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Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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A view of our Universe “yesterday”

Cosmological Inflation 

as the mechanism to produce the 
density fluctuations that seeded 
structure formation in the universe 

CMB



Inflation and observations 

String Inflation

String Cosmology 2014

Early Universe Acceleration:  

Matter content: DM/DR/DE

Late Universe Acceleration: Λ, DE

Dark String Cosmology:  

[See talks by: Achúcarro, Blumenhagen, Ibáñez, Kallosh, Nilles, Shiu] 

(the Planck & BICEP2 delusion?)  



Early Universe Acceleration: 
Inflation



Inflation in its simplest form: single scalar field with 
very f lat potential which drives prolonged 
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Primordial gravitational waves 

They are approximately scale invariant

They are approximately Gaussian

Statistically isotropic and homogeneous to high 
degree

Inflation and cosmological perturbations

ns 6= 1

r =
Pt

P⇣
' 16✏

As =
V

24⇡2M4
Pl

1

✏

fnl ⇠ 0

g ⇠ 0
P⇣(k) = P0(k)

⇥
1 + g (d · k)2 + · · ·

⇤

Generic predictions on the properties of the 
density perturbations: h⇣⇣i ⇠ P⇣ ,

P⇣ ⇠ As k
ns�1+... ,

[Ackerman, Carroll, Wise,’07]



Planck collaboration: CMB power spectra & likelihood
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Table 8. Constraints on the basic six-parameter ⇤CDM model using Planck data. The top section contains constraints on the six
primary parameters included directly in the estimation process, and the bottom section contains constraints on derived parameters.

Planck Planck+WP

Parameter Best fit 68% limits Best fit 68% limits
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100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
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Planck results confirm

fNL = 2.7 ± 5.8

fNL = −42 ± 75

fNL = −25 ± 39

local 

equilateral

orthogonal

Planck 2013 ns = 0.9603± 0.0073

r < 0.11

•nearly scale invariant spectrum

•nearly gaussian

•upper bound on r

•nearly isotropic [Kim-Komatsu ’13]

g = 0.002± 0.016 (68%CL)

V =
3⇡2As M4

Pl

2
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-` values are plotted at 2, 3, 4, 5, 6, 7, 8, 9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.
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Parameter Best fit 68% limits Best fit 68% limits

⌦bh2 . . . . . . . . . 0.022068 0.02207 ± 0.00033 0.022032 0.02205 ± 0.00028

⌦ch2 . . . . . . . . . 0.12029 0.1196 ± 0.0031 0.12038 0.1199 ± 0.0027
100✓MC . . . . . . . 1.04122 1.04132 ± 0.00068 1.04119 1.04131 ± 0.00063

⌧ . . . . . . . . . . . . 0.0925 0.097 ± 0.038 0.0925 0.089+0.012
�0.014

ns . . . . . . . . . . . 0.9624 0.9616 ± 0.0094 0.9619 0.9603 ± 0.0073

ln(1010As) . . . . . 3.098 3.103 ± 0.072 3.0980 3.089+0.024
�0.027

⌦⇤ . . . . . . . . . . 0.6825 0.686 ± 0.020 0.6817 0.685+0.018
�0.016

⌦m . . . . . . . . . . 0.3175 0.314 ± 0.020 0.3183 0.315+0.016
�0.018

�8 . . . . . . . . . . . 0.8344 0.834 ± 0.027 0.8347 0.829 ± 0.012

zre . . . . . . . . . . . 11.35 11.4+4.0
�2.8 11.37 11.1 ± 1.1

H0 . . . . . . . . . . 67.11 67.4 ± 1.4 67.04 67.3 ± 1.2

109As . . . . . . . . 2.215 2.23 ± 0.16 2.215 2.196+0.051
�0.060

⌦mh2 . . . . . . . . . 0.14300 0.1423 ± 0.0029 0.14305 0.1426 ± 0.0025
Age/Gyr . . . . . . 13.819 13.813 ± 0.058 13.8242 13.817 ± 0.048
z⇤ . . . . . . . . . . . 1090.43 1090.37 ± 0.65 1090.48 1090.43 ± 0.54
100✓⇤ . . . . . . . . 1.04139 1.04148 ± 0.00066 1.04136 1.04147 ± 0.00062
zeq . . . . . . . . . . . 3402 3386 ± 69 3403 3391 ± 60
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fNL = 2.7 ± 5.8

fNL = −42 ± 75

fNL = −25 ± 39

local 

equilateral

orthogonal

Planck 2013 ns = 0.9603± 0.0073

r < 0.11

•nearly scale invariant spectrum

•nearly gaussian

•upper bound on r

•nearly isotropic [Kim-Komatsu ’13]

g = 0.002± 0.016 (68%CL)

V 1/4 = 1.94⇥ 1016GeV
⇣ r

0.12

⌘1/4

+BICEP2??



