The String Theory Universe, Mainz 2014

F-Theory Compactification with Abelian Sector

Mirjam Cvetič

The String Theory Universe, Mainz 2014

F-Theory Compactification with Abelian Sector

Mirjam Cvetič

Based on:

arXiv:1303.6970 [hep-th]: M. C., Denis Klevers, Hernan Piragua arXiv:1306.0236 [hep-th]: M. C., Antonella Grassi, D. Klevers, H. Piragua arXiv:1307.6425 [hep-th]: M. C., D. Klevers, H. Piragua arXiv:1310.0463 [hep-th]: M.C., D. Klevers, H. Piragua, Peng Song arXiv:1410....[hep-th]: M.C., D. Klevers, H. Piragua, Wati Taylor & work in progress (also w/ P. Langacker)

F-theory & U(1) Gauge Symmetries
MOTIVATION

c.f., Fernando Marchesano's nice review

Why F-theory?

F-theory (12dim)

- on elliptically fibered Calabi-Yau manifold
- = Type IIB String Theory (10dim)
 - w/ back-reacted (p,q) 7-branes
 - regions with finite/infinite
 g_s on non-Calabi-Yau space

Through chain of dualities related to:

M-theory (w/ limit 11dim Supergravity) [via a limiting T-duality]

Heterotic String Theory (10dim) [via ``stable degeneration'']

Why F-theory Compactification?

A broad domain of non-perturbative string theory landscape with promising particle physics & cosmology [gauge symmetry, matter repres. & couplings-non-pert./exceptional symm. groups]

Why F-theory Compactification?

A broad domain of non-perturbative string theory landscape with promising particle physics & cosmology [gauge symmetry, matter repres. & couplings-non-pert./exceptional symm. groups]

Focus on [SU(5)] GUT:

Local model building: [Donagi,Wijnholt;Beasley,Heckman,Vafa;... Font,Ibanez;... Hayashi,Kawano,Tsuchiya,Watari,Yamazaki;...Dudas,Palti;... Cecotti,Cheng,Heckman,Vafa; ...Marchesano,Martucci;...]

Global model building: [Blumenhagen,Grimm,Jurke,Weigand; Marsano,Saulina,SchäferNameki;Grimm,Krause,Weigand;... M.C.,Halverson,Garcia-Etxebarria;...] SM [Lin,Weigand;...]

Why F-theory Compactification?

A broad domain of non-perturbative string theory landscape with promising particle physics & cosmology [gauge symmetry, matter repres. & couplings-non-pert./exceptional symm.]

Focus on [SU(5)] GUT:

Local model building: [Donagi,Wijnholt;Beasley,Heckman,Vafa;... Font,Ibanez;... Hayashi,Kawano,Tsuchiya,Watari,Yamazaki;...Dudas,Palti;... Cecotti,Cheng,Heckman,Vafa; ...Marchesano,Martucci;...]

Global model building: [Blumenhagen,Grimm,Jurke,Weigand; Marsano,Saulina,SchäferNameki;Grimm,Krause,Weigand;... M.C.,Halverson,Garcia-Etxebarria;...] SM [Lin,Weigand;...]

[Vafa; Vafa, Morrison,...]

Employing geometric techniques for elliptically fibered Calabi-Yau manifolds and/or dualities to determine

Primarily discrete data: Gauge symmetries, matter repres .& multiplicities, Yukawa couplings,...

Physics: important ingredient of the Standard Model and beyond

Formal developments: new CY elliptic fibrations related to Mordell-Weil group

Physics: important ingredient of the Standard Model and beyond

Formal developments: new CY elliptic fibrations related to Mordell-Weil group

While non-Abelian symmetries extensively studied: [Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,...]

Recently: [Esole,Yau;Marsano,Schäfer-Nameki; Morrison,Taylor; M.C.,Grimm,Klevers,Piragua; Braun,Grimm,Kapfer,Keitel; Borchman,Krause,Mayrhofer,Palti,Weigand; Hayashi,Lawrie,Morrison, Schäfer-Nameki; Esole,Shao,Yau;...]

Physics: important ingredient of the Standard Model and beyond

Formal developments: new CY elliptic fibrations related to Mordell-Weil group

While non-Abelian symmetries extensively studied: [Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,...]

Recently: [Esole,Yau;Marsano,Schäfer-Nameki; Morrison,Taylor; M.C.,Grimm,Klevers,Piragua; Braun,Grimm,Kapfer,Keitel; Borchman,Krause,Mayrhofer,Palti,Weigand; Hayashi,Lawrie,Morrison, Schäfer-Nameki; Esole,Shao,Yau;...]

Until recently, Abelian sector rather unexplored

Few early examples: [Aldazabal,Font,Ibanez,Uranga; Klemm Mayr,Vafa]

Physics: important ingredient of the Standard Model and beyond

Formal developments: new CY elliptic fibrations related to Mordell-Weil group

While non-Abelian symmetries extensively studied: [Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,...]

