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F I N I T E  C H A R G E  D E N S I T Y
Interested in modelling charged phases of matter with 2 spatial 
dimensions. A minimal set of holographic ingredients:

S =

�
d4x

�
�g

�
R + 6 � 1

4
F 2

�

Turn on chemical potential µ
1-parameter family of AdS-RN black brane solutions

Adding more ingredients (e.g. scalars) results in instabilities, 
which can be diagnosed using the            factor in the IR. e.g. 
superfluids [Hartnoll et. al.] spatial modulation [Donos, Gauntlett]

at T=0 these solutions interpolate between UV            and and IR 
                        solution.

Stabilise at finite T. Marks a new branch of solutions emerging 
at that T, and a potential new contribution to the phase 
diagram.

AdS4

AdS2

AdS2 � R2



Spatial modulation can be added manually using boundary 
conditions. e.g. [Horowitz, Santos, Tong]. 

Can exploit design freedom to simplify/gain analytic control, e.g. 
— 5d helical [Donos, Hartnoll]  
— phase of a complex scalar / axions [Donos,Gauntlett][Andrade,BW]  
see also talk by Gauntlett, [Gouteraux], [Taylor, Woodhead] and massive 
gravity theories [Vegh][Davison][Blake,Tong]

This talk: spontaneous.  
The design freedom doesn’t exist - have to solve PDEs.  
Here - want to break all continuous spatial symmetries.

S P O N TA N E O U S  V S  E X P L I C I T



M O T I VAT I O N S

Possible that such instabilities are generic in holography at 
finite density at low enough temperatures. Can’t (easily) 
control the outcome. Natural to seek phases with no surviving 
continuous spatial symmetries. 

!

Modulation observed in condensed matter  
        — what is possible holographically?  
        — what is dominant? 

!

A step towards determining the ground states
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4D Gravity + U(1) gauge field + pseudoscalar

take a 2-parameter model, n, c1

for                  with     normal  
phase is simply RN

also deform with 
operator dual to    , 
by turning on a 
spatially constant 

�(1) = 0

�(1)

�(z, xµ) = �(1)z + �(2)(xµ)z2 + O(z)3
has a mass m2 = �2�

�µ

[Donos, Gauntlett]



N O R M A L  P H A S E
2 parameter family of normal phase BHs

�(1)/µ

T/µ

•                       
corresponds to RN (IR            factor at T=0)
�(1)/µ = 0

�(1)/µ �= 0

An example: n=0 model. Has HSV solutions:

� =
�

3 log z + � A = 2

�
5

11
z11/4dt

expect e.g. entropy scaling

s � T 2/9
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Figure 4: The scaling of the entropy density, s, with temperature for normal phase in
the n = 0 model at �

(1)

= 0.5. At high temperatures the behaviour is s / T 2, indicated
by the dashed red line. At low temperatures the dashed blue line shows the behaviour
s / T 2/9 consistent with the emergence of the hyperscaling-violating geometry (4.18)-
(4.20) in the IR at low temperatures.

(4.18)-(4.20). It is interesting to note the e↵ect that this change of IR has on the spatially

modulated instabilities (4.3)-(4.5). Since the AdS
2

⇥ R2 case is k 6= 0 unstable [2] by

continuity we expect that the instability survives for small �
(1)

6= 0, at least for finite

temperature. Indeed, the critical temperature bell-curves do continue to �
(1)

6= 0 as

shown in Figure 5. The change is most striking at lower temperatures where the linear
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Figure 5: Critical temperatures for spatially modulated linear instabilities of the �
(1)

-
deformed normal phase solutions in the case n = 0, as a function of the wavenumber k of
the modulation. The labels shown are the values of �

(1)

/µ which is fixed for each curve.

instability at T = 0 seems to disappear entirely, at least for large enough �
(1)

. It would

be interesting to investigate this feature directly, and any connection with k 6= 0 stability

14

ds2 = �z11/2dt2 +
11e

��
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dz2

z
+

�
z

�
dx2 + dy2

�

•                       
solutions have IR HSV factor at T=0 in the cases studied

AdS2



M A R G I N A L  M O D E S
� = 0about RN (               )

[Donos, Gauntlett]
with      modulated at higher orders in this expansion.At

�Ay = ay(z) sin kx�gty = hty(z) sin kx�� = �(z) cos kx
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Figure 4: The scaling of the entropy density, s, with temperature for normal phase in
the n = 0 model at �

(1)

= 0.5. At high temperatures the behaviour is s / T 2, indicated
by the dashed red line. At low temperatures the dashed blue line shows the behaviour
s / T 2/9 consistent with the emergence of the hyperscaling-violating geometry (4.18)-
(4.20) in the IR at low temperatures.