• non-Gaussianity probes interactions: more fields, 
non standard k.t. inflation   

Windows on the mechanism of inflation 

• breaking of isotropy: vector fields present during 
inflation? 

V 1/4 = 1.94⇥ 1016GeV
⇣ r

0.12

⌘1/4

• primordial gravitational waves: reveals the 
energy scale of inflation, inflaton mass and 
inflaton’s field range   

h⇣⇣⇣i
[Achúcarro’s talk] 

[Blumenhagen,Ibáñez, Nilles, Shiu talks] 
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The Lyth Bound of Inflation with a Tilt

Juan Garcia-Bellido,1, ⇤ Diederik Roest,2, † Marco Scalisi,2, ‡ and Ivonne Zavala2, §

1Instituto de F́ısica Teórica IFT-UAM-CSIC, Universidad Autónoma de Madrid,
C/ Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain

2Van Swinderen Institute, University of Groningen,
Nijenborgh 4, 9747 AG Groningen, The Netherlands

We provide strong evidence for universality of the inflationary field range: given an accurate
measurement of (ns, r), one can infer �� in a model-independent way in the sub-Planckian regime
for a range of universality classes of inflationary models. Both the tensor-to-scalar ratio as well as
the spectral tilt are essential for the field range. Given the Planck constraints on ns, the Lyth bound
is strengthened by two orders of magnitude: whereas the original bound gives a sub-Planckian field
range for r . 2 · 10�3, we find that n = 0.96 brings this down to r . 2 · 10�5.

Introduction. Inflation is the leading mechanism to
generate the seeds for large scale structure formation.
Two of its most robust predictions are a nearly scale in-
variant spectrum of density perturbations, encoded in the
spectral index or tilt ns, and a stochastic background of
gravitational waves, encoded in the tensor-to-scalar ratio
r. The spectral index has been measured by the Planck
satellite [1]:

ns = 0.9603± 0.0073 , (1)

while exact scale invariance would correspond to ns = 1.
Moreover, Planck has placed an upper limit on r of
around 10 percent. In contrast, the recent BICEP2 claim
[2] of a detection around 20 percent awaits further clari-
fication and hence will not be considered in this Letter.

A crucial distinction in inflationary models is between
small- and large-field models, defined by sub- and super-
Planckian field ranges ��. Generic quantum corrections
to a tree-level scalar potential will come in higher pow-
ers of �, and hence large-field models are particularly
sensitive to these. This puts the consistency of an e↵ec-
tive field theory description of such models into doubt.
A crucial question in theoretical cosmology is therefore
whether the inflationary field range exceeds the Planck
length or not.

Knowledge of the evolution of r(N) during all e-
foldings N of the inflationary period would determine
the field range by means of (MP = 1)

d�

dN
=

r
r(N)

8
. (2)

Moreover, a first estimate of �� can be obtained by the
assumption that r(N) is constant throughout inflation.
This is referred to as the Lyth bound [3] and leads to [4]:

�� ⇠
⇣ r

0.002

⌘1/2
✓
N

⇤

60

◆
, (3)

where N
⇤

is the number of e-folds at horizon exit, which
for simplicity of presentation we set equal to 60 (other

⇤
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values allow for a similar analysis). Therefore, a sub-
Planckian excursion for the inflaton field requires a very
small value of r . 2 · 10�3. Throughout this Letter we
restrict to slow-roll inflation; an extension of the Lyth
bound to fast roll can be found in [5].
The Lyth bound provides an estimate of the field range

given a measurement of r. This approach corresponds to
the rectangular area below the horizontal line in Fig. 1.
However, starting from the same value of r at horizon
crossing, one can imagine di↵erent behaviours r(N) that
give rise to either smaller [6–8] or larger areas [9]. Using
only the value of r as input, the constant line is the sim-
plest and most natural history. For this reason, the Lyth
bound provides an optimal estimate for the correspond-
ing field range.

8
r

1I'  

1I'  

N*N

FIG. 1. Two curves indicating
p

r(N)/8. The central idea is
that both have identical areas and lead to �� = 1. The flat
curve depicts the Lyth bound, while the tilted curve indicates
the improvement when taking the spectral index into account.

