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Motivation

AdS/CFT correspondence

@ d-dim gravity theory in Anti-de Sitter (AdS) dual to
(d-1)-dim SU(N) gauge theory on boundary of AdS
(Maldacena; Witten; Gubser, Klebanov & Polyakov (1998))

@ Couplings
A= (5//3)4 = 92N y Gs~ 92
A: 't Hooft coupling N: rank of gauge group
¢: bulk scale/AdS radius Is: string scale
g: gauge coupling gs: string coupling

@ classical gravity limit:
gs — 0 Is/¢ — 0
dual to strongly coupled QFT with N — ~
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Motivation

Breitenlohner-Freedman (BF) bound

(Breitenlohner & Freedman, 1982)
massive scalar field (mass parameter m?) in AdS background

@ Schrodinger-type equation for scalar field ¢ (t, r) ~ exp(iwt)¢(r)

2 _
_¢//+272 <m2_ <d(d4 2)>>¢:w2¢

@ for massive scalar fields in AdS with

(d—1)?
4

m? > mﬁF’d = —

there are NO normalizable negative energy states
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Motivation

asymptotically AdS black holes

asymptotically AdS (aAdS) black holes with m? > mﬁm

@ uncharged scalar field
near-horizon geometry of (near)-extremal ( Ty ~ 0) black holes

AdSQ X Md_g s M manifold

(Robinson (1959); Bertotti (1959); Bardeen & Horowitz (1999))
if m* < még., = near-horizon AdS; unstable

@ scalar field charged under U(1), charge e

mgff =m— ez‘gth?

2

€?|g"| large close to horizon if Ty; small enough = m2

= near-horizon geometry unstable (Gubser (2008))

2
< Mppa

aAdS black holes form scalar “hair” below a given temperature
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The model

Gauss-Bonnet gravity + scalar field v + U(1) gauge field A,

— 5
S = 16 G / d Xy — 167TGLmatter
+ R—2A+ 2 (AR, — 4R Ry, + R?))
with matter Lagrangian
Losner = — g FunF™ — (Dy)” DM — Pyt M,N=0,1,2,3,4

Fun = OmANn — OnAp field strength tensor

Dy = Oyyp — ieAyp covariant derivative

A = —6/L2: cosmological constant

G: Newton’s constant , «: Gauss—Bonnet coupling

e: gauge coupling , m?: mass of the scalar field
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The model

Ansatz for static solutions

@ Metric
ds? = —f(r)a(r)dt®> + mdr + dZ
with
dE% for kK = —1 hyperbolic
Ak =1 adx?+dy?+dz? for k=0 flat
dQs for k=1 spherical

@ Matter fields
M
Anadx™ = ¢(r)dt , ¢ =(r)



The model

Behaviour on the AdS boundary: matter fields

@ Gauge field

¢(f>>1)=u—%

Q: charge (k = 1); charge density (k = —1, k = 0)
@ Scalar field

_ Y

qp(r>>1)_M—i+¢+

r+
with

Ap =24/4+mel2, | 12 = — 2a

ST —4a/2
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The model

Behaviour on the AdS boundary: metric fields

@ Asymptotic behaviour

f'2 f2

fr>1) = k+ -5 +5+0(%
Leff r
ar>1) = 1+%+O(r*6)

f, a4 constants (have to be computed numerically) and
determine...

@ ... Energy E of the solutions

167TGE_ « as
T 1—L2(—3f2—8L§“>

V3: volume of the 3-dimensional space
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The model

Black holes

@ Possess regular horizon r;, with

f(rn) =0, a(ry) finite

S _ (4 8
V3_4G rf,

f'(rn)a(rn)
4

@ entropy S

@ Temperature
Ty =

@ Freeenergy F = E — T3S — uQ
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The model

Solitons

@ Globally regular, no temperature naturally associated
@ Freeenergy F = E — uQ

@ k =1 solutions exist for r € [0 : oo[ with
fr=0)=1, &()|=0=0
@ k = 0 solutions exist for r € [ry : oo with
f(n)=0 , a(r) finite

AND either x or y or z needs to be compact with period 7(rp)
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Black holes and solitons without scalar hair
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e Black holes and solitons without scalar hair
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Black holes and solitons without scalar hair

Black holes without scalar hair

(Boulware & Deser, 1982; Cai, 2003)

Q Q

Y(r)=0 ¢<r):?§_r7
B r? da  4aM  4ayQ? B
f(r)—k+2a<1\/1L2+ Iz 1'6) s a(r):1

M: mass parameter
Q: charge (density)
ry: event horizon
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Black holes and solitons without scalar hair

