The String Theory Universe, Mainz 2014

F-Theory Compactification with
Abelian Sector

Mirjam Cvetic

EAMTPﬁ—;
& Penn i il

UNIVERSITY 0f PENNSYLVANIA

o0
L 'y




The String Theory Universe, Mainz 2014

F-Theory Compactification with
Abelian Sector

Mirjam Cvetic

Based on:

arXiv:1303.6970 [hep-th]: M. C., Denis Klevers, Hernan Piragua
arXiv:1306.0236 [hep-th]: M. C., Antonella, Grassi, D. Klevers, H. Piragua
arXiv:1307.6425 [hep-th]: M. C., D. Klevers, H. Piragua

arXiv:1310.0463 [hep-th]: M.C., D. Klevers, H. Piragua, Peng Song
arXiv:1410....[hep-th]: M.C., D. Klevers, H. Piragua, Wati Taylor

& work in progress (also w/ P. Langacker)
AMTPi’_:
Penn University of ..“ A
Manbor ;"":““T |

UNIVERSITY 0f PENNSYLVANIA




F-theory & U(1) Gauge Symmetries

MOTIVATION



c.f., Fernando Marchesano’s nice review



Why F-theory?

F-theory (12dim) = Type IIB String Theory (10dim)
« w/ back-reacted

(p,q) 7-branes
 regions with finite/infinite
g. on non-Calabi-Yau space

 on elliptically fibered
Calabi-Yau manifold

Through chain of dualities related to:
M-theory (w/ limit 11dim Supergravity) [via a limiting T-duality]

Heterotic String Theory (10dim) [via "~ stable degeneration”]



Why F-theory Compactification?

" A broad domain of non-perturbative string theory landscape

with promising particle physics & cosmology [gauge symmetry,
_ matter repres. & couplings-non-pert./exceptional symm. groups] |




Why F-theory Compactification?

" A broad domain of non-perturbative string theory landscape h
with promising particle physics & cosmology [gauge symmetry,
_ matter repres. & couplings-non-pert./exceptional symm. groups] )

Focus on [SU(5)] GUT:

Local model building: [Donagi,Wijnholt;Beasley,Heckman,Vafa;... Font,Ibanez;...

Hayashi,Kawano,T'suchiya,Watari, Yamazaki;...Dudas,Palti,...

Cecotti,Cheng,Heckman,Vafa; ...Marchesano,Martucci;...]

Global model building: [Blumenhagen,Grimm,Jurke, Weigand;

Marsano,Saulina,SchaferNameki;Grimm,Krause,Weigand;...

M.C.,Halverson,Garcia-Etxebarria;...] SM [Lin,Weigand;...]



Why F-theory Compactification?

" A broad domain of non-perturbative string theory landscape A
with promising particle physics & cosmology [gauge symmetry,
_ matter repres. & couplings-non-pert./exceptional symm.] )

Focus on [SU(5)] GUT:

Local model building: [Donagi,Wijnholt;Beasley,Heckman,Vafa;... Font,Ibanez;...
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Global model building: [Blumenhagen,Grimm,Jurke, Weigand;
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4 [Vafa; Vafa,Morrison,...] A
Employing geometric techniques for elliptically fibered
| Calabi-Yau manifolds and/or dualities to determine )

Primarily discrete data:
Gauge symmetries, matter repres .& multiplicities, Yukawa couplings,...
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Why Abelian Symmetries in F-theory?

[ Physics: important ingredient of the Standard Model and beyond ]

# Multiple U(1)’s desirable (both local & global)

Formal developments: new CY elliptic fibrations related to Mordell-Weil group

While non-Abelian symmetries extensively studied: [Kodaira; Tate;Morrison,Vafa;
Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa, Candelas,Font,...]
Rece ntIy: [Esole,Yau;Marsano,Schéafer-Nameki; Morrison,Taylor; M.C.,Grimm,Klevers,Piragua;
Braun,Grimm,Kapfer Keitel, Borchman,Krause,Mayrhofer,Palti,Weigand,;
Hayashi,Lawrie,Morrison, Schafer-Nameki; Esole,Shao,Yau,;...]