We would like to show that this estimate becomes
stronger when one takes the additional information of
the spectral index into account. In particular, given
the redshifted value of the tilt (1) and assuming r to
be small, the dependence of r(N) is tilted upwards at
horizon crossing1. The natural history (whose exact

1
Note that our approach di↵ers from [10, 11], which also include

the spectral tilt in their expressions for the field range: while

these references derive a minimal value for ��, we aim to provide

a generic estimate by making use of its universal properties.
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FIG. 2. Field ranges corresponding to �� = (0.1, 1, 10) in
the plane (ns, log(r)). We have also drawn the asymptotic
behaviour for large p as (green) straight dashed lines.

to unity �� = 1 will be a good estimate of the bor-
der above which universality breaks down, regardless the
value of ns. This will be taken as the new stronger bound.
As can be seen from Fig. 2, the line is tilted as it is a
function also of the spectral index ns. Interestingly, for
ns equal to unity it approaches the value of the origi-
nal Lyth bound, which is a constant value not depending
on the tilt. On the other hand, in the range of scalar
spectral indices allowed for by Planck, an excellent fit is
provided by the following expressions, corresponding to
the (green) dashed straight lines in Fig. 2,

log10 r = �1.0 + 25.5 (ns � 1) , �� = 10 ,

log10 r = �2.0 + 68.0 (ns � 1) , �� = 1.0 ,

log10 r = �2.35 + 123 (ns � 1) , �� = 0.1 .

(16)

The range of values of (ns, r) consistent within those of
Planck2013 therefore reduces the values of the inflaton
field range during inflation by at least an order of mag-
nitude. For the central value ns ' 0.96, imposing that
��  1 leads to the bound r . 2 · 10�5, which is two
orders of magnitude below the usual Lyth bound.

On the other hand, if we impose that the ratio r
be bigger than a certain value, then we find a lower
bound on the field range. Fig. 3 shows the field range
as a function of the scalar spectral index for di↵erent
values of the ratio r. Again, in the range consistent with
Planck2013, the field range is always super-Planckian,
for all values of the ratio r & 2 · 10�5. This conclusion
can only be avoided by going to unrealistically large
spectral indices ns close to 1. Finally, the BICEP2 value
of r = 0.2 would imply a �� of order 25, although one
cannot argue that this regime is universal and hence the
result might well be model-dependent (see also [9]).
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FIG. 3. The range of field valuees corresponding to r =
0.2, 0.1, 004, 0.01, 0.001, 0.00001 in the plane (ns, ��).

Discussion. The main results of this letter are
twofold. First of all, we have provided strong arguments
for the universality of small field ranges �� < 1 as given
in (14). Secondly, we have pointed out that this results in
a significant strengthening on the Lyth bound when in-
cluding both the spectral index and the tensor-to-scalar
ratio, see (16) and Fig. 2.
Similarly to the original Lyth bound, the relations (16)

provide an estimate of the field range for specific values
of r and ns. These constitute generic estimates and can
be avoided only by a very specific (non-generic) behav-
ior of ✏(N). We stress that this is the same caveat that
applies to the Lyth bound. However, our results consti-
tute the natural expectation for the delineating case of
�� = 1 as a function of (ns, r). The fact that there are
counterexamples with the same cosmological observables
yet sub-Planckian field ranges is of limited importance
in this respect: one would like to understand large-field
inflation if r is measured at around 10�3, such that the
natural expectation for the field range is �� ⇠ 5 (see
Fig. 3), even if there might be fine-tuned models which
give �� ⇠ 0.01 for this value of r.
Given the central value for ns from Planck, our

results imply that super-Planckian field ranges require
a tensor-to-scalar ratio that exceeds 2 ⇥ 10�5. Planned
future CMB experiments, such as COrE [20, 21] and
PRISM [22–24], might bring the sensitivity down to
10�4. In contrast to what one would conclude from the
original Lyth bound, our results therefore imply that a
small detectable r still corresponds to super-Planckian
field ranges.
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nato for comments on the manuscript. We ac-
knowledge financial support from the Madrid Regional
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FIG. 2. Field ranges corresponding to �� = (0.1, 1, 10) in
the plane (ns, log(r)). We have also drawn the asymptotic
behaviour for large p as (green) straight dashed lines.

to unity �� = 1 will be a good estimate of the bor-
der above which universality breaks down, regardless the
value of ns. This will be taken as the new stronger bound.
As can be seen from Fig. 2, the line is tilted as it is a
function also of the spectral index ns. Interestingly, for
ns equal to unity it approaches the value of the origi-
nal Lyth bound, which is a constant value not depending
on the tilt. On the other hand, in the range of scalar
spectral indices allowed for by Planck, an excellent fit is
provided by the following expressions, corresponding to
the (green) dashed straight lines in Fig. 2,

log10 r = �1.0 + 25.5 (ns � 1) , �� = 10 ,

log10 r = �2.0 + 68.0 (ns � 1) , �� = 1.0 ,

log10 r = �2.35 + 123 (ns � 1) , �� = 0.1 .

(16)

The range of values of (ns, r) consistent within those of
Planck2013 therefore reduces the values of the inflaton
field range during inflation by at least an order of mag-
nitude. For the central value ns ' 0.96, imposing that
��  1 leads to the bound r . 2 · 10�5, which is two
orders of magnitude below the usual Lyth bound.