Recently: [Esole,Yau;Marsano,Schäfer-Nameki; Morrison,Taylor; M.C.,Grimm,Klevers,Piragua; Braun,Grimm,Kapfer,Keitel; Borchman,Krause,Mayrhofer,Palti,Weigand; Hayashi,Lawrie,Morrison, Schäfer-Nameki; Esole,Shao,Yau;...]

Until recently, Abelian sector rather unexplored

Few early examples: [Aldazabal,Font,Ibanez,Uranga; Klemm Mayr,Vafa]

A lot of recent progress: [Grimm, Weigand; Esole, Fullwood, Yau; Morrison, Park; M.C., Grimm, Klevers; Braun, Grimm, Keitel; Lawrie, Schäfer-Nameki; Borchmann, Mayrhofer, Palti, Weigand; M.C., Klevers, Piragua; Grimm, Kapfer, Keitel; Braun, Grimm, Keitel; MC, Grassi, Klevers, Piragua; Borchman, Mayrhofer, Palti, Weigand; M.C., Klevers, Piragua; M.C., Klevers, Piragua, Song; Braun, Collinucci, Valandro; Morrison, Taylor; Kuntzler, Schäfer-Nameki]

Torsion part: [Morrison, Vafa; Aspinwall, Morrison;...Morrison, Till, Weigand]

Outline & Summary

Systematic Construction of Abelian sector of F-theory

- Engineering rank n Abelian sector U(1)ⁿ of global F-theory compactification: construction of elliptically fibered Calabi-Yau manifolds with rank n Mordell-Weil (MW) group
 - Exemplify for rank 2 MW [U(1)²]

Outline & Summary

Systematic Construction of Abelian sector of F-theory

- Engineering rank n Abelian sector U(1)ⁿ of global F-theory compactification: construction of elliptically fibered Calabi-Yau manifolds with rank n Mordell-Weil (MW) group
 - Exemplify for rank 2 MW [U(1)²]
- 2. Develop techniques:
 - Matter representations, multiplicities in D=6
 - Yukawa couplings, chirality $(G_4 flux)$ in D=4 (not in this talk)
 - Two-fold advances: <u>geometry</u> & M-/F-theory duality

Outline & Summary

Systematic Construction of Abelian sector of F-theory

- Engineering rank n Abelian sector U(1)ⁿ of global F-theory compactification: construction of elliptically fibered Calabi-Yau manifolds with rank n Mordell-Weil (MW) group
 - Exemplify for rank 2 MW $[U(1)^2]$
- 2. Develop techniques:
 - Matter representations, multiplicities in D=6
 - Yukawa couplings, chirality $(G_4 flux)$ in D=4 (not in this talk)
 - Two-fold advances: geometry & M-/F-theory duality
- 3. Applications:
 - Construction of rank 3 [U(1)³] complete intersection CY in \mathbb{P}^3 (only results)
 - D=4 GUT's w/ SU(5)xU(1)²: all Yukawa couplings
 - Study of moduli space of U(1)² with non-Abelian enhancement (un-Higgsing)

F-THEORY BASIC INGREDIENTS

Type IIB perspective

F-theory geometrizes the (Type IIB) string coupling (axio-dilaton):

Compactification is a two-torus $T^2(\tau)$ -fibration over a compact base space B:

Weierstrass form:

$$y^2 = x^3 + fxz^4 + gz^6$$

f, g- function fields on B [z:x:y] homog. coords on **P**²(1,2,3)

F-theory geometrizes the (Type IIB) string coupling (axio-dilaton):

Compactification is a two-torus $T^2(\tau)$ -fibration over a compact base space B:

- Total space of T²(τ)-fibration: singular elliptic Calabi-Yau manifold X
 D=4, SUSY vacua: fourfold X₄ [D=6, SUSY vacua: threefold X₃]
- X₄-singularities encode complicated set-up of intersecting 7-branes:

- Total space of T²(τ)-fibration: singular elliptic Calabi-Yau manifold X
 D=4, SUSY vacua: fourfold X₄ [D=6, SUSY vacua: threefold X₃]
- X₄-singularities encode complicated set-up of intersecting 7-branes:

- Total space of T²(τ)-fibration: singular elliptic Calabi-Yau manifold X
 D=4, SUSY vacua: fourfold X₄ [D=6, SUSY vacua: threefold X₃]
- X₄-singularities encode complicated set-up of intersecting 7-branes:

- Total space of T²(τ)-fibration: singular elliptic Calabi-Yau manifold X
 D=4, SUSY vacua: fourfold X₄ [D=6, SUSY vacua: threefold X₃]
- X₄-singularities encode complicated set-up of intersecting 7-branes:

Constructing elliptic fibrations with higher rank Mordell-Weil groups

U(1)-SYMMETRIES IN F-THEORY

Recall: Non-Abelian Gauge Symmetry [Kodaira;Tate;Vafa;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa;...] 1. Weierstrass form for elliptic fibration of X (w/ zero section) $y^2 = x^3 + fxz^4 + gz^6$ 2. Severity of singularity along divisor S in B: $[ord_S(f), ord_S(g), ord_S(\Delta)] \iff$ Singularity type of fibration of X

Recall: Non-Abelian Gauge Symmetry

[Kodaira;Tate;Vafa;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa;...]