Until recently, Abelian sector rather unexplored
Few early examples: [Aldazabal,Font,Ibanez,Uranga;
Klemm Mayr,Vafa]
A lot of recent progress: [Grimm,Weigand;Esole,Fullwood, Yau; Morrison,Park; M.C.,Grimm,Klevers;
Braun,Grimm,Keitel; Lawrie,Schafer-Nameki; Borchmann,Mayrhofer,Palti,Weigand; M.C.,Klevers,Piragua,;
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M.C.,Klevers,Piragua; M.C.,Klevers,Piragua,Song; Braun,Collinucci, Valandro; Morrison,Taylor;

Kuntzler,Schéfer-Nameki .
! Torsion part: [Morrison,Vafa; Aspinwall,Morrison;...Morrison,Till, Weigand ]
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construction of elliptically fibered Calabi-Yau manifolds with
rank n Mordell-Weil (MW) group
- Exemplify for rank 2 MW [U(1)?]
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Outline & Summary

Systematic Construction of Abelian sector of F-theory
1. Engineering rank n Abelian sector U(1)" of global F-theory compactification:
construction of elliptically fibered Calabi-Yau manifolds with
rank n Mordell-Weil (MW) group
- Exemplify for rank 2 MW [U(1)?]
2. Develop techniques:
- Matter representations, multiplicities in D=6
- Yukawa couplings, chirality (G, - flux) in D=4  (not in this talk)
Two-fold advances: geometry & M-/F-theory duality

3. Applications:

- Construction of rank 3 [U(1)3] - complete intersection CY in IP’3(onIy results)
- D=4 GUT’s w/ SU(5)xU(1)?: all Yukawa couplings
- Study of moduli space of U(1)? with non-Abelian enhancement (un-Higgsing)



Type IIB perspective

F-THEORY BASIC INGREDIENTS



F-theory Compactification: Basic Ingredients

F-theory geometrizes the (Type IIB) string coupling (axio-dilaton):

T=Co+ z'gs_l as a modular parameter of two-torus T?(t)
T

SL(2,Z)-symm.

Compactifcation is a two-torus T?(t)-fibration over a compact base space B:

Weierstrass form:
2 3 4 6
y: =x"+ fxz" + gz

f, g- function fields on B

T(X,Y,2)

[z:x:y] homog. coords on P?(1,2,3)
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F-theory geometrizes the (Type IIB) string coupling (axio-dilaton):

T=Co+ z'gs_l as a modular parameter of two-torus T?(t)
T

SL(2,Z)-symm.

Compactifcation is a two-torus T?(t)-fibration over a compact base space B:

Weierstrass form:
2 3 4 6
y: =x"+ fxz" + gz

f, g- function fields on B

[z:x:y] homog. coords on P?(1,2,3)

singular T?(t)-fibr. > g2«
location of 7-branes
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F-theory Compactification: Basic Ingredients

» Total space of T%(t)-fibration: singular elliptic Calabi-Yau manifold X
D=4, SUSY vacua: fourfold X, [D=6, SUSY vacua: threefold X;]
* X,-singularities encode complicated set-up of intersecting 7-branes:

Gauge theory (ADE...) - Matter in co-dim.
in co-dim. one in B, twoin B; [Katz,Vafa]
(7-branes) S (intersecting 7-branes)

G,-flux at intersection

Yukawa couplings _ _
induces chiral 4D matter

in co-dim. three in B,

,mf:SmS’mS”




Constructing elliptic fibrations with higher rank Mordell-Weil groups

U(1)-SYMMETRIES IN F-THEORY



Recall: Non-Abelian Gauge Symmetry

[Kodaira;Tate;Vafa;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa;...]

1. Weierstrass form for elliptic fibration of X (w/ zero section)@

y2 _ 5133 —|-fZEZ4 —|—g26
[ [ords(f),ordg(g),0rds(A)] 4mmp Singularity type of fibration of X ]

S
2. Severity of singularity along divisor S in B:

B
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Recall: Non-Abelian Gauge Symmetry

[Kodaira;Tate;Vafa;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa;...]

1. Weierstrass form for elliptic fibration of X @

y2 _ 5133 _|_fo4 —|—gZ6
[ [ords(f),ords(g),0rds(A)] 4=y Singularity type of fibration of X ]

S

2. Severity of singularity along divisor S in B:
B

3. Resolution: singularity type <4m# structure of a tree of P1’s over S

[ -singularity:

AN

Recent refinements: [Esole,Yau,...;Hayashi,Lawrie,Schéfer-Nameki,Morrison;...]

