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Introduction

The still controversial BICEP2 results indicate a large
tensor-to-scalar ratio r = 0.2 — 0.1, a mass scale of inflation
of M.s+ ~ 1019 GeV and an inflaton mass of my ~ 1013 GeV.
The Lyth bound

Ao r
=7 01 . ] ——
My oQ) 0.01

implies a rolling of the inflaton ¢ over trans-Planckian
distances A¢ > M.

* Makes it important to control Planck suppressed
operators (eta-problem)

* |nvoking a symmetry like the shift symmetry of axions
helps
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Introduction

Axions are ubiquitous in string theory so that many scenarios
have been proposed

* Natural inflation with a potential
V(0)=Vo(1 —cos(8/f)).

Hard to realize in string theory, as f > 1 lies outside
perturbative control

° Aligned inflation with two axions, fcrr > 1, (talk by H.P
Nilles)

e N-flation with many axions and f.rr > 1

* Monodromy inflation: Shift symmetry is broken by
branes or fluxes unwrapping the compact axion —
polynomial potential for 6, (talk by G. Shiu)
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Introduction

Proposal: Realize axion monodromy inflation via the F-term
scalar potential induced by background fluxes.
(Marchesano.Shiu,Uranga)

Advantages

* Avoids the explicit supersymmetry breaking of models
with the monodromy induced by branes

* Supersymmetry is broken spontaneously by the very
same effect by which usually moduli are stabilized

* Generic in the sense that the potential for the the axions
arise from the type Il Ramond-Ramond field strengths
Fyi1 =dC, + H N Cp_g involving the gauge potentials
Cp—2 explicitly.
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Introduction

Recently, a couple of a priori possible string realizations have
been discussed. To name a few, the inflaton was given by:

* Wilson line and (B2, C2) modulus with potential
generated by geometric flux (Marchesano.Shiu,Uranga)

* The universal axion ¢ in type IIB flux compact. —
natural reheating mechanism (Bhg, Plauschinn)

* D7-brane deformation modulus in the large complex
structure limit (Hebecker, Kraus, Wittkowski)

* Higgs inflation (Ibanez, Valenzuela)

More proposals by Mc Allister, Gao, Grimm, Ibanez, Li, Long, Mc Guirk,

Shukla, Silverstein, Valenzuela, Westphal,..
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Introduction

Learned from talks by (Ibanez, Kallosh, Nilles, Shiu, Zavala) that, for a
consistent inflationary scenario, all moduli need to be
stabilized in the window H < mg, < M.

Aim: Systematic study of realizing single-field fluxed F-term
axion monodromy inflation, taking into account the interplay
with moduli stabilization.

Note:

* There exist a no-go theorem for having an unconstrained
axion in supersymmetric minima of N = 1 supergravity
models (Conlon)

* In the LVS scenario, the (K&hler) axion a; is massless
with all other moduli massive
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The set-up

Investigate whether the landscape of minima of the

flux-induced scalar potential admits solutions with the
following properties:

1. All moduli are stabilized such that a single axion is

parametrically lighter than the other moduli and the
axion admits a shift symmetry.

2. For this inflaton candidate, the tree-level scalar potential

in the trans-Planckian regime still realizes large-field
inflation.

Work in the large complex structure limit Imi/ = v — o0 so
that axion (like) fields

e universal axion ¢

* real parts of complex structure moduli Relf; = v;
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Review: flux induced potential
3-form flux in Type |IB orientifolds
Gs = Fy+7H;,
with the axio-dilaton
r=Cy+ic®=c+is.

In terms of symplectic basis (ay, ) of H3(X,Z), the
covariantly constant (3,0)-form can be expanded as

QS :XACVA_FABAa

where the periods X* and F) are functions of the complex
structure moduli U*, with i =1,..., h%1.
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Review: flux induced potential

3-form flux can be written as

en =Thpa+ fa,

—A  —=A
mh=1h +f |

1 A A
WngeAB +m QA

The superpotential
W:/Qg/\Gg = Xhep + Fam®

induces the no-scale scalar potential
4
Mpl 1

 4x V2ImT

Ve = (e + mAN)(ImN) (e + Nm) .
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Review: flux induced potential

Ny is called the period matrix, and with Fay, = 0F) /0 Xy it
is defined as

Im(Fap) XT Im(Fxa) X2

= F 2
Ny = Fap +2i XT Im(Fpa) XA

Therefore, minima of V are at
XNT _
ex +m- " Nyp =0,

(equivalent to D\W = 0).
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Review: flux induced potential