S

B

1. Weierstrass form for elliptic fibration of X

- $y^2 = x^3 + fxz^4 + gz^6$
- 2. Severity of singularity along divisor S in B:

 $[ord_{S}(f), ord_{S}(g), ord_{S}(\Delta)] \iff$ Singularity type of fibration of X

3. Resolution: singularity type \iff structure of a tree of \mathbb{P}^1 's over S

 I_n -singularity:

Recent refinements: [Esole, Yau;...; Hayashi, Lawrie, Schäfer-Nameki, Morrison;...]

Recall: Non-Abelian Gauge Symmetry [Kodaira;Tate;Vafa;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa;...] 1. Weierstrass form for elliptic fibration of X $y^2 = x^3 + fxz^4 + qz^6$ S 2. Severity of singularity along divisor S in B: В $[ord_{S}(f), ord_{S}(g), ord_{S}(\Delta)] \iff$ Singularity type of fibration of X **3.** Resolution: singularity type \iff structure of a tree of \mathbb{P}^1 's over S I_n -singularity: Recent refinements: [Esole, Yau;...; Hayashi, Lawrie, Schäfer-Nameki, Morrison;...] Cartan generators for Aⁱ gauge bosons: in M-theory via Kaluza-Klein (KK) reduction of C₃ forms along (1,1)-forms $\omega_i \leftrightarrow \mathbb{P}^1_i$ on X $C_3 \supset A^i \omega_i$ Non-Abelian generators: light M2-brane excitations on \mathbb{P}^{1} 's [Witten]

U(1)'s-Abelian Symmetry

- U(1)'s gauge bosons A^m should also arise via KK-reduction $C_3 \supset A^m \omega_m$. (1.1)-forms on X

- Forbid non-Abelian enhancement (by M2's wrapping $\mathbb{P}^{1's}$): only I_1 -fibers

U(1)'s-Abelian Symmetry & Rational Sections

- U(1)'s gauge bosons A^m should also arise via KK-reduction $C_3 \supset A^m \omega_m$.
 - (1,1)-forms on X
- Forbid non-Abelian enhancement (by M2's wrapping $\mathbb{P}^{1's}$): only I_1 -fibers

(1,1) - form ω_m \longleftarrow rational section

[Morrison, Vafa II]

Rational sections of ellip. fibration is Rational points of ellip. curve

Rational sections of ellip. fibration 📫 Rational points of ellip. curve

- 1. Rational point Q on elliptic curve E with zero point P
 - is solution (x_Q, y_Q, z_Q) in field K of Weierstrass form

$$y^2 = x^3 + fxz^4 + gz^6$$

• Rational points form a group (under addition) on E

Mordell-Weil group of rational points

2. Q on *E* induces a rational section $\hat{s}_Q : B \to X$ of elliptic fibration

2. Q on *E* induces a rational section $\hat{s}_Q : B \to X$ of elliptic fibration

Structure of Elliptic Fibrations with Rational Sections

Consequences for Weierstrass form (WSF) w/ rat. point Q= $[x_Q : y_Q : z_Q]$

1. Implies constraint relation between *f*, *g*

$$gz_Q^6 = y_Q^2 - x_Q^3 - fx_Q z_Q^4$$

- 2. Implies singularity at codimension two in *B*:
- -Factorization: $(y y_Q)(y + y_Q) = (x x_Q)(x^2 + x_Q x + fz_Q^4 + x_Q^2)$ - Singularity: $y_Q = fz_Q^4 + 3x_Q^2 = 0$ \longrightarrow WSF singular at Q $fz_Q^4 + 3x_Q^2 = 0$

Structure of Elliptic Fibrations with Rational Sections

Consequences for Weierstrass form (WSF) w/ rat. point Q= $[x_Q : y_Q : z_Q]$

1. Implies constraint relation between *f*, *g*

$$gz_Q^6 = y_Q^2 - x_Q^3 - fx_Q z_Q^4$$

- 2. Implies singularity at codimension two in *B*:
 - -Factorization: $(y y_Q)(y + y_Q) = (x x_Q)(x^2 + x_Q x + f z_Q^4 + x_Q^2)$
 - Singularity: $y_Q = f z_Q^4 + 3 x_Q^2 = 0 \implies \text{WSF singular at Q}$

w/isolated (matter) curve

Structure of Elliptic Fibrations with Rational Sections

Consequences for Weierstrass form (WSF) w/ rat. point Q= $[x_Q : y_Q : z_Q]$

1. Implies constraint relation between *f*, *g*

$$gz_Q^6 = y_Q^2 - x_Q^3 - fx_Q z_Q^4$$

- 2. Implies singularity at codimension two in B:
 - -Factorization: $(y y_Q)(y + y_Q) = (x x_Q)(x^2 + x_Q x + f z_Q^4 + x_Q^2)$
 - Singularity: $y_Q = f z_Q^4 + 3 x_Q^2 = 0 \implies$ WSF singular at Q

w/isolated (matter) curve

Section \hat{s}_Q implies U(1)-charged matter, though only I_1 -fiber in codim. one

