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Electrically charged AdS-RN black hole (brane)

Describes holographic matter at finite charge density that is 
translationally invariant
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T=0 limit: AdS4AdS2 ⇥ R2
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Conductivity calculation
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Conductivity calculation
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More precisely �(!) ⇠ �(!) +
i
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                     arises because translation invariance implies there is 
no momentum dissipation

! ⇠ 0near 

�DC = 1
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“Coherent” or “good” metal
⌧�1(T )

Drude Model of transport in a metal  
e.g. quasi-particles and no interactions
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Arises when momentum is nearly conserved

• Drude physics doesn’t require quasi-particles

• There are also “incoherent” metals without Drude peaks

• Insulators with 

• Metal-insulator transitions involve dramatic reorganisation of 
degrees of freedom

“Coherent” metals

�DC = 0

Want to study these within holography



Interaction driven and strongly coupled



Holographic Lattices and metals

Need to solve PDEs

[Horowitz, Santos,Tong]   

E.g. add a real scalar field to Einstein-Maxwell and consider

�(r, x) ⇠ � cos(kx)

r

3��
+ . . .

To realise more realistic metals and/or insulators we want to 
construct charged black holes that explicitly break translations 
using a deformation of the CFT

Can we simplify? Find some agreement and some differences

E.g In Einstein-Maxwell theory consider:

µ(x) = µ+A cos kx



Plan

• Calculation of thermoelectric DC conductivity         ,        ,                       
in terms of black hole horizon data   

• Q-lattices can give coherent metals, incoherent metals and 
insulators and transitions between them.

• Holographic Q-lattices  - solve ODEs

⌘ =
s

4⇡
For           c.f. [Iqbal,Liu][Davison][Blake,Tong,Vegh][Andrade,Withers]

�DC

Analogous to                   [Policastro,Kovtun,Son,Starinets] 

↵DC ̄DC

�DC

• Comments on          lattices in Einstein-Maxwell theoryµ(x)



Holographic Q-lattices 

• Choose                  so that we have an            vacuum and

that AdS-RN is a solution at

• Particularly interested in cases where      is periodic.                 

AdS4
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• The model has a gauge           and a global           symmetry U(1) U(1)

Exploit the global bulk symmetry to break translations

eg if it is the phase of a complex scalar field                                 

• Illustrative D=4 model 

Analysis covers cases when      is not periodic e.g. �
with                                 

� = 0

[Azeneyagi,Takayanagi,Li][Mateos,Trancanelli][Andrade,Withers]



Homogeneous and anisotropic and periodic holographic lattices

Ansatz for fields
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UV expansion:

e2V1 = r2 + . . . e2V2 = r2 + . . .
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�
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UV data: T/µ �/µ3�� k/µ

IR expansion: regular black hole horizon



Analytic result for DC in terms of horizon data
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Generalised Ohm/Fourier Law:

For Q-lattice black holes the DC matrices                     diagonal

Qa = T ta � µJa

Ja Electric current

Heat current

Apply electric fields and thermal gradients and find linear 
response

�,↵, ↵̄, ̄



Switch on constant electric field perturbation
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Gauge equation of motion: 

Use Einstein equations and regularity at the black hole 
horizon to relate      and        to get J
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Similar analysis relates      and      to get Q E ↵̄
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• Calculating       and 
Consider a source for heat currents

↵ ̄



First term in     is finite for AdS-Schwarzschild [Iqbal,Liu]
“Pair evolution” term. In general it is 
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Second term “Dissipation” term

Different ground states can be dominated by first or second term
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• Some general results

̄
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Bound is saturated for dissipation 
dominated systems
c.f. Wiedemann-Franz Law.  

• 

• 



UV data

IR fixed point

Coherent metal phases

T=0
AdS-RN

At T=0 the black holes approach                           in the IRAdS2 ⇥ R2

[Hartnoll, Hoffman]

� ⇠ T 2�2�(kIR)

AdS2 ⇥ R2

perturbed by irrelevant operator with

Note:         depends on RG flowkIR

�/µk/µ

Low T DC conductivity is dissipation dominated:

�(kIR) � 1
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Drude peaks at finite T

Similar to what was seen for different 
lattices in [Horowitz,Santos,Tong]   
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Insulating phases

AdS2 ⇥ R2



Insulating phases

AdS2 ⇥ R2New



Insulating phases

AdS2 ⇥ R2New
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Appearance of a mid-frequency hump. 
Spectral weight is being transferred, consistent with sum rule
(see also [Donos,Hartnoll])

What are the T=0 insulating ground states??

Focus on specific models (see also [Gouteraux])
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New Insulating and Metallic ground states - Anisotropic

Focus on models and T=0 ground states which are solutions 
with r ! 0

and  

as   
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IR “fixed point” solutions
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• Calculate DC conductivity

For                  the scaling is obtained from the IR fixed point solutions T << µ

�DC ⇠ T b(�)

New type of insulating ground states

Novel metallic ground states  with 
finite conductivity at T=0

Novel incoherent metallic ground states not 
associated with Drude physics

Metallic ground states are all thermal insulators ̄ ! 0

b > 0

b < 0

b = 0



Use a model with scalar fields        and                   
with

New Insulating and Metallic ground states - Isotropic 

Can have coherent metals and transitions to

• Insulators

• Incoherent metals

Some have peaks in AC conductivity that are not 
associated with Drude physics

�1 = kx1

�2 = kx2

� �1,�2



• Holographic Q-lattices are simple and illuminating

• Coherent metallic phases with Drude peaks

• Analytic result for DC conductivity in terms of horizon data.

Summary

• Also find novel metallic phases and insulating phases

• No intermediate 2/3 scaling in AC conductivity

Metal-Insulator and Metal-Metal transitions

Can be generalised to inhomogeneous lattices 

We find it to be absent in inhomogeneous lattices
Absent in another recent example [Taylor,Woodhead]

µ(x)

µ(x)



(but no “floppy” ground states reported by                 
for the lattices with          )

• Lattices are a good way to look for new holographic 
ground states

[Hartnoll,Santos]
µ(x)