In the large complex-structure regime, the prepotential has
the simple form
. fije X X XF
— =0 ,

with x;;; denoting the triple intersection numbers of the

mirror Calabi-Yau manifold.
The complex structure moduli U* = u* + iv* are defined via

XO: 1, F():—H;Z'jkuiujuk,

Xi :Z/{i, Fz :3/<;ij;€Z/{jZ/{k.
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Review: flux induced potential

Tree-level Kahler potential for the complex structure moduli

K. = —log (—z/ (3 A\ ﬁg) = — log (H}Z’jk?}i v ka) ,
X

featuring the continuous shift symmetry u* — u* + ¢*.
The period matrix becomes

Im N :4/-£GZ-3, Re N;; :6/<;ijkuk,
ImN;g = —4/<;Gﬁuj : ReN;o = —3 Kijk wub
ImMNy = & (1 -+ 4Gi3 uiuj) ,  ReNoo = 2Kk wudub

where the Kahler metric reads

3/43753' 9/-%2'/4;]'
Gﬁ:_i K +Z K2
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Search principle

For parametrically controlling the mass of a massless field ¢
we proceed as follows

* First, one identifies fluxes so that (only) @ is
unconstrained

* Then one identifies fluxes also constraining 6. Then,
these fluxes are the order parameters for the mass of 6

* Express the scalar potential for the canonically
normalized field 6 after integrating out the heavy fields.

General question: Which parameters in the LEEA can be
dialed small/large by choosing hierarchical fluxes?

Problem: A hierarchical choice fi > f> can be compensated
by an induced hierarchy between the VEVs m; < ms so that

e.g. afimi +0b fomg = O(l).
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Examples

Findings by explicit computation for many models:

* In the paper we present concrete examples where this
program works. In a simple example with 4 moduli, the
canonically normalized field # can be expressed as

3 M2 7
_ pl K Jif1 . .9 i
= g, (%)

e Here, 6 is a combination of axions and saxions. Can in
principle give small field inflationary models.

* |t turns out to be hard to find a model where an axionic
direction is the only unconstrained field
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Conclusion

We conclude:

Proposition: For realizing F-term monodromy
inflation, the inflaton should be a linear
combination of only axions.

In that situation, the shift symmetry is intact, guaranteeing
that the above n-problem is absent and that the effective
scalar potential is of polynomial form.
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General structure

Notoriously hard to approach, as

* We are dealing with non-linear, coupled equations in
many variables

* This is the string landscape

No-scale scalar potential
V = My |G DiWDW + G D, W DAV

where the |nd|ces i, 7 run over all complex-structure moduli
U' =u' +iv* with 4,5 =1,..., N. Minkowski minima at

oW (U) = 0K (v) W(U).

% Mainz, 26.09.2014 — p.16/29



General structure

% Mainz, 26.09.2014 — p.17/29



General structure

Require: axion 8 = ag ¢ + a; u* unconstrained

K (v) independent of axion 6 and Wy # 0

= 0gW =0, O K =0

* Condition on the fluxes — two types of fluxes: fox =0
and fiass 7# O.

* Analyze whether fi,.ss are sufficient to freeze all the
remaining moduli o, inside the physical domain

* |f not = no-go theorem

* |f yes, proceed getting parametric control over inflaton
mass by fiass 7# 0
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General structure

The superpotential in this case can be written as
W = fmass Wmass(z;{l) + fax Wax(@adl)

* Scale fiass — \fmass. At leading order in A~1, ignore
backreaction of the second term on stabilization of o,

* The scalar potential is
V = )\vaass(aa) + faQXVaX(Q, Uoz) -

* Integrating out o, moduli, for A > f2_, we get
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Case A: no-go theorem

Distinguish two cases

* Case A: 6 contains the universal axion ¢, i.e. ag # 0

* Case B: 6 is a combination of u; only, i.e. ag =0
For case A one can prove the following no-go theorem:

Theorem: The type |IB flux-induced no-scale
scalar potential does not admit non-supersymmetric
Minkowski minima, where a single axion involving c
is unfixed while all remaining axions and saxions are
stabilized inside the physical domain.

As a consequence, there cannot exist minima in this setting

with an axion parametrically lighter than all the remaining
moduli.
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Case B

Can assume 6 = uy so that dgWW = 0 implies the constraints

JNn=hn =0, Jo=ho=0
ZHNM?J:Z/QN@J'EJ:O, fOl”&HiE{l,...N}
j=1 j=1

With A;; = k;; this means that

f,h € ker(A)
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Case B

rk(A) = N: f, = h; = 0 trivial

rk(A) = N — 1: Can prove a no-go theorem as in Case
A, i.e. not all remaining moduli can be stabilized

rk(A) =0,1: dgK = 0 implies det(G) =0

rk(A) = N — 2: In a deep numerical analysis we found a
model with all remaining moduli stabilized inside the
physical domain
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Details of example

Prepotential

F(Xo, X1, X2, X3, X4) = (X3 + X1 X2 X3 + X3X7)/Xo.