Elliptic curves with rank-n Mordell-Weil group

ELLIPTIC FIBRATIONS WITH n RATIONAL SECTIONS

Elliptic Curves E with Rational Points

Elliptic curve with zero point P and *n* rational points Q_i

- 1. Consider line bundle $M=O(P+Q_1+...+Q_n)$ of degree n+1 on E: 1) $H^0(M)=\langle x_1,...,x_{n+1}\rangle$, n+1 sections 2) $H^0(M^k)=k(n+1)$ sections, $r:=\binom{n+k}{k}$ sections known (deg. k monomials in x_j)
 - r < k(n+1): need to introduce new sections in M^k (n=0, 1)
 - r > k(n+1): r-k(n+1) relations between sections: E embeddable in $W\mathbb{P}^m$
- 2. Existence of rational points $Q_1, ..., Q_n$:

E non-generic Calabi-Yau one-fold in $W\mathbb{P}^m$

generic Calabi-Yau in blow-up of $W\mathbb{P}^m$ at rational points Q_i

Elliptic Curves E with Rational Points

Elliptic curve with zero point P and *n* rational points Q_i

has canonical embedding as Calabi-Yau one-fold in $W\mathbb{P}^m$

- *M*=*O*(*P*+*Q*+*R*) degree three: three sections (*u*,*v*,*w*) = ℙ²-coordinates
 → *E* is cubic curve in ℙ²[*u* : *v* : *w*]
- 2. Existence of points P, Q, R: E non-generic cubic has to factorize as

Explicit Examples

- *n=0*: Tate form in $\mathbb{P}^2(1,2,3)$
- *n=1: E* with *P*, *Q* is generic CY in $Bl_1 \mathbb{P}^2(1, 1, 2)$ [Morrison, Park]

n=2: E with P, Q, R is generic CY in dP_2

- [Borchmann, Mayerhofer, Palti, Weigand;
 M.C., Klevers, Piragua]
- *n=3:* E with P, Q, R, S is CICY in Bl_3P^3 [M.C., Klevers, Piragua, Song]

<u>*n*</u>=4 is determinantal variety in \mathbb{P}^4 work in progress: [M.C.,Klevers,Piragua,Song] higher *n*, not clear...

Illustration: dP_2 -elliptic fibrations with two rational sections

ENGINEERING F-THEORY WITH U(1)²

Elliptic curve with rk(MW)=2: concrete example

[M.C., Klevers, Piragua]

Elliptic curve E with two rational points Q, R

Consider line bundle M=O(P+Q+R) of degree 3 on E (non-generic cubic in P²)

natural representation as hypersurface p=0 in del Pezzo dP₂

 $p = u(s_1u^2e_1^2e_2^2 + s_2uve_1e_2^2 + s_3v^2e_2^2 + s_5uwe_1^2e_2 + s_6vwe_1e_2 + s_8w^2e_1^2) + s_7v^2we_2 + s_9vw^2e_1$

[u:v:w:e₁:e₂] –homogeneous coordinates of dP₂

(blow-up of $P^2 w/[u':v':w']$ at 2 points: $u'=ue_1e_2$, $v'=ve_2$, $w'=we_1$)

u v w
$$e_1 e_2$$

 $P: E_2 \cap p = [-s_9: s_8: 1: 1: 0],$
 $Q: E_1 \cap p = [-s_7: 1: s_3: 0: 1],$
 $R: D_u \cap p = [0: 1: 1: -s_7: s_9].$

Points represented by intersections of different divisors in dP_2 with p

Classification of dP₂ elliptic fibrations

[M.C., Klevers, Piragua; M.C., Grassi, Klevers, Piragua]

I. Ambient space:

- dP_2 fibration determined by two divisors S_7 and S_9 (loci of $s_7=0, s_9=0$)

- II. Calabi-Yau hypersurface X:
 - cuts out E in dP₂
 - coefficients s_i in CY-equation get lifted to sections of the base B (only s₇, s₉ dependent)
 - coordinates [u:v:w:e₁:e₂] lifted to sections

R

 $dP_2 \longrightarrow dP_2^B(\mathcal{S}_7, \mathcal{S}_9)$

Classification of dP₂ elliptic fibrations

Construction of general elliptic fibrations:

section	bundle	sectio	on	bundle
u'	$\mathcal{O}(H - E_1 - E_2 + \mathcal{S}_9 + [K_B])$	s_1		$\mathcal{O}(3[K_B^{-1}] - \mathcal{S}_7 - \mathcal{S}_9)$
v'	$\mathcal{O}(H - E_2 + \mathcal{S}_9 - \mathcal{S}_7)$	s_2		$\mathcal{O}(2[K_B^{-1}] - \mathcal{S}_9)$
w'	$\mathcal{O}(H-E_1)$	s_3		$\mathcal{O}([K_B^{-1}] + \mathcal{S}_7 - \mathcal{S}_9)$
e_1	$\mathcal{O}(E_1)$	s_5		$\mathcal{O}([2K_B^{-1}] - \mathcal{S}_7)$
e_2	$\mathcal{O}(E_2)$	s_6		$\mathcal{O}([K_B^{-1}])$
		$\longrightarrow s_7$		$\mathcal{O}(\mathcal{S}_7)$
— CY-	s_8		$\mathcal{O}([K_B^{-1}] + \mathcal{S}_9 - \mathcal{S}_7)$	
		\sim s_9		$\mathcal{O}(\mathcal{S}_9)$