Special black hole cases for k = —1

@ uncharged hyperbolic aAdS black holes Q =0, k = —1
@ extremal solution with f(r (e")) =0, f'(r)| _ vy = 0 exists

r=ry
CX
o ™ =12
@ for Ty ~ 0: horizon topology is AdS, x H®
(Astefanesei, Banerjee & Dutta, 2008)

@ Gauss-Bonnet black holes in d = 5 have AdS, radius

R=/L2/4 -«

(Y. Brihaye & B.H., PRD 84, 2011)
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Black holes and solitons without scalar hair

Special black hole cases for k =0

@ a =0, Q =0, k =0: planar Schwarzschild-AdS

r2 2 4
dsZ——(LZ—rQ’B)dF (ZZ_r;hL2> dr+ (dx +dy? + dz?)

@ o =0, Q+#0, k=0: planar Reissner-Nordstrom-AdS

ds? = —f(r )dt2+mdr +—(dx + dy?® + dz?)
with

2 2 2
f(r):%_%+@ , AdeM:Q(1—r”)dt

2 4 2
r r r2
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Black holes and solitons without scalar hair

Planar AdS soliton without scalar hair for k =0

@ double Wick rotation of planar Schwarzschild-AdS:

2 2 4\ 1 2 4
s = _det+(L2_r2L2) d’*(p‘mz)"”
+ ﬁ(dx2+d2)
[2 y

where 7 periodic with period

2

L

Ty = —— Wwhererp >0
Io

Betti Hartmann Stability of black holes and solitons in AdS



Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)
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e Black holes and solitons with scalar hair
@ Hyperbolic case (k = —1)
@ Planar case (k = 0)
@ Spherical case (k = 1)
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Uncharged black holes with k = —1

@ Uncharged black holes Q =0
@ uncharged scalar field e = 0
@ asymptotic AdSs stable, near-horizon AdS, unstable for

2 2 2
Mips=—5 <M < ——5=m
, 2 =i = 2 BF,2
L 4R
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Uncharged black holes with k = —1

(Y. Brihaye & B.H., PRD 84, 2011)
@ black holes with scalar hair thermodynamically preferred

FIL?
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Uncharged black holes with k = —1

(Y. Brihaye & B.H., PRD 84, 2011)
@ the larger « the lower Ty at which instability appears




Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged black holes and solitons with k =0

AdS black hole AdS black hole
atT>T,,u#0 at T<T,,u#0
scalar hair

formation .
Holographic EE—— Holographic
conductor/ phase superconductor/
fluid transition superfluid
T large phase
transition
. AdS soliton
AdS soliton scalar hair at p>p,T>0
at O<u<p,T=0 formation ¢
—_—
. , Holographic
phase
H?:;ﬂ::& l:_'c transition superconductor/
superfluid
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Applications to holographic superconductors

@ Example of high temperature
superconductor:
Yttrium(Y)-barium(BA)-
copper(Cu)-oxide(O)

@ highest possible T, = 92K

@ superconductivity
associated to CuO,-planes

@ BCS theory does not explain
experimental results well

@ strongly interacting
Quantum field theories

c
Taken from WIKIMEDIA
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged black holes with kK = 0

@ Mermin-Wagner theorem: spontaneous symmetry breaking of
a continuous symmetry forbidden in (2+1) dimensions at finite
temperature, but holographic superconductors (in Einstein
gravity) have been constructed (see e.g. (Hartnoll, Herzog &
Horowitz, 2008))

Q: Can Gauss-Bonnet corrections suppress condensation?

@ for G = 0 (no backreaction): condensation can not be
suppressed for (3+1)-dimensional Holographic Gauss-Bonnet
superconductors
(Gregory, Kanno & Soda, 2009)

Q: Can backreaction suppress condensation?
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged black holes with kK = 0

(Brihaye & B. Hartmann, Phys. Rev. D 81, 2010)

@ Gauss-Bonnet coupling 0 < o < L2/4

00
=01
4, | #02

— condensation gets harder for o > 0, but not suppressed
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged solitons with k =1 and a =0

@ For a = 0 solitons regular on r € [0 : oo[ exist
(Basu, Mukherjee & Shieh, 2009;

Dias, Figueras, Minwalla, Mitra, Monteiro & Santos, 2011 )

@ Need: appropriate boundary conditions for scalar and gauge
fieldatr=20

¢'(0)=0, ¢'(0)=0
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged solitons with k =1 and o # 0

(Brihaye & B. Hartmann, PRD 85 (2012) 124024)
@ exist only in limited domain of Q-&?-plane
@ at e = e;(Q, «): numerical results suggest a(0) — 0
@ for a # 0 range of allowed Q and e values enlarged

solitons
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged black hole with k = 1

