition: For realizing F-term monodromy
inflation, the inflaton should be a linear
combination of only axions.

In that situation, the shift symmetry is intact, guaranteeing
that the above η-problem is absent and that the effective
scalar potential is of polynomial form.
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General structure

Notoriously hard to approach, as

• We are dealing with non-linear, coupled equations in
many variables

• This is the string landscape

No-scale scalar potential

V = M4
pl e

K
[

Gij DiWDjW +Gττ DτWDτW
]

,

where the indices i, j run over all complex-structure moduli
U i = ui + ivi with i, j = 1, . . . , N . Minkowski minima at

∂IW (U) = −∂IK(v)W (U) .
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General structure

Require: axion θ = a0 c+ ai u
i unconstrained

K(v) independent of axion θ and W0 6= 0

⇒ ∂ΘW ≡ 0 , ∂ΘK = 0

• Condition on the fluxes → two types of fluxes: fax = 0
and fmass 6= 0.

• Analyze whether fmass are sufficient to freeze all the
remaining moduli σα inside the physical domain

• If not ⇒ no-go theorem

• If yes, proceed getting parametric control over inflaton
mass by fmass 6= 0
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General structure

The superpotential in this case can be written as

W = fmassWmass(ŨI) + faxWax(Θ, ŨI)

• Scale fmass → λfmass. At leading order in λ−1, ignore
backreaction of the second term on stabilization of σα

• The scalar potential is

V = λ2Vmass(σα) + f2axVax(θ, σα) .

• Integrating out σα moduli, for λ ≫ f2ax, we get

m2
θ

m2
σα

∼
(

fax
λ

)2

.
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Case A: no-go theorem

Distinguish two cases

• Case A: θ contains the universal axion c, i.e. a0 6= 0

• Case B: θ is a combination of ui only, i.e. a0 = 0

For case A one can prove the following no-go theorem:

Theorem: The type IIB flux-induced no-scale
scalar potential does not admit non-supersymmetric
Minkowski minima, where a single axion involving c
is unfixed while all remaining axions and saxions are
stabilized inside the physical domain.

As a consequence, there cannot exist minima in this setting
with an axion parametrically lighter than all the remaining
moduli.
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Case B

Can assume θ = uN so that ∂ΘW ≡ 0 implies the constraints

fN = hN = 0 , f0 = h0 = 0

N
∑

j=1

κNij f
j
=

N
∑

j=1

κNij h
j
= 0 , for all i ∈ {1, . . . N}

With Aij = κNij this means that

f, h ∈ ker(A)
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Case B

• rk(A) = N : f i = hi = 0 trivial

• rk(A) = N − 1: Can prove a no-go theorem as in Case
A, i.e. not all remaining moduli can be stabilized

• rk(A) = 0, 1: ∂ΘK = 0 implies det(G) = 0

• rk(A) = N − 2: In a deep numerical analysis we found a
model with all remaining moduli stabilized inside the
physical domain
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Details of example

Prepotential

F (X0, X1, X2, X3, X4) = (X3
3 +X1X2X3 +X3X

2
4 )/X0 .

Solving eΛ +NΛΣm
Σ = 0 we managed to iteratively fix

{u1, u2, u3, c, s, v1} in terms of {v2, v3}.
The remaining two relations are

f(v2, v3) = 27v82 − 72v62v
2
3 + 294v42v

4
3 − 784v22v

6
3 + 48v42v

6
3

+ 343v83 − 32v22v
8
3 + 112v103 = 0

and

g(v2, v3) = −729v152 + 2430v132 v23 − 891v122 v33 + 6237v112 v43 + . . .
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1.20 1.15 1.10 1.05 1.00
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Details of example
A contour plot reveals the solutions

-1.20 -1.15 -1.10 -1.05 -1.00

1.05

1.10

1.15

1.20

1.25

The values of the moduli are ∂ΘK = v3 v4 = 0

u1 = 0.492 , u2 = −0.371 , u3 = −0.065 , c = 1.041 ,

s = 0.932 , v1 = 3.775 , v2 = −1.104 , v3 = 1.155 .
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Details of example

Turning on e.g. f4 6= 0, at leading order we get

Veff(θ) =
M4

pl

4πV2
f24

(

a+
b

c
θ2
)

• Problem: The flux f4 cannot make the mass of the
inflaton smaller than

max = O(1)
Mpl

V

With V = 102 − 103 one gets max > minf ∼ 1013GeV

• Hierarchy to mass of Kähler moduli is not controlled.