On the other hand, if we impose that the ratio r
be bigger than a certain value, then we find a lower
bound on the field range. Fig. 3 shows the field range
as a function of the scalar spectral index for di↵erent
values of the ratio r. Again, in the range consistent with
Planck2013, the field range is always super-Planckian,
for all values of the ratio r & 2 · 10�5. This conclusion
can only be avoided by going to unrealistically large
spectral indices ns close to 1. Finally, the BICEP2 value
of r = 0.2 would imply a �� of order 25, although one
cannot argue that this regime is universal and hence the
result might well be model-dependent (see also [9]).
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Discussion. The main results of this letter are
twofold. First of all, we have provided strong arguments
for the universality of small field ranges �� < 1 as given
in (14). Secondly, we have pointed out that this results in
a significant strengthening on the Lyth bound when in-
cluding both the spectral index and the tensor-to-scalar
ratio, see (16) and Fig. 2.
Similarly to the original Lyth bound, the relations (16)

provide an estimate of the field range for specific values
of r and ns. These constitute generic estimates and can
be avoided only by a very specific (non-generic) behav-
ior of ✏(N). We stress that this is the same caveat that
applies to the Lyth bound. However, our results consti-
tute the natural expectation for the delineating case of
�� = 1 as a function of (ns, r). The fact that there are
counterexamples with the same cosmological observables
yet sub-Planckian field ranges is of limited importance
in this respect: one would like to understand large-field
inflation if r is measured at around 10�3, such that the
natural expectation for the field range is �� ⇠ 5 (see
Fig. 3), even if there might be fine-tuned models which
give �� ⇠ 0.01 for this value of r.
Given the central value for ns from Planck, our

results imply that super-Planckian field ranges require
a tensor-to-scalar ratio that exceeds 2 ⇥ 10�5. Planned
future CMB experiments, such as COrE [20, 21] and
PRISM [22–24], might bring the sensitivity down to
10�4. In contrast to what one would conclude from the
original Lyth bound, our results therefore imply that a
small detectable r still corresponds to super-Planckian
field ranges.
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FIG. 2. Field ranges corresponding to �� = (0.1, 1, 10) in
the plane (ns, log(r)). We have also drawn the asymptotic
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to unity �� = 1 will be a good estimate of the bor-
der above which universality breaks down, regardless the
value of ns. This will be taken as the new stronger bound.
As can be seen from Fig. 2, the line is tilted as it is a
function also of the spectral index ns. Interestingly, for
ns equal to unity it approaches the value of the origi-
nal Lyth bound, which is a constant value not depending
on the tilt. On the other hand, in the range of scalar
spectral indices allowed for by Planck, an excellent fit is
provided by the following expressions, corresponding to
the (green) dashed straight lines in Fig. 2,

log10 r = �1.0 + 25.5 (ns � 1) , �� = 10 ,

log10 r = �2.0 + 68.0 (ns � 1) , �� = 1.0 ,

log10 r = �2.35 + 123 (ns � 1) , �� = 0.1 .

(16)

The range of values of (ns, r) consistent within those of
Planck2013 therefore reduces the values of the inflaton
field range during inflation by at least an order of mag-
nitude. For the central value ns ' 0.96, imposing that
��  1 leads to the bound r . 2 · 10�5, which is two
orders of magnitude below the usual Lyth bound.

On the other hand, if we impose that the ratio r
be bigger than a certain value, then we find a lower
bound on the field range. Fig. 3 shows the field range
as a function of the scalar spectral index for di↵erent
values of the ratio r. Again, in the range consistent with
Planck2013, the field range is always super-Planckian,
for all values of the ratio r & 2 · 10�5. This conclusion
can only be avoided by going to unrealistically large
spectral indices ns close to 1. Finally, the BICEP2 value
of r = 0.2 would imply a �� of order 25, although one
cannot argue that this regime is universal and hence the
result might well be model-dependent (see also [9]).
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Discussion. The main results of this letter are
twofold. First of all, we have provided strong arguments
for the universality of small field ranges �� < 1 as given
in (14). Secondly, we have pointed out that this results in
a significant strengthening on the Lyth bound when in-
cluding both the spectral index and the tensor-to-scalar
ratio, see (16) and Fig. 2.
Similarly to the original Lyth bound, the relations (16)

provide an estimate of the field range for specific values
of r and ns. These constitute generic estimates and can
be avoided only by a very specific (non-generic) behav-
ior of ✏(N). We stress that this is the same caveat that
applies to the Lyth bound. However, our results consti-
tute the natural expectation for the delineating case of
�� = 1 as a function of (ns, r). The fact that there are
counterexamples with the same cosmological observables
yet sub-Planckian field ranges is of limited importance
in this respect: one would like to understand large-field
inflation if r is measured at around 10�3, such that the
natural expectation for the field range is �� ⇠ 5 (see
Fig. 3), even if there might be fine-tuned models which
give �� ⇠ 0.01 for this value of r.
Given the central value for ns from Planck, our

results imply that super-Planckian field ranges require
a tensor-to-scalar ratio that exceeds 2 ⇥ 10�5. Planned
future CMB experiments, such as COrE [20, 21] and
PRISM [22–24], might bring the sensitivity down to
10�4. In contrast to what one would conclude from the
original Lyth bound, our results therefore imply that a
small detectable r still corresponds to super-Planckian
field ranges.
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String Theory Inflation?