4 )

— Cartan generators for A' gauge bosons: in M-theory via Kaluza-Klein

(KK) reduction of C; forms along (1,1)-forms w; < P; on X
Cs D A'w;

\_ Non-Abelian generators: light M2-brane excitations on P!‘s [Witten]




U(1)’s-Abelian Symmetry
- U(1)’s gauge bosons A™ should also arise via KK-reductionC3 D A™w,,, .

(1,1)-forn{s'on X
- Forbid non-Abelian enhancement (by M2’s wrapping P's): only /,-fibers



U(1)’s-Abelian Symmetry & Rational Sections

- U(1)’s gauge bosons A™ should also arise via KK-reductionC3 D A™w,, .

(1,1)-forn{s'on X
- Forbid non-Abelian enhancement (by M2’s wrapping P's): only /,-fibers

[(1,1)-form Wy, 4mP rational section } [Morrison, Vafa IT]
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U(1)’s-Abelian Symmetry &Mordell-Weil Group

[ Rational sections of ellip. fibration » Rational points of ellip. curve ]

1. Rational point Q on elliptic curve E with zero point P
* issolution(xg,yq, 2@ )in field K of Weierstrass form

2 3 4 6
ye =x° + fxz* + gz F
e Rational points form a group (under addition) on E Q

» [ Mordell-Weil group of rational points]




U(1)’s-Abelian Symmetry &Mordell-Weil Group

2. Qon Einduces a rational section 35 : B — X of elliptic fibration

» §Q gives rise to a second copy of B in X:

new divisor B, in X



U(1)’s-Abelian Symmetry &Mordell-Weil Group

2. Qon Einduces a rational section 35 : B — X of elliptic fibration

» §Q gives rise to a second copy of B in X:
new divisor B, in X

» (1,1)-form Wm constructed from divisor B, (Shioda map)
indeed (1,1) - form Wm <@ rational section



Structure of Elliptic Fibrations with Rational Sections
Consequences for Weierstrass form (WSF) w/ rat. point Q= [zg : yo : 2]
1. Implies constraint relation between f, g

928 = v~ — frq7h

2. Implies singularity at codimension two in B:
2

Factorization:(y — vQ)(y + yq) = (x — xq)(2® + gz + fz5 + =
- Singularity: yg = fz5 + 3z5 = 0 ™% \WSF singular at Q é/
Q

+ =0

z
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Structure of Elliptic Fibrations with Rational Sections

Consequences for Weierstrass form (WSF) w/ rat. point Q= [zg : yo : 2]
1. Implies constraint relation between f, g

92 = Yo — o — frQzg
2. Implies singularity at codimension two in B:

Factorization:(y — yo)(y + y@) = (x — Q) (z* + moz + fz5 + 23)

|, fiber

resolved

P at

w/isolated (matter) curve

» Section §Q implies U(1)-charged matter, though only /,-fiber in codim. one




Elliptic curves with rank-n Mordell-Weil group

ELLIPTIC FIBRATIONS WITH n RATIONAL SECTIONS



Elliptic Curves E with Rational Points

[ Elliptic curve with zero point P and n rational points Q; ]

Consider line bundle M=O(P+Q,+...+Q,) of degree n+1 on E:
1) HO(M)=<x,,...,x,.,>, n+1 sections

2) HO(M¥)= k(n+1) sections; .= (n Z k) sections known (deg. kK monomials in x))

 r<k(nt1): need to introduce new sections in M (n=0, 1)

* 1 >k(n+1): r-k(n+1) relations between sections: E embeddable in WP™

Existence of rational points Q,,..., Q,:
E non-generic Calabi-Yau one-fold in jyyp™ ==

generic Calabi-Yau in blow-up of }WP™ at rational points Q;



Elliptic Curves E with Rational Points

[ Elliptic curve with zero point P and n rational points Q; ]

has canonical embedding as Calabi-Yau one-fold in WP™

» Example n=2: points P Q, R
1. M=0(P+Q+R) degree three: three sections (u,v,w) = [P2-coordinates
= Eis cubic curve in P?[y, : v : w]
2. Existence of points P Q, R: E non-generic cubic has to factorize as
u =0