Engineer non-Abelian groups: make s_i non-generic

Construction of CY Elliptic Fibrations

Classify all vacua with fixed E in dP_2 & chosen base B in D=6 and D=4

Example: D=4, $B = \mathbb{P}^3$ 1. X generic [all s_i exist, generic]: U(1) x U(1)

2. X non-generic [s_i,realize SU(5) at t=0]: SU(5) x U(1) x U(1)

Codimension two singularities

MATTER IN F-THEORY WITH U(1)'s

Illustration: Codimension two singularities of dP₂-elliptic fibrations

MATTER FOR F-THEORY VACUA: U(1)²

	$U(1) \times U(1)$
Туре В	(1,0) (0,1) (1,-1)
Type A	(-1,1) (0,2) (-1,-2)

	$U(1) \times U(1)$	
Туре В	(1,0) (0,1) (1,-1)	
Туре А	(-1,1) (0,2) (-1,-2)	

X non-generic \rightarrow realize SU(5) x U(1) x U(1) Apply analogous techniques to determine matter representation

	$U(1) \times U(1)$
Туре В	(1,0) (0,1) (1,-1)
Туре А	(-1,1) (0,2) (-1,-2)

X non-generic \rightarrow realize SU(5) x U(1) x U(1) Apply analogous techniques to determine matter representation

Specific example:

$$s_{1} = t^{3}s'_{1}$$

$$s_{2} = t^{2}s'_{2}$$

$$s_{3} = t^{2}s'_{3}$$

$$s_{5} = ts'_{5}$$

w/ SU(5) at t=0

	$U(1) \times U(1)$	$SU(5) \times U(1) \times U(1)$	
Туре В	$(1,0) \ (0,1) \ (1,-1)$	$(5, -\frac{2}{5}, 0) \ (5, \frac{3}{5}, 0) \ (5, -\frac{2}{5}, -1)$	<
Туре А	(-1,1) (0,2) (-1,-2)	$(5, -\frac{2}{5}, 1) \ (5, \frac{3}{5}, 1) \ (\overline{10}, -\frac{1}{5}, 0)$	

X non-generic \rightarrow realize SU(5) x U(1) x U(1) Apply analogous techniques to determine matter representation

Specific example:

$$s_{1} = t^{3}s'_{1}$$

$$s_{2} = t^{2}s'_{2}$$

$$s_{3} = t^{2}s'_{3}$$

$$s_{5} = ts'_{5}$$

w/ SU(5) at t=0

D=6 Matter Spectrum & Multiplicities

Closed formula for D=6 matter multiplicities for entire class of F-theory vacua over any base B

 $B=\mathbb{P}^2$ Example: Multiplicity (q_1, q_2) (1, 0) $54 - 15n_9 + n_9^2 + (12 + n_9)n_7 - 2n_7^2$ Type B $54 + 2 \left(6n_9 - n_9^2 + 6n_7 - n_7^2\right)$ (0, 1) $54 + 12n_9 - 2n_9^2 + (n_9 - 15)n_7 + n_7^2$ (1,1) $n_7 (3 - n_9 + n_7)$ (-1, 1)Type A (0, 2) n_9n_7 -1, -2) $n_9(3+n_9-n_7)$

Integers n_7 , n_9 specify all dP_2 -fibration over \mathbb{P}^2 Full spectrum and multiplicities also with SU(5)xU(1)x(1) group

Consistency check: spectrum cancels D=6 anomalies in quantum field theory

D=4: Matter surfaces, G_4 -flux

MATTER SPECTRUM IN D=4

No details here

Construction of G_4 flux – $H_V^{(2,2)}(X, Z/2) \rightarrow$ determine chiralities First explicit construction of G_4 for $B = \mathbb{P}^3$; Matter curves Constraints from D=3 M-/F-theory duality

D=4 Spectrum

Example B= \mathbb{P}^3 with U(1) x U(1): most general solution for G₄-flux [a_i]

 $G_4 = a_5 n_9 \left(4 - n_7 + n_9\right) H_B^2 + 4a_5 H_B S_P + a_3 H_B \sigma(\hat{s}_Q) + a_4 H_B \sigma(\hat{s}_R) + a_5 S_P^2$