• Inflation occurs at high energy scales. It is  sensitive to 
Planck scale physics. Needs a UV completion of 
gravity! 

opportunity for string theory! 

• Sensitive to couplings among inflation and other 
fields; Planck suppressed corrections to the potential. 

    Large field inflation makes it more dramatic 

[Talks by: Blumenhagen, Ibáñez, Nilles, Shiu] 
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• Not isolated phenomenon. Inflaton’s energy is 
transferred to Standard Model particles at the 
end of inflation to initiate hot Big-Bang: reheating

• String theory can shed light on Dark Side of the 
Universe: what is the nature of Dark Energy and  
Dark Matter? (see later) 

[Talks by: Ibáñez, Marchesano]

String Phenomenology: reproduce the SM from 
string theory, but how did we get there? 



• It is not hard to build low energy theories, where 
inflation can be successfully realised, also with 
super-Planckian field ranges. 

• In a UV completion of gravity, expect more 
(heavy) massive fields to be present. Need to 
understand how these affect inflationary 
dynamics (integrating out)

• The problem is to understand whether these 
theories are natural and can be embedded in a 
UV complete theory



Moduli stabilization 

• Compatifications in string theory come 
with many massless scalars: moduli 

• Key development of the first decade of the XX1 
century in string cosmology is the emergence of 
moduli stabilisation mechanism

D-Brane InflationD-Brane InflationD-Brane Inflation
Consider type II string theory com-

pactified on . (In what follows
we take )
A pair of -branes expanding the

full and wrapping dimen-
sions in the compact space. M4 X6

Y

The -branes are separated by a
distance in the compact
space.

Potential for the 4d scalar field as-
sociated to is calculable from string
theory, and is given by

( ; model dependent).
Y

One loop
open string

D−brane D−brane

closed 
Tree level

string

The distance between the branes plays the role of the inflaton field!

�i

• Understanding the dynamics of moduli 
is crucial for describing cosmological 
evolution (overclose the universe 5th 
forces, decompactification stability, ...). 



Moduli stabilization 

• Compatifications in string theory come 
with many massless scalars: moduli 

• Key development of the first decade of the XX1 
century in string cosmology is the emergence of 
moduli stabilisation mechanism
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full and wrapping dimen-
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Potential for the 4d scalar field as-
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theory, and is given by
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One loop
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Tree level
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The distance between the branes plays the role of the inflaton field!

�i

[Giddings-Kachru-Polchinski, ’01]

• Understanding the dynamics of moduli 
is crucial for describing cosmological 
evolution (overclose the universe 5th 
forces, decompactification stability, ...). 

Flux compactifications (internal fluxes lift moduli) 
Fn 6= 0

Moduli Stabilisation IModuli Stabilisation IModuli Stabilisation I

We assumed that extra dimensions were stabilised, constant.
However, shapes and sizes of compact space evolve, unless a
stabilisation mechanism is implemented.

Partial moduli stabilisation mechanism: flux
compactifications. Internal fluxes can provide a stabilisation potential
for some of the scalar fields (moduli) associated to shapes and sizes of
compact space. [Giddings, Kachru and Polchinski ’01 ]
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• For cosmology, compactification 
with stabilised moduli should be a 
dS space-time. 

- KKLT set up in IIB

D-Brane InflationD-Brane InflationD-Brane Inflation
Consider type II string theory com-

pactified on . (In what follows
we take )
A pair of -branes expanding the

full and wrapping dimen-
sions in the compact space. M4 X6

Y

The -branes are separated by a
distance in the compact
space.

Potential for the 4d scalar field as-
sociated to is calculable from string
theory, and is given by

( ; model dependent).
Y

One loop
open string

D−brane D−brane

closed 
Tree level

string

The distance between the branes plays the role of the inflaton field!