3
8 ufo(u, v, w) + H(aiv + b;w) =0
i=1
Degree two polynomial  fo(u, v, w)
Q

E generic Calabi-Yau in blow-up of P2at points Q, R = dP,



Explicit Examples

n=0: Tate form in P?(1,2,3)

n=1: E with P, Qis generic CY in B1;IP?(1,1,2) [Morrison,Park]

n=2: Ewith P, Q, Ris generic CY in dP, [ﬁogd};ln;f"ggs’l\gii egr’&“a?]fer’lja‘lm’welga‘nd;-

n=3: EwithP. Q R, Sis CICY in Bl,P»’ [M.C.Klevers,Piragua,Song]

n=4 is determinantal variety in P* work in progress: [M.C. Klevers,Piragua,Song]

higher n, not clear...



lllustration: d P -elliptic fibrations with two rational sections

ENGINEERING F-THEORY WITH U(1)?



Elliptic curve with rk(MW)=2: concrete example

[M.C., Klevers,Piragua]
[ Elliptic curve E with two rational points Q, R ]

Consider line bundle M=O(P+Q+R) of degree 3 on E (non-generic cubic in P?)

- natural representation as hypersurface p=0 in del Pezzo dP,

pzu(slu%%eg + sguveleg -+ 83v26§ + 85’(1/(1)6%62 + Sgrwe; ey + 58w2e%) + 571)21062 -+ sng261

[u:v:w:e,:e,] -homogeneous coordinates of dP,
(blow-up of P2w/ [u":v":w’] at 2 points: u’=ue,e,, v'=ve,,w’=we,)
u v w e e
P: EsNp=|[—sg:sg:1:1:0],

Q: ExNp=[—-s7:1:83:0:1],
R: DyNp=[0:1:1:—s7:389].

Points represented by intersections of

different divisors in dP, with p




Classification of dP, elliptic fibrations

[M.C., Klevers, Piragua,; M.C.,Grassi,Klevers,Piragua]

Ambient space: dP; —— dPy(S7,So)

— dP, fibration determined by J

two divisors S;and S, (loci of 5,=0,5,=0) e

Ecdp, —— X

] __ sections_
— cutsout E indP, $p,50, SR

— coefficients s, in CY-equation get lifted B
to sections of the base B (only s,,s, dependent)

— coordinates [u:v:w:e;:e,] lifted to sections

Calabi-Yau hypersurface X:



Classification of dP, elliptic fibrations

Construction of general elliptic fibrations:

section bundle section bundle
u | O(H — By — B2+ Sy + [Kg]) si | OB[KR'] =S — S)
v/ OH — By, + Sy — S7) So O(2[K3'] — So)
w' O(H — E) S5 O(Kz' 1 + S — Sy)
€1 O(Ey) S5 O(2K3'] — S7)
2 O(E,) 56 O(K5"))
r > S7 0(87)
— CY-condition: &, and & fixed Sg O([K3Z' + Sy — S7)
- »Sg O(Sy)

Engineer non-Abelian groups: make s. non-generic



Construction of CY Elliptic Fibrations

Classify all vacua with fixed E in dP, & chosen base B in D=6 and D=4

Example: D=4, B = P3
1. X generic [all s, exist, generic]: U(1) x U(1)

6
S7 = n7Hps 4
Sg = ngHps 5 Can construct and
study entire family
0o 2 4n,6 8 of CY’s explicitly

2. X non-generic [s; realize SU(5) at t=0]: SU(5) x U(1) x U(1)




Codimension two singularities

MATTER IN F-THEORY WITH U(1)’s



Matter in General Geometries with U(1)’s

[M.C.,Klevers,Piragua;M.C.,Grassi,Klevers,Piragua]
Charged matter at codim-two singularities in B
* Highly reducible variety:
Individual matter loci “ irreducible components
= associated prime ideals

Matter locus : yg = fz5 + 325 =0

* Ideal techniques: irreducible components 4@ prime ideals
(of polys y,,f-high degree)



Matter in General Geometries with U(1)’s

[M.C.,Klevers,Piragua;M.C.,Grassi,Klevers,Piragua]
Charged matter at codim-two singularities in B

Matter locus : yg = fzé + 3:1:22 =0 @

* Highly reducible variety:

Individual matter loci “ irreducible components
= associated prime ideals

* Ideal techniques: irreducible components 4 prime ideals
(of polys y,,f-high degree)

ldentify matter at distinguished loci:

Type A: matter at loci in B where sections are ill-defined
Type B: matter at loci characterized by additional constraints
=) matter with multiple U(1)-charges

* Leads to all prime ideals for dP,-fibrations w/ SU(5)
[M.C.,Klevers,Langacker,Piragua]



lllustration: Codimension two singularities of dP,-elliptic fibrations

MATTER FOR F-THEORY VACUA: U(1)?