• Future: Investigate in a model scan the regime of the
parameters b, c
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Conclusions

• Started a honest technical investigation whether the flux
induced scalar potential admits minima with
parametrically light axions

• For the flux landscape with proved a no-go theorem for
the case that the inflaton involves the universal axion

• For the inflaton being an axion-like complex structure
modulus, we found a model with all remaining moduli
stabilized

• Important to generalize this investigation to other
proposals
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Case A: Proof of no-go theorem

As a consequence the minimum conditions become

P0 = (f0 + ch0)−
1

2
uiReNij (f

j
+ ch

j
)− ui ImNij sh

j

+
1

3
uiujReNijf

0
= 0

Q0 = sh0 −
1

2
uiReNij sh

j
+ ui ImNij (f

j
+ ch

j
)

− (κ+ uiujImNij)f
0
= 0

Pi = (fi + chi) + ReNij (f
j
+ ch

j
) + ImNij sh

j − 1

2
uj ReNijf

0
= 0

Qi = shi +ReNij sh
j − ImNij (f

j
+ ch

j
) + uj ImNijf

0
= 0 .
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Case A: Proof of no-go theorem

Case A1: κNNi 6= 0 for at least one i ∈ {1, . . . , N} ⇒ f
0
= 0

and κijkh
k
= 0.
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Case A: Proof of no-go theorem

Case A1: κNNi 6= 0 for at least one i ∈ {1, . . . , N} ⇒ f
0
= 0

and κijkh
k
= 0.

The set of equations simplifies

P0 = (f0 + ch0)−
1

2
uiReNij f

j
= 0

Q0 = sh0 + ui ImNij f
j
= 0

Pi = (fi + chi) + ReNij f
j
= 0

Qi = shi − ImNij f
j
= 0 .
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Case A: Proof of no-go theorem

Case A1: κNNi 6= 0 for at least one i ∈ {1, . . . , N} ⇒ f
0
= 0

and κijkh
k
= 0.

Due to Q0 +
∑

i uiQi = h0 + ui hi = 0 , these 2N + 2
relations split into

• N + 2 relations depending only on the N + 1 axions
{c, ui}

• and N relations depending on the N + 1 saxions {s, vi}.

Therefore, at least one saxionic direction must remain uncon-

strained.

Mainz, 26.09.2014 – p.27/29



Case A: Proof of no-go theorem

Mainz, 26.09.2014 – p.28/29



Case A: Proof of no-go theorem

Case A2: κNNi = 0 for all i ∈ {1, . . . , N}

First, let us consider the conditions Qi

Qi =6sκNij

(

f
j
+ ujf

0)−
N−1
∑

j=1

ImNij

(

f
j − ujf

0
)

− ImNiN

(

f
N − (uN − c)f

0
)

= 0 .

These are N conditions which fix the axions as

uN − c =
f
N

f
0
, ui =

f
i

f
0
, i ∈ {1, . . . N − 1}
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Case A: Proof of no-go theorem

Taking into account ∂ΘK = 0 which implies s = −κ/κN ,
after some algebra one obtains

Pi =
1

f
0

(

f
0
fi + 3κijkf

j
f
k
+ s

(

f
0
)2

ImNiN

)

= 0 (-33)

and for Q0 + uiQi = 0

s

f
0

(

h0f
0
+ hif

i
+ 3κNijf

i
f
j
+ f

0
κN

)

= 0 .

where for κNNi = 0 the factors κN and sImNiN do not
depend on vN (QED).
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