[KKLT, ’03]

[Balasubramanian, Berglund, Conlon, Quevedo, ’05]

[Damian et al.’13]
[Blåback, Roest, IZ, ’13]

[Danielsson, Dibitetto, ’13]
[Kallosh et al. ‘14]

[Cicoli et al.’12-’13]
[Quevedo, ’14]

- Large Volume scheme in IIB 
 (theoretical control in 1/volume       
  expansion) 

V (�)

�

dS

dS

0
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String Inflationary zoo

Inflaton candidates:

•D-brane positions  

•Wilson Lines 

•Kähler moduli 

•Axions
brane position

WL’s

[Review: Baumann-McAllister,’14]

FMN
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•Planck range:                 ,                                                

•Small field:                  ,                       ,                            

String Theory Inflationary models

•Large field:                  ,                                                    �� � MPl

�� ⌧ MPl

�� ⇠ MPl

r ⌧ O(1/N2)

r ⇠ O(1/N2)

r ⇠ O(1/N)

D-brane inflation, unwarped Wilson Lines, 
(blow up Kähler moduli)  

warped WL, Kähler fiber and  poly-instanton 
inflation

Axions, monodromy inflation

[See talks by: Blumenhagen, Ibáñez, Nilles, Shiu] 

[Marchesano, Shiu, Uranga ’14; Blumenhagen, Plauschinn, ‘14’ Hebecker, Kraus, Witkowski ’14; 
McAllister, Silverstein, Westphal, Wrase ’14; Franco, Galloni, Retolaza, Uranga, ’14; Long, 

McAllister, McGuirk, ’14; Ibáñez, Valenzuela, ’14]



1. The BICEP2 observation is (roughly) correct and around 
10% of the B-modes is due to primordial GW’s 

Primordial gravitational waves
(the BICEP2 delusion?)

Windows on string inflation 

Audience Poll

2. The BICEP2 observation is incorrect, but eventually we 
will know that 1% of the B-modes is due to primordial 
GW’s 

r ⇠ 0.1

r ⇠ 0.01

3. The BICEP2 observation is incorrect, and much less 
than 1% of the B-modes is due to primordial GW’s 

r ⌧ 10�3



• Hopefully 1. or 2. will be confirmed

• In both cases, large inflationary 
scale and field range, UV sensitive

• High scale moduli stabilisation. 
LED gone

• If 2, axions are likely excluded
• ...

Primordial gravitational waves
(the BICEP2 delusion?)

Windows on string inflation 

V 1/4 = 1.94⇥ 1016GeV
⇣ r

0.12

⌘1/4



Primordial gravitational waves
(the BICEP2 delusion?)

Windows on string inflation 

Natural

[Modified from García-Bellido & Roest, ’14]

• Hopefully 1. or 2. will be confirmed

• In both cases, large inflationary 
scale and field range, UV sensitive

• High scale moduli stabilisation. 
LED gone

• If 2, axions are likely excluded
• ...

V 1/4 = 1.94⇥ 1016GeV
⇣ r

0.12

⌘1/4



ReviwedReviwedReviewed

How does moduli stabilisation changes previous results on brane inflation?
[Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi ’03].

Within KKLT framework
inflationary potential can be re-
computed. Generically, , due
to an interplay between the potential
which stabilises the moduli and the
potential of the inflaton. Inlfation can
be obtained but need a large fine
tuning of the parameters (
level).

D3

RR flux Calabi−Yau

D3

Throat

NSNS flux

Partial solutions to this problem have been proposed. brane inflation is
possible but not generic. [Hsu, Kallosh and Prokushkin ’03; Firouzjahi and Tye ’03; Hsu and
Kallosh ’04; Burgess, Cline, Stoica and Quevedo ’04]

Non-Gaussianity in string theory      
(the Planck delusion?)

h⇣⇣⇣i

Windows on string inflation 

- Single field DBI inflation: nG of equilateral 
shape (constraint by Planck)

[Silverstein, Tong, ’03; Alishahiha, Silverstein, Tong, ’04]
[Chen et al. ’06]

• Inflation in string theory is generically involves other 
light fields, giving interactions that can generate 
Non-Gaussianity. Moreover: 

- (DBI) multifield inflation:  

f eq
nl = � 35

108

1

c2s
cos

2
⇥

r = 16✏ cs cos
2
⇥



Slow roll multifield inflation: curvaton and 
modulated reheating in Large Volume 
scenario 

Windows on string inflation 

[Burgess et al.’10, ’12]

ReviwedReviwedReviewed

How does moduli stabilisation changes previous results on brane inflation?
[Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi ’03].

Within KKLT framework
inflationary potential can be re-
computed. Generically, , due
to an interplay between the potential
which stabilises the moduli and the
potential of the inflaton. Inlfation can
be obtained but need a large fine
tuning of the parameters (
level).

D3

RR flux Calabi−Yau

D3

Throat

NSNS flux

Partial solutions to this problem have been proposed. brane inflation is
possible but not generic. [Hsu, Kallosh and Prokushkin ’03; Firouzjahi and Tye ’03; Hsu and
Kallosh ’04; Burgess, Cline, Stoica and Quevedo ’04]

Non-Gaussianity in string theory      
(the Planck delusion?)

h⇣⇣⇣i

• Inflation in string theory is generically involves other 
light fields, giving interactions that can generate 
Non-Gaussianity: 

f loc

nl ⇠ O(few)⇥10



• If suitable couples to inflaton or light, they may 
leave anisotropic imprints in the power spectra

• The simplest way to generate a  
preferred direction is via vector fields 

Windows on string inflation 

Anisotropies from string inflation?      