Summary of Matter Representations

U(l) x U(1)

Type B (1,0) (0,1) (1, 1)

Type A | (-1.1) (0.2) (-1,-2)
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Summary of Matter Representations

U(l) x U(1) SU(5) x U(1) x U(1)

Type B (1,0) (0,1) (1, 1) | (5,—2,0) (5,2,0) (5,—2,—1) | €

Type A | (-L1)(0.2) (-1.-2) | (5.-2,1) (5.2.1) (10,~4.0)

X non-generic =2 realize SU(5) x U(1) x U(1)
Apply analogous techniques to determine matter representation

Specific example: w/ SU(5) at t=0




D=6 Matter Spectrum & Multiplicities

Closed formula for D=6 matter multiplicities for entire class of F-theory
vacua over any base B

Example: B=]p?

(91, 92) Multiplicity
(1,0) 54 — 15ng +n3 + (12 + ng) ny — 2n?
Type B (0,1) 54 + 2 (6ng — ng + 6ny — n3)
(1,1) 54 + 12ng — 2n3 + (ng — 15) ny + n?
(—1,1) ny (3 —ng + ny)
Type A (0,2) nony
(—1,-2) ng (3 + ng — ny)

Integers n,, ng specify all dP,-fibration over P?
Full spectrum and multiplicities also with SU(5)xU(1)x(1) group

Consistency check: spectrum cancels D=6 anomalies in quantum field theory



D=4: Matter surfaces, G,-flux

MATTER SPECTRUM IN D=4

No details here

Construction of G, flux — H,(?>2)(X. Z/2) - determine chiralities
First explicit construction of G, for B= p3 ; Matter curves
Constraints from D=3 M-/F-theory duality



D=4 Spectrum

Example B=P3with U(1) x U(1): most general solution for G,-flux [a/]
G4 = asNyg (4 — N7 + n9> Hgg + 4a5HBSp + agHBU(§Q> + CL4HBU(§R) + CL5S%>

(Q1, C]Q) D=4 chiralities

(1, O) % [a5n7n9 (4 —n7+ng)+as (2713 — (12 —ng) (8 —ng) —n7 (16 + n9>)]
5 lasng (4 — n7 4 ng) (12 — ng) — ay (n7 (8 — n7) + (12 — ng) (4 + ng))]

(0,1)

(1,1) |4 [2asno(t—nr+n0)(12 = n9) — (a5 + as) (n + nz(ng — 20) +2(12 — n9) (4 + 1))
(—1,1) i(ag—a4)n7 (4—|—n7—n9)

(0,2) Tn7ng(—2a4 + as(4 — n7 4 ng))
(_1; —2) —ing(ny —ng — 4)(ag + 2a4 + as(ny — 2ng))

All D=4 anomalies cancelled - employing[Hayashi,Grimm;Grimm, M.C.,Klevers]



D=4 Spectrum

Example B=P3with U(1) x U(1): most general solution for G,-flux [a/]
G4 — aszNg (4 — Ny —+ n9> Hé —+ 4CL5HBSP -+ CL3HBU(§Q> -+ CL4HBU(§R) -+ CL5S%>

(Q1, C]Q) D=4 chiralities

(1, O) % [a5n7n9 (4 —n7+ng)+as (27?% — (12 —ng) (8 —ng) —n7 (16 + n9>)]
< lasng (4 — n7 + ng) (12 — ng) — as (n7 (8 — n7) + (12 — ng) (4 + ny))]

(0,1)

(1,1) |4 [2asno(t—nr+n0)(12 = n9) — (a5 + as) (n + nz(ng — 20) +2(12 — n9) (4 + 1))
(—1,1) i(ag—a4)n7 (4—|—n7—n9)