Solving ep + M asm™ = 0 we managed to iteratively fix
{uy, us, us, c,s,v1} in terms of {wvo, v3}.
The remaining two relations are

f(v2,v3) = 2705 — 720803 + 294v5v5 — T84v3vS + 48v5vS
-+ 343?}3 — 32@2?}3 —+ 112?}3 — O

and

g(va,v3) = —72903° + 243005703 — 891vy%v3> + 6237Tva vy +
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Details of example

A contour plot reveals the solutions

0 L B A B S

120+

115+

110+

1-05’\\\\\\\\\\\\\\\\\\\\F
-1.20 -1.15 -1.10 -1.05 -1.00

The values of the moduli are 0g K = v3v4d =0

up = 0.492, ug = —0.371, us = —0.065, c=1.041,
s =0.932, v1 = 3.77H, vg = —1.104, vy = 1.155.
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Details of example

Turning on e.g. f4 # 0, at leading order we get

M2 b
pl .2 Y2
Am))? /1 (a * 09 )

Verr (0) =

* Problem: The flux f4 cannot make the mass of the
inflaton smaller than

M.
Max = O(1) =2

v
With V = 10% — 10° one gets mayx > mips ~ 1013 GeV

* Hierarchy to mass of Kahler moduli is not controlled.

* Future: Investigate in a model scan the regime of the
parameters b, c
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Conclusions

Started a honest technical investigation whether the flux
induced scalar potential admits minima with
parametrically light axions

For the flux landscape with proved a no-go theorem for
the case that the inflaton involves the universal axion

For the inflaton being an axion-like complex structure
modulus, we found a model with all remaining moduli
stabilized

Important to generalize this investigation to other
proposals
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Case A: Proof of no-go theorem

As a consequence the minimum conditions become

1 . . . ' .
Po = (fo + chg) — iu’ ReN;; (f] + ch]) — u' ImN;; sh’

1 _
+ guzujRe/\/;jfo =
1 . . ' . .
Qo = shg — iu’ ReN;; sh’ + ! ImN;; (F + i)
— (k+ uiujIHL/\/;j)fo =0
o o o 1 ) L
P; = (fi + ch;) + ReNj; (f] + chj) + ImN; sh’ — 511;7 ReMjfo — |

Q; = shi + ReNyj sh' — TmNi; (F + ch’) + u/ TmN; F = 0.
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Case A: Proof of no-go theorem

Case Al: knypn; # 0 for at least one i € {1,..., N} = 70 =0
—k
and liijkh = 0.
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Case A: Proof of no-go theorem

Case Al: knypn; # 0 for at least one i € {1,..., N} = 70 =0
—k
and lizjkh = (.
The set of equations simplifies
| —j
Po = (fo + chg) — §uz ReN;; 7 =0
Qo = Sho—l—uiIHL/\/;;jfj = 0
Py = (fi + chi) + ReNy; I =0
Q; = sh —IHL/\/;;jTj = 0.

% Mainz, 26.09.2014 — p.27/29



Case A: Proof of no-go theorem

Case Al: knypn; # 0 for at least one i € {1,..., N} = 70 =0
—k
and lizjkh = 0.

Due to Qo+ >, uiQ; = ho +u'h; =0, these 2N + 2
relations split into

* N + 2 relations depending only on the N + 1 axions
{e,u'}

* and N relations depending on the N + 1 saxions {s, v'}.

Therefore, at least one saxionic direction must remain uncon-

strained.
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Case A: Proof of no-go theorem

Case A2: kyn; =0 forallie{1,..., N}

First, let us consider the conditions 9,
| L N-1 | L
Q; :63/<;N7;j<f] +u f) — Z ImNG; (f — ' f )
j=1

— ImN; N (7N — (u — c)?o) =0.

These are N conditions which fix the axions as

ut —c= =, ' =", i€{l,...N—1}

7 7
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Case A: Proof of no-go theorem
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Case A: Proof of no-go theorem

Taking into account dg K = 0 which implies s = —x /Ky,
after some algebra one obtains

— i AN 2
Pi = % (f” fit 3l T +s (1) ImM-N) =0 (-33)

and for Qp +u'Q; =0

% (hofo + hz’?i +- 3/€Nz'j77j + fofw) =0.

where for kxn; = 0 the factors kK and sImN;x do not
depend on v (QED).
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