(q_1, q_2)	D=4 chiralities
(1, 0)	$\frac{1}{4} \left[a_5 n_7 n_9 \left(4 - n_7 + n_9 \right) + a_3 \left(2n_7^2 - (12 - n_9) \left(8 - n_9 \right) - n_7 \left(16 + n_9 \right) \right) \right]$
(0,1)	$\frac{1}{2} \left[a_5 n_9 \left(4 - n_7 + n_9 \right) \left(12 - n_9 \right) - a_4 \left(n_7 \left(8 - n_7 \right) + \left(12 - n_9 \right) \left(4 + n_9 \right) \right) \right]$
(1,1)	$\frac{1}{4} \left[2a_5n_9(4 - n_7 + n_9)(12 - n_9) - (a_3 + a_4)(n_7^2 + n_7(n_9 - 20) + 2(12 - n_9)(4 + n_9)) \right]$
(-1, 1)	$\frac{1}{4} \left(a_3 - a_4 \right) n_7 \left(4 + n_7 - n_9 \right)$
(0,2)	$\frac{1}{4}n_7n_9(-2a_4+a_5(4-n_7+n_9))$
(-1, -2)	$-\frac{1}{4}n_9(n_7 - n_9 - 4)(a_3 + 2a_4 + a_5(n_7 - 2n_9))$

All D=4 anomalies cancelled - employing[Hayashi,Grimm;Grimm,M.C.,Klevers]

D=4 Spectrum

Example B= \mathbb{P}^3 with U(1) x U(1): most general solution for G₄-flux [a_i]

 $G_4 = a_5 n_9 \left(4 - n_7 + n_9\right) H_B^2 + 4a_5 H_B S_P + a_3 H_B \sigma(\hat{s}_Q) + a_4 H_B \sigma(\hat{s}_R) + a_5 S_P^2$

(q_1, q_2)	D=4 chiralities
(1,0)	$\frac{1}{4} \left[a_5 n_7 n_9 \left(4 - n_7 + n_9 \right) + a_3 \left(2n_7^2 - (12 - n_9) \left(8 - n_9 \right) - n_7 \left(16 + n_9 \right) \right) \right]$
(0,1)	$\frac{1}{2} \left[a_5 n_9 \left(4 - n_7 + n_9 \right) \left(12 - n_9 \right) - a_4 \left(n_7 \left(8 - n_7 \right) + \left(12 - n_9 \right) \left(4 + n_9 \right) \right) \right]$
(1,1)	$\frac{1}{4} \left[2a_5n_9(4 - n_7 + n_9)(12 - n_9) - (a_3 + a_4)(n_7^2 + n_7(n_9 - 20) + 2(12 - n_9)(4 + n_9)) \right]$
(-1, 1)	$\frac{1}{4} \left(a_3 - a_4 \right) n_7 \left(4 + n_7 - n_9 \right)$
(0,2)	$\frac{1}{4}n_7n_9(-2a_4+a_5(4-n_7+n_9))$
(-1, -2)	$-\frac{1}{4}n_9(n_7 - n_9 - 4)(a_3 + 2a_4 + a_5(n_7 - 2n_9))$

Same methods for SU(5)xU(1)xU(1) applied:

G₄-flux has 7 parameter; all D=4 chiralities determined; anomalies checked; Chirality checked against [Type B] matter geometric calculations

Yukawa Couplings in GUT's & U(1)'s

[M.C., Klevers, Langacker, Piragua]-to appear

D=4 Yukawa couplings at codimension three:

Intersections of matter curves 🔶 Calculations of prime ideals

Results for $U(1)^2$ & specific $SU(5)xU(1)^2$:

All gauge invariant couplings geometrically realized!

Miraculous structure at co-dimension three of fibration

Yukawa Couplings in GUT's & U(1)'s

[M.C., Klevers, Langacker, Piragua]-to appear

D=4 Yukawa couplings at codimension three:

Intersections of matter curves \iff Calculations of prime ideals

- **Results** for $U(1)^2$ & specific $SU(5)xU(1)^2$:
- All gauge invariant couplings geometrically realized!
- Miraculous structure at co-dimension three of fibration

Application: Exploration of gauge symmetry enhancement (un-Higgsing) specific SU(5)xU(1)² → rank-preserving non-Abelian symmetry
 D=4 examples of spectrum and couplings, fit into SU(6)xSU(2);SO(10)xU(1);⊂E₆
 [but NOT into SU(7)] Primarily field theory analysis; further study of geometry [M.C.,Klevers,Piragua,Langacker]

Application: $U(1)^3$

Rank 3 MORDEL-WEIL ELLIPTIC FIBRATIONS

E as a complete intersection CY in $Bl_3 \mathbb{P}^3$ Classify Calabi-Yau elliptic fibrations of *E* over given base B Matter multiplicity involved: determinantal varieties No details here

D=6 Matter & Multiplicity for $U(1)^3$

[Calabi-Yau elliptic fibrations of *E* over given base B classified]