• Several phenomenological 4D models 
Isotropic

(pictures from Karčiauskas)

P⇣(k) = P0(k)
⇥
1 + g (d · k)2 + · · ·

⇤

~d = (0, 1) ~d = (1, 0)

[Yokoyama-Soda ’08; Watanabe-Kanno-Soda ‘09-’10; 
Soda et al. ’13; Shiraishi, Komatsu, Peloso,’13]               

 [Dimopoulos et al ‘07-’13]
[Wagstaff-Dimopoulos, ’10]

[Ackerman, Carroll, Wise,’07]

http://inspirehep.net/author/Wagstaff%2C%20Jacques%20M.?recid=877098&ln=el
http://inspirehep.net/author/Wagstaff%2C%20Jacques%20M.?recid=877098&ln=el


Anisotropies from string inflation?      

Windows on string inflation 

[Dimopoulos, Wills, IZ, ’11, ’13]

p−3CY3

4d

Dp

p−3CY3

4d

Dp

Fµν

• D-branes feature gauge fields        on 
their world volumes

• The mixed components are the WL, 
that can act as inflatons

• The 4D components can give rise to 
anisotropies 

Isotropic

(pictures from Karčiauskas)

~d = (1, 0)

D-BraneInflation D-BraneInflation D-BraneInflation
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End of Inflation
• At end of inflation the inflaton’s energy must be 

(efficiently) transferred to SM particles to initiate 
the hot Big-Bang: reheating

• Reheating crucially involves the Standard 
Model. Essential to specify how the visible sector 
is realized. 

• Inflation with a shift symmetry makes reheating 
harder: the symmetry protecting the inflaton 
limits the couplings of the inflaton to the visible 
sector.

• A happy side effect of D-brane inflation is the 
production of cosmic superstrings, potentially 
observable via gravitational radiation! 
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Dark 
Energy

Dark 
Matter

Matter
SM

68.3%

26.8%

4.9%

LSP,  WIMPS, !R,$
axions,$...

!, Quintessence,

Modified Gravity,
Coupled Dark Sector,...

modified gravity, ... ??

?

[Sarangi, Tye,’02]

[Review: Baumann-McAllister,’14]

[Copeland, Myers, Polchinski,’03]



Dark String Cosmology  



Dark 
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Dark 
Matter

Matter
SM

68.3%

26.8%

4.9%

LSP,  WIMPS, !R,$
axions,$...

!, Quintessence,

Modified Gravity,
Coupled Dark Sector,...

modified gravity, ... ??

?

The Dark Matter puzzle

• ~85% of matter in the Universe is 
not known. CDM from CMB 
cosmology  

• We have mostly “negative” information about DM 
nature: 
- No electric charge
- No color charge
- No strong self-interactions
- Not a particle in the Standard Model 

  One implementation: 

WIMP from 
 galaxy knocks 
 out Au nucleus, 
 which traverses 
 DNA strings, 
 severing the  
 strand whenever 
 it hits. 

1 kg Gold, 1 kg ssDNA, identical sequences of bases  
with an order that is well known 
, 

BEADED CURTAIN OF ssDNA 

• Several ongoing/planned experiments 
to detect (direct/indirect) DM



• Axionic Dark Matter  

• Non-thermal Dark Matter and Baryogenesis from 
moduli decay

• Dark Radiation: decay of the overall volume 
modulus in LVS to its axionic partner 

Dark 
Energy

Dark 
Matter

Matter
SM

68.3%

26.8%

4.9%

LSP,  WIMPS, !R,$
axions,$...

!, Quintessence,

Modified Gravity,
Coupled Dark Sector,...

modified gravity, ... ??

?

[Cicoli, Conlon, Quevedo, ’12; Higaki, Takahashi, 12]
[Conlon, Marsh, ’13]
[Angus et al.’13; ’14] 

[Hebecker et al.’14]

[Acharya et al. ’08]
[Allahverdi et al. ’13]

[Arvanitaki et al. ’09]
[Acharya, Bobkov, Kumar, ‘10]

[Cicoli, Goodsell, Ringwald, ’12]

Dark Matter from strings



Dark Energy Puzzle

Dark 
Energy

Dark 
Matter

Matter
SM

68.3%

26.8%

4.9%

LSP,  WIMPS, !R,$
axions,$...

!, Quintessence,

Modified Gravity,
Coupled Dark Sector,...

modified gravity, ... ??

?