(0,2) Tn7ng(—2a4 + as(4 — n7 4 ng))
(_1; —2) —ing(ny —ng — 4)(ag + 2a4 + as(ny — 2ng))

Same methods for SU(5)xU(1)xU(1) applied:

G,-flux has 7 parameter; all D=4 chiralities determined; anomalies checked,;

Chirality checked against [Type B] matter geometric calculations



Yukawa Couplings in GUT’s & U(1)’s

[M.C., Klevers, Langacker, Piragua]-to appear

D=4 Yukawa couplings at codimension three:

[ Intersections of matter curves <= Calculations of prime ideals]

Results for U(1)?2 & specific SU(5)xU(1)2:
All gauge invariant couplings geometrically realized!

m) \Viiraculous structure at co-dimension three of fibration



Yukawa Couplings in GUT’s & U(1)’s

[M.C., Klevers, Langacker, Piragua]-to appear

D=4 Yukawa couplings at codimension three:

[ Intersections of matter curves <= Calculations of prime ideals]

Results for U(1)?2 & specific SU(5)xU(1)2:
All gauge invariant couplings geometrically realized!

m) \Viiraculous structure at co-dimension three of fibration

Application: Exploration of gauge symmetry enhancement (un-Higgsing)
specific SU(5)xU(1)? = rank-preserving non-Abelian symmetry
D=4 examples of spectrum and couplings, fit into SU(6)xSU(2);SO(10)xU(1);< Eq4

[but NOT into SU(7)]  Primarily field theory analysis; further study of geometry
[M.C.,Klevers,Piragua,Langacker]



Application: U(1)3

Rank 3 MORDEL-WEIL ELLIPTIC FIBRATIONS

E as a complete intersection CY in 31,P° No details here
Classify Calabi-Yau elliptic fibrations of E over given base B
Matter multiplicity involved: determinantal varieties



D=6 Matter & Multiplicity for U(1)>

[Calabi-Yau elliptic fibrations of E over given base B classified]

Charges Multiplicities
(1,1,-1) [88] : [318]
(0;1;2) [89] : [519]
(1;0;2) [510] : [820]
(-1,0,1) 53] '5:7 — [sg] - [s18]
(0,-1,1) [83] - Sz — s8] - [s18]
(-1,-1,-2) [88] - So — [s10] - [520]
(01012) 87 89 — [819][89]

- AIKE'? = 3([p2])? — 2[K 5'1S7 — 3([p2]")Sr — 2[K 5187 — 3([p2]") S
trl-funda;ne'ntal (1,1,1) —28:87 + 2[K5'Ss + 9([p2]") Sy + 5SSy + 5S5:Ss — 852
(non-pert.)! (1,1,0) 2K+ 3(p2)” + 2K 518: + 3([pl)Sr + 2155187 + 3([pal")S7

1= +8:87 — 3[K 'Sy — 9([p]") Sy — 4578y — 4875y + 7S
(1,0,1) 2[K5']” + 3([p2)")” + 2[K 5187 + 3([292] )Sr — 3[K5'1S7 + 3([p2]")S7

T +285:8; + 82 + 2[ 21Se — 9([p2]”)Se — 58Sy — 4578y + 652
(0,1,1) 2K+ 3(([p2]")? = B[, 1187 + 3([pa]")S7 + 2 + 2K ]Sy

»L) +3([pa]")Sr + 25757 + 2[ ]39 I([p2]") Sy — 45:Sy — 5S5:Sy + 652
(1,0,0) A[KR'? — 3([12] )? = 2[K 5187 — 3([pa]")S7 + 2[K 5']S7 — 3([pa]° )57

il ~8:8; — 287 - 2[K 5 ]89 + 9([pa]") Sy + 4878y + 5578y — 652
(0,1,0) 4[K§ 1> = 3([p2")* + [ 5187 — 3([102] )S7 — 2857 — 2[K ;]S

e —3([]?2] )87 — 8787 — 2[ ]89 + 9([]?2] )89 + 58789 + 48789 - 682
001) KT —4(p]7 + 2K, 15— 4P )8 — 287 1 2[5 18— 4([pa])S,

—285;S; — 282 + 2[K§1]89 + 12([p2]®) Sy + 65:Sy + 6S5:Sys — 1082



Application: un-Higgsing of U(1)?