	Charges	Multiplicities
	(1,1,-1)	$[s_8] \cdot [s_{18}]$
	(0,1,2)	$[s_9] \cdot [s_{19}]$
	(1,0,2)	$[s_{10}] \cdot [s_{20}]$
	(-1,0,1)	$[ilde{s}_3]\cdot ilde{\mathcal{S}}_7-[s_8]\cdot[s_{18}]$
	(0,-1,1)	$[\hat{s}_3]\cdot\hat{\mathcal{S}}_7-[s_8]\cdot[s_{18}]$
	(-1,-1,-2)	$[\tilde{s}_8] \cdot \mathcal{S}_9 - [s_{10}] \cdot [s_{20}]$
	(0,0,2)	$ ilde{\mathcal{S}}_7 \cdot \mathcal{S}_9 - [s_{19}][s_9]$
tri-fundamenta	(1,1,1)	$4[K_B^{-1}]^2 - 3([p_2]^b)^2 - 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 3([p_2]^b)\hat{\mathcal{S}}_7 - 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 3([p_2]^b)\tilde{\mathcal{S}}_7 - 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 2[K_B^{-1}]$
(non-pert.)!	(1,1,0)	$2[K_B^{-1}]^2 + 3([p_2]^b)^2 + 2[K_B^{-1}]\hat{\mathcal{S}}_7 + 3([p_2]^b)\hat{\mathcal{S}}_7 + 2[K_B^{-1}]\tilde{\mathcal{S}}_7 + 3([p_2]^b)\tilde{\mathcal{S}}_7 + \hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 - 3[K_B^{-1}]\mathcal{S}_9 - 9([p_2]^b)\mathcal{S}_9 - 4\hat{\mathcal{S}}_7\mathcal{S}_9 - 4\tilde{\mathcal{S}}_7\mathcal{S}_9 + 7\mathcal{S}_9^2$
	(1,0,1)	$2[K_B^{-1}]^2 + 3([p_2]^b)^2 + 2[K_B^{-1}]\hat{\mathcal{S}}_7 + 3([p_2]^b)\hat{\mathcal{S}}_7 - 3[K_B^{-1}]\tilde{\mathcal{S}}_7 + 3([p_2]^b)\tilde{\mathcal{S}}_7 + 2\hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 + \tilde{\mathcal{S}}_7^2 + 2[K_B^{-1}]\mathcal{S}_9 - 9([p_2]^b)\mathcal{S}_9 - 5\hat{\mathcal{S}}_7\mathcal{S}_9 - 4\tilde{\mathcal{S}}_7\mathcal{S}_9 + 6\mathcal{S}_9^2$
	(0,1,1)	$2[K_B^{-1}]^2 + 3([p_2]^b)^2 - 3[K_B^{-1}]\hat{\mathcal{S}}_7 + 3([p_2]^b)\hat{\mathcal{S}}_7 + \hat{\mathcal{S}}_7^2 + 2[K_B^{-1}]\tilde{\mathcal{S}}_7 + 3([p_2]^b)\hat{\mathcal{S}}_7 + 2\hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 + 2[K_B^{-1}]\mathcal{S}_9 - 9([p_2]^b)\mathcal{S}_9 - 4\hat{\mathcal{S}}_7\mathcal{S}_9 - 5\tilde{\mathcal{S}}_7\mathcal{S}_9 + 6\mathcal{S}_9^2$
	(1,0,0)	$4[K_B^{-1}]^2 - 3([p_2]^b)^2 - 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 3([p_2]^b)\hat{\mathcal{S}}_7 + 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 3([p_2]^b)\tilde{\mathcal{S}}_7 -\hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 - 2\tilde{\mathcal{S}}_7^2 - 2[K_B^{-1}]\mathcal{S}_9 + 9([p_2]^b)\mathcal{S}_9 + 4\hat{\mathcal{S}}_7\mathcal{S}_9 + 5\tilde{\mathcal{S}}_7\mathcal{S}_9 - 6\mathcal{S}_9^2$
	(0,1,0)	$4[K_B^{-1}]^2 - 3([p_2]^b)^2 + 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 3([p_2]^b)\hat{\mathcal{S}}_7 - 2\hat{\mathcal{S}}_7^2 - 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 3([p_2]^b)\hat{\mathcal{S}}_7 - \hat{\mathcal{S}}_7\hat{\mathcal{S}}_7 - 2[K_B^{-1}]\mathcal{S}_9 + 9([p_2]^b)\mathcal{S}_9 + 5\hat{\mathcal{S}}_7\mathcal{S}_9 + 4\tilde{\mathcal{S}}_7\mathcal{S}_9 - 6\mathcal{S}_9^2$
	(0,0,1)	$\frac{4[K_B^{-1}]^2 - 4([p_2]^b)^2 + 2[K_B^{-1}]\hat{\mathcal{S}}_7 - 4([p_2]^b)\hat{\mathcal{S}}_7 - 2\hat{\mathcal{S}}_7^2 + 2[K_B^{-1}]\tilde{\mathcal{S}}_7 - 4([p_2]^b)\tilde{\mathcal{S}}_7}{-2\hat{\mathcal{S}}_7\tilde{\mathcal{S}}_7 - 2\tilde{\mathcal{S}}_7^2 + 2[K_B^{-1}]\mathcal{S}_9 + 12([p_2]^b)\mathcal{S}_9 + 6\hat{\mathcal{S}}_7\mathcal{S}_9 + 6\tilde{\mathcal{S}}_7\mathcal{S}_9s - 10\mathcal{S}_9^2}$