• Most of energy density content is in the form of DE. 
While a cosmological constant is not excluded, 
there is no strong reason to exclude a time 
dependent component  

• Several forthcoming experiments expected to 
provide more accurate limits on equation of state of 
DE: 

Dark Energy Survey (DES), Large Synoptic Survey Telescope, LSST, Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), Euclide. 

p = !⇢ , ! = �1�1 < ! < �1/3 ,
acceleration cosmological constant 



• Quintessence: most obvious candidate for dark 
energy is a scalar field. In the simplest case, as in 
inflation, it requires a flat enough potential and 

[Panda, Sumitomo, Trivedi, ’10]
[Gupta, Panda, Sen, ’11]

[Kaloper, Sorbo, ’08]• Axions as Quintessence in string theory 

[Caldwell et al, ’98]m� . 10�33eV⇢DE ⇠ (0.003 eV)4 ,

• Kähler moduli as Quintessence: coupling 
to SM suppressed by volume 

[Cicoli, Pedro, Tasinato, ’12]

Dark Energy in String Theory



Coupled DM/DE

‣ If it is not accidental, an exchange of energy is 
plausible, and therefore a coupling, between dark 
energy and dark matter.

‣ Cosmic Coincidence Puzzle: why is dark energy 
density of same order as that of matter in the present 
cosmological epoch, as observed?

‣ Given that we do not know the nature of either DE 
or DM, cannot exclude a coupling between them.



‣ Intense investigation of phenomenological 
models of coupled quintessence in the literature.  

‣ A resolution of the 'cosmic coincidence' problem 
implies that dark energy and dark matter follow 
the same scaling solution during a significant 
period of evolution.

[see 1310.0085 for a review]

 energy densities of DM and DE scale with same  power 

a�3(1+!eff )



[Koivisto, Wills, IZ, ’13]
Disformally Coupled Quintessence

A naturally coupled DM/DE system arises in string 
theory in terms of D-branes

Dark Energy is identified with brane’s position as it 
moves in internal space

Dark Matter is identified with matter living on the D-
brane (has no or little interaction with SM D-branes)

Disformal coupling among DM and DE dictated by 
the geometry and theory 

g̃µ⌫ = C(�)gµ⌫ +D(�)@µ�@⌫�



Scaling solutions arise from this set up thanks to 
the coupling 
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Figure 2: The time evolution of the various equations of state as functions of the e-floding

time N = log a when �0 = 50. In the left panel the kinetic energy x is initially small and

the w
�

= p
�

/⇢
�

(purple dash-dotted line) as well as the e↵ective equation of state for the

field weff

�

(blue dashed line) are essentially w
�

= �1 until the coupling begins to modify

the dynamics. The e↵ect of the the coupling is to increase the weff

�

and to lower the

e↵ective equation of state for dark matter weff

DDM

(black dotted line) so they both track the

total equation of state w (red thick line) during the scaling epoch. When this epoch ends,

the dark matter dilutes faster than dark energy, but as seen from the plot, the coupling

continues to have an e↵ect on the DDM-component. In the right panel, initial conditions

are set such that the kinetic energy x is significant and thus w
�

> �1. In such a case the

universe evolves to the kinetic attractor soon after the coupling kicks in, before the scaling

solution is reached.

a virtually non-warped region in the early universe, after reaching the matter scaling fixed

point the universe can stay there for in principle arbitrary number of e-folds before the

brane has reached close enough to the tip of the throat to end the matter scaling behaviour.

On the other hand, if the initial conditions are relativistic enough the x-variable grows with

a “saturated” rate also during matter dominated epoch and there is no di↵erence in the

observational predictions. In the right panel of figure 3 we see that the scaling of the

�-factor, which is identical for all initial values during the matter epochs, changes only

when the attractor is reached. IZ: again, this is related to the problem with section

3.1.2, so needs to be explained: The scaling is such that �� ⇠ a�3w, as expected

already from the considerations in Section 3.1.2.

Finally we check how cosmology depends upon the parameter �0, which is the sole

theoretical quantity that controls the evolution. We illustrate this in figure 4 by plotting

x and ⌦ as functions of the scale factor for �0 of a few di↵erent orders of magnitude. In

complete agreement with the results of the analytic study in section 3.2, we find that the

�0 = 1 is the dividing value above which the universe accelerates and eventually ends with

⌦ = 0, and below which the universe decelerates forever and ⌦ retains a constant finite

value.
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Summary

• String Cosmology has born and its life expectations 
are promising, but we need to take care of it

• Early Universe: inflation offers a unique opportunity 
for string theory. 

• It remains important to understand end of inflation 
and late time cosmology within string theory, also 
in view of forthcoming observations  

• Observations are motivating further theoretical 
developments, while string theory inspires novel 
cosmological scenarios 

• We should not miss the opportunity to make 
predictions before forthcoming observations reveal 
new data