Hence we see that dialling the parameter �
(1)

results in at least one quantum phase

transition in the normal phase, moving from the � = 0 AdS
2

⇥R2 to the HSV geometry

(4.18)-(4.20). It is interesting to note the e↵ect that this change of IR has on the spatially

modulated instabilities (4.3)-(4.5). Since the AdS
2

⇥ R2 case is k 6= 0 unstable [2] by

continuity we expect that the instability survives for small �
(1)

6= 0, at least for finite

temperature. Indeed, the critical temperature bell-curves do continue to �
(1)

6= 0 as

shown in Figure 5. The change is most striking at lower temperatures where the linear
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Figure 5: Critical temperatures for spatially modulated linear instabilities of the �
(1)

-
deformed normal phase solutions in the case n = 0, as a function of the wavenumber k of
the modulation. The labels shown are the values of �

(1)

/µ which is fixed for each curve.
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about the numerical             backgrounds a consistent set 
of fluctuations now include also:

� �= 0

�At(z, x) = at(z) cos kx

�gii(z, x) = hii(z) cos kx

�gzz(z, x) = hzz(z) cos kx.

counting indicates two parameter 
families, e.g. k/µ �(1)/µ

Current in translationally invariant direction.



C H E C K E R B O A R D S

stationary solutions of Einstein equations in a box:

UV Dirichlet 
conditions: 
normalisable + 
constant sources 
(         ,     )

x

y

z
Periodic boundary 
conditions in x,y

Regular  
horizon

�(1) µ

branch connects to two marginal modes  
e.g. 

S T R I P E S

The marginal modes indicate branches of spatially modulated black branes. 

nonlinearly modulated black brane branch continuously 
connecting to a single marginal mode,    , preserving 
translations 

k1 � k2

k
� k [Rozali et. al][Donos][B.W.]



C H E C K E R B O A R D S
Use the `Harmonic Einstein’ / DeTurck approach  
[Headrick, Kitchen, Wiseman] RMN � RH

MN = RMN � �(M�N)

�M = gNP (�M
NP � �̃M

NP )

similar trick for U(1) redundancy:

leads to: 15 fields,     , (all metric + gauge field components, 
plus the scalar)  and equations

�M , �
work with this (modified) 
system and checking that 
vanish on any solution. 

Discritise and iteratively solve using Newton-Raphson method.

FI

EI(FJ) = 0

�

In Figure 10 we present the convergence with the number of grid points for the solution

presented in section 3. The values of |⇠|
max

and | |
max

converge towards zero exponen-

tially. The accuracy to which we can extract !N (we use three numerical derivatives in

this case) saturates, but at that point !N is very small.
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Figure 10: Convergence with the number of grid points for the c
1

= 9.9, n = 36 checker-
board at T = 0.55T ⇤ and kx = ky = k⇤. The total number of grid points is N3. Left
panel : Exponential convergence of gauge fixing variables towards zero. |⇠|

max

is shown in
blue and | |

max

in red, and are defined in the text. Also shown are the best-fit straight
lines. Right panel : The convergence of the free energy di↵erence, �!, as defined in (3.2)
demonstrated using !N as defined in (B.1).

In Figure 11 we present the convergence with the number of grid points for the data

of section 5 near the checkerboard-stripe first order transition, at a temperature of T =

0.04 and momenta kx = ky = 0.6. Comparing with the other model in Figure 10 the

values of |⇠|max and | |max are not quite as small. However, they still converge towards

zero exponentially fast with N as required. Moreover, the free energy has converged

su�ciently at the values of N shown. The situation improves at higher temperatures,

e.g. near the swallowtail where the values once more mirror those of Figure 10.
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C H E C K E R B O A R D S
The scalar vev hO�i and charge density distribution is presented in Figure 1, together

with integral curves of the (divergence free) boundary current, hJii. The current is seen

to circulate with the sense alternating between adjacent plaquettes of the checkerboard.

This should not be too surprising; this would be qualitatively the picture formed for

the current near T ⇤ simply by superposing two of the linear modes (3.1). We emphasise

however that this solution is not near the critical temperature, and is backreacted in the

nonlinear regime. The convergence of ⇠ and  with the number of grid points for this

solution shown in Appendix B, exhibiting exponentially fast convergence.
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Figure 1: A holographic checkerboard in the n = 36, c
1

= 9.9 model at T = 0.55T ⇤ and
kx = ky = k⇤. Left panel: Contours of the vev of the operator dual to �, hO�i. Right
panel: The charge density of the boundary field theory, with some integral curves of hJ ii
overlayed. We have shown four times the area of the computational domain at N = 40.

3.1 Varying k

At fixed T there is a 2-parameter family of solutions parameterised by kx, ky. Both

checkerboards and stripes exist within this family and are continuously connected, as we

shall demonstrate in this section. We wish to minimise the free energy in this family.