NON-ABELIAN GAUGE ENHANCMENT of U(1)'s

Application: un-Higgsing of $U(1)^2$

Non-Abelian Gauge Enhancement

Elliptic fibrations with higher rank Mordell-Weil group crucial for understanding the moduli space of F-theory compactifications

Study un-Higgsing in complex structure moduli space: enhancement of U(1)'s → to non-Abelian symmetry

Rank 1 case understood:[Morrison, Taylor]D=6 F-theory with single U(1) un-Higgses to SU(2)

Geometric: transition of vertical divisor into rational section

Non-Abelian Gauge Enhancement:U(1)²

[M.C.,Klevers,Piragua,Taylor]

Enhancement of U(1)xU(1): richer structure

Reduce MW-rank to zero by merging rational points Q, R with zero P

$$uf_2(u, v, w) + \prod_{i=1}^{3} (a_i v + b_i w) = 0$$

Non-Abelian Gauge Enhancement:U(1)²

[M.C.,Klevers,Piragua,Taylor]

Enhancement of U(1)xU(1): richer structure

Reduce MW-rank to zero by merging rational points Q, R with zero P

$$uf_2(u, v, w) + \lambda_1(a_1v + b_1w)^2(a_3v + b_3w) = 0$$

•
$$rk(MW)=2 \rightarrow 1 \text{ as } \overline{PQ} \rightarrow 0$$

Non-Abelian Gauge Enhancement:U(1)²

[M.C.,Klevers,Piragua,Taylor]

Enhancement of U(1)xU(1): richer structure

Reduce MW-rank to zero by merging rational points Q, R with zero P

$$uf_2(u, v, w) + \lambda_1 \lambda_2 (a_1 v + b_1 w)^3 = 0$$

•
$$rk(MW)=2 \rightarrow 1 \text{ as} \overline{PQ} \rightarrow 0$$

•
$$rk(MW)=1 \rightarrow 0 \text{ as} \overline{PR} \rightarrow 0$$

Tuned fibration with codimension one singularity built in:

1. $U(1)xU(1) \rightarrow SU(3)$: set $\lambda_i = 1$ at locus $f_2(0, -b_1, a_1) = 0$ in **B**

I₃-singularity at P

2. $U(1)xU(1) \rightarrow SU(2)xSU(2)$: set $f_2(0, -b_1, a_1) = 1$

I fiber at $\lambda_i = 0$ in B: $uf_2(u, v, w) = 0$

3. General case not rank preserving: $U(1)^2 \rightarrow SU(3)xSU(2)^2$

Summary

- Systematic construction of elliptic fibrations w/ Mordel-Weil groups (explicit n=2,3 w/ general: U(1)x U(1) and U(1)xU(1)xU(1) [& w/ SU(5)]
- Develop techniques (general):
 - D=6 matter presentations, multiplicity
 - D=4 Yukawa couplings & chirality (G_4 flux $-H_V^{(2,2)}(X,Z/2)$; constraints) From geometry [Determinantal variety techniques]: miraculous structure of codim. 2 and 3 singularities: tri-fund. reps., couplings,...
- Applications:
 - explicit rank 2 (hypersurface in dP₂): U(1)² [& w/ SU(5)]
 - -explicit rank 3 (complete intersections in $\mathrm{Bl}_3(\mathbb{P}^3)$): U(1)³
 - -study of un-Higgsing of U(1)² [w/ SU(5)] \rightarrow non-Abelian gauge symmetries

Outlook

 D=4 global SM/GUT models w/ U(1): general base; SUSY conditions, quantization of G₄ flux,...
 Particle Physics Implications

[M.C.,Klevers,Langacker,Piragua] - in progress

- n>3: explicit construction for n=4 [M.C.,Klevers,Piragua,Song]- in progress
- Comprehensive study of moduli space for un-Higgsing:
 U(1)ⁿ → non-Abelian gauge theory enhancement

[M.C.,Klevers,Piragua,Taylor] - in progress

• Study of heterotic duals of F-theory with U(1)'s

[M.C.,Grassi,Klevers,Piragua,Song]- in progress

F-theory without zero section →
 Discrete symmetries (Tate-Shafarevich Group)

- [Braun, Morrison], [Morisson, Taylor], [Anderson, Garcia-Extebarria Grimm],
 [Klevers, Pena, Oehlmann, Piragua, Reuter] (beyond Z₂) c.f., Klever's talk;
 [Garcia-Extebarria, Grimm, Keitel], [Mayrhofer, Palti, Till, Weigad] (Z₂)
 - c.f., Mayrhofer's talk

work in progress

Mordell-Weil meets Tate-Shafarevich !