(Brihaye & B. Hartmann, PRD 85 (2012) 124024)

10'; -
b Il . .
e @ For small o: solution exists
T . downtor,=0
N S | — soliton?
7 o 7 @ For large a: solution has
: v | a(r) — 0forr, — ') >0
10*‘5 oot rt? — extremal black hole?
,5: . !
10 0 0.1 02 rh 0.3 04 05 0.6
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged black hole with k = 1

(Brihaye & B. Hartmann, PRD 85 (2012) 124024)

For o = 0:

@ Black hole tends to soliton
solutions in the limit r, — 0

0.0 05 10 15 2.0
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Black holes and solitons with scalar hair

Hyperbolic case (k = —1)
Planar case (k = 0)
Spherical case (k = 1)

Charged black hole with k = 1

(Brihaye & B. Hartmann, PRD 85 (2012) 124024)

a # 0:
@ Gauss-Bonnet solitons
with scalar hair exist

@ black holes with scalar hair
do not tend to
corresponding solitons for
rm—0
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged black hole with k = 1

(Brihaye & B. Hartmann, PRD 85 (2012) 124024

There exist no extremal Gauss-Bonnet black holes with
scalar hair.
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Hyperbolic case (k = —1)
Planar case (k = 0)
Black holes and solitons with scalar hair Spherical case (k = 1)

Charged black hole with scalar hair, k = 1

Proof:

@ assume near-horizon geometry to be AdS, x S°:
2 2 2 1 2 2 P2 2 22 2
os* = vy (—Fdrt + 5 di? ) 4w, (dw +sin?e (de +sin?0dy ))

V1, Vo: positive constants

@ Combination of equations of motion yields

2 2 2,12
0— 1ewe<pw’2+e Gl )
Vi PV
This leads to: ¢/’ = 0 and ¢?¢? = 0 in near horizon geometry

@ ¢? = 0 ruled out — ¢ = 0 in near horizon geometry g.e.d.
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Conclusions & Outlook

Conclusions & Outlook

e Conclusions & Outlook
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Conclusions & Outlook

Conclusions

@ Two mechanisms can make AdS black holes unstable to scalar
condensation

e uncharged scalar field: black holes with AdS. factor in
near-horizon geometry (near-extremal black holes)
Example in this talk: uncharged, static black holes with
hyperbolic horizon (k = —1)

e charged scalar field: coupling to gauge field lowers
effective mass of scalar field
Examples in this talk: charged, static black holes with flat or
spherical horizon (k =0,k =1)

@ Black holes with scalar hair thermodynamically preferred
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Conclusions & Outlook

@ Instabilities of other black holes and solitons in AdSy

e charged and rotating Einstein black holes:
Y. Brihaye & B.H., JHEP 1203 (2012) 050
e charged and rotating Gauss-Bonnet black holes:
Y. Brihaye, B.H. & S. Tojiev, Phys. Rev. D (2013) 024040
e solitons in conformal gravity and/or scalar field models
Y. Brihaye, B.H. & S. Tojiev, Phys. Rev. D 88 (2013) 104006

THANK YOU FOR YOUR ATTENTION!
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Conclusions & Outlook

Equations of motion

0 g k—fr2rI
2+ 2a(k — f)
3 (26P¢PYR + f(2mPaPy? + ¢7) + 2f2 Py
T2t ( r2 1 2a(k — f)) )
al - r3(62¢2w2 + aZfZ,L/}/Z)
= 77af(12 + 2a(k — £))
o 3 a / 92¢2
ot = - <r - a) ¢ +2 7 ¢
b 3 f! g , e2¢2 m?
v ‘<r+f+a>¢ ‘<f2az‘f>”’

where v = 167G
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Conclusions & Outlook

Conditions on the horizon (Black holes)

@ Regular horizonatr=r, >0

f(rn) =0 , a(ry) finite

P m?y (r? + 20k)
) =0 ) = G ar 12— 18 (P2 + ) (228)) .

=Ip
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Conclusions & Outlook

The planar limit

(o = 0: Gentle, Pangamani & Withers, (2011))
(o # 0: Brihaye & B. Hartmann, PRD 85 (2012) 124024)

@ apply rescaling r — Ar, t = A~ "t, M — \*M, Q — X\3Qto
Boulware-Deser-Cai solution with

1 1 4a  4aM  4ayQ@?
2
f(r)_r<r2+2a<1_\/1_L2+r4_r6>>

@ For A\ — co: A2d032 — dx? + dy? + dz?

@ For Q — oo the k = 1 solution becomes k = 0 solution, i.e.
becomes comparable in size to AdS radius L

@ electromagnetic repulsion balanced by gravitational attraction
present in AdS
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