NON-ABELIAN GAUGE ENHANCMENT of U(1)’s



Non-Abelian Gauge Enhancement

Elliptic fibrations with higher rank Mordell-Weil group crucial for

understanding the moduli space of F-theory compactifications
® Study un-Higgsing in complex structure moduli space:

enhancement of U(1)’s = to non-Abelian symmetry

Rank 1 case understood: [Morrison, Taylor]

D=6 F-theory with single U(1) un-Higgses to SU(2)

g tuning comp. str. moduli

—_— :
U(1) D — SU(2) on Riemann surface 3,
adjoint matter VEV

.

Geometric: transition of vertical divisor into rational section



Non-Abelian Gauge Enhancement:U(1)?
[M.C.,Klevers,Piragua,Taylor]
Enhancement of U(1)xU(1): richer structure

Reduce MW-rank to zero by merging rational points Q, R with zero P

u=2>0

3
R ufo(u, v, w) —+ H(aiv + b;w) =0

/ =

Q@

E



Non-Abelian Gauge Enhancement:U(1)?
[M.C.,Klevers,Piragua,Taylor]
Enhancement of U(1)xU(1): richer structure

Reduce MW-rank to zero by merging rational points Q, R with zero P

u=>0

wfo(u,v,w) + A (av + byw)?(azv + bsw) = 0

.« rk(MW)=2 > 1as PO >0



Non-Abelian Gauge Enhancement:U(1)?

[M.C.,Klevers,Piragua,Taylor]
Enhancement of U(1)xU(1): richer structure

Reduce MW-rank to zero by merging rational points Q, R with zero P
ufo(u, v, w) + A Aa(arv + biw)® =0

¢ k(MW)=2 > 1asPQ > 0
« rk(MW)=1>0asPR > 0

Tuned fibration with codimension one singularity built in:
1. U(1xU(1) > SU(3):set \; =1 atlocus f>(0, ~bi,a;) =0inB

» I;-singularity at P

2. U()xU(1) = SU((2)xSU(2): set f2(0,=b1,a1) =1
®» | fiberat \, — 0 in B: wfa(u,v,w) =0
3. General case not rank preserving: U(1)? > SU(3)xSU(2)?



[ Summary J

e Systematic construction of elliptic fibrations w/ Mordel-Weil groups
(explicit n=2,3 w/ general: U(1)x U(1) and U(1)xU(1)xU(1) [& w/ SU(5)]

* Develop techniques (general):
- D=6 matter presentations, multiplicity
- D=4 Yukawa couplings & chirality (G, flux —H,??)(X,Z/2); constraints)
From geometry [Determinantal variety techniques]:

miraculous structure of codim. 2 and 3 singularities: tri-fund. reps., couplings,...

* Applications:
- explicit rank 2 (hypersurface in dP,): U(1)? [& w/ SU(5)]
-explicit rank 3 (complete intersections in Blz(P?)): U(1)3
-study of un-Higgsing of U(1)? [w/ SU(5)] = non-Abelian gauge symmetries



[ Outlook ]

D=4 global SM/GUT models w/ U(1): general base; SUSY conditions,

quantization of G, flux,... - Particle Physics Implications
[M.C.,Klevers,Langacker,Piragua] - in progress

n>3: explicit construction for n=4  [M.C.,Klevers,Piragua,Song]- in progress

Comprehensive study of moduli space for un-Higgsing:
U(1)" = non-Abelian gauge theory enhancement
[M.C.,Klevers,Piragua,Taylor] - in progress

Study of heterotic duals of F-theory with U(1)’s
[M.C.,Grassi,Klevers,Piragua,Song]- in progress



{ Outlook J

* F-theory without zero section -
Discrete symmetries (Tate-Shafarevich Group)

 [Braun,Morrison],[ Morisson,Taylor],[Anderson,Garcia-Extebarria Grimm],
[Klevers,Pena,Oehlmann, Piragua,Reuter] (beyond Z,) c.f., Klever’s talk;
[Garcia-Extebarria, Grimm,Keitel],[ Mayrhofer,Palti, Till, Weigad] (Z,)
c.f., Mayrhofer’s talk

‘ work in progress

Mordell-Weil meets Tate-Shafarevich !