Defining,

�! = !̄ � !normal (3.2)

where !normal denotes !̄ in the normal phase. �! for striped and ‘square’ checkerboard

solutions with k ⌘ kx = ky at fixed T = 0.55T ⇤ and varying k are shown in Figure 2.

For this model we can see that the striped solutions are thermodynamically dominant,

at least to the classes of checkerboards we have investigated in this section, where the

dominant stripe has �! ' �7.5⇥ 10�4 at k ' 0.73 (more details can be found in [14]).

9

black brane branch which continuously connects to two 
marginal modes with momentum

case (       , spectral, T=0.55Tc,                        )

and dial ky at fixed T = 0.55T ⇤. The free energy corresponding to this squashed branch

k
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ky = k⇤ ky = 0.87 ky = 0.91 ky = 0.925

Figure 3: Continuously connecting checkerboards to stripes. We show contours of hO�i
with wavenumbers ky = k⇤, 0.87, 0.91, 0.925 from left to right, keeping kx = k⇤ and
T = 0.55T ⇤ fixed for the n = 36, c

1

= 9.9 model.

of checkerboards is shown as the green points in Figure 2, joining the dominant square

checkerboard branch with the striped branch.

4 Modulated instabilities of � 6= 0 black branes

In this section we seek linear, marginal modes which indicate spatially modulated insta-

bilities of black branes of the model (1.1) for which � 6= 0 in the normal phase at general

⌧, V,#. For the examples of this paper, a black brane of this type will occur if �
(1)

6= 0,

replacing RN as the normal phase of the system. Indeed we find these solutions are

unstable, continuing the RN instabilities. In section 5 we construct the corresponding

backreacted stripe and checkerboard solutions.

The normal phase may be constructed by numerically solving a set of ODEs. We seek

solutions of the form,

ds2 = gMNdx
MdxN =

1

z2

✓
�f(z)T (z)dt2 +

Z(z)

f(z)
dz2 + dx2 + dy2

◆
, (4.1)

A(z, xi) = a(z)dt, �(z, xi) = �(z) (4.2)

where f(z) is defined in section 2.2. This results in a system of second order ODEs for

matter fields a,� with first order equations for the metric functions T, Z. The construc-

tion proceeds via a standard shooting problem to enforce horizon regularity and boundary

normalisability, see for example [18, 19]. Counting the number of undetermined coe�-

cients in the near horizon expansion (there are 3 with the horizon position fixed at z = 1)

and near boundary expansion (5) reveals solutions will exist in two-parameter families,

11

a large 
space of 
solutions, 
e.g.

�O�� �Jt�

�Ji�
integral curves 
of

kx ky

kx = ky 403 �(1)/µ = 0
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S U M M A R Y
• Spontaneously modulated phases appear in holography, natural to 

seek those which break all continuous spatial symmetries.
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Figure 8: Free energy di↵erence of the square checkerboard (red) and striped (blue) so-
lutions with the normal phase, for the model c

1

= 9.9, n = 0 with �
(1)

= 0.13. Each
checkerboard point is obtained by minimising !̄ with respect to kx = ky, and similarly
for the stripe solutions. The right panel shows the swallowtail region and the first order
normal-to-checkerboard phase transition in more detail. On the left panel the first order
checkerboard-to-stripe phase transition can be seen at lower temperatures. The vertical
dotted line is the marginal mode temperature, T ' 0.0650, computed directly in the lin-
ear analysis of section 4. The vertical dashed line shows the position of the checkerboard
transition, T ' 0.0707.

�
(1)

T

Stripes
Checker-
boards

Normal

Figure 9: A schematic T��
(1)

phase diagram for the c
1

= 9.9, n = 0 model, inferred from
data obtained at several fixed-�

(1)

slices, excluding the low temperature region. Solid
lines denote second order phase transitions whilst the dashed and dotted lines indicate
first order phase transitions, with a tri-critical point labelled by the dot.

We found qualitatively di↵erent behaviour depending on the model parameters, (n, c
1

)

as well as the constant deformation governed by the source �
(1)

. The checkerboards

constructed are thermodynamically preferred over the normal phase below a critical

temperature, with a first order transition depending on the model. We also explored

competition with the striped phases. At n = 0, c
1

= 9.9 and �
(1)

6= 0 we found that there

can be up to two first-order phase transitions, from the normal phase to the checkerboard

17

• Stripe-to-checkerboard first order phase 
transitions. Schematic phase diagram:

• Constructed stationary, cohomogeneity-three black holes describing 
checkerboard phases

• Questions:   
Low temperatures? 
The larger space of solutions e.g. triangular (c.f. [Erdmenger et. al.]) 
Lattice symmetry breaking

• Distinct physical (and technical) problem to explicit modulation
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