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Geometry of Supersymmetric Backgrounds
Consider a compactification of string theory to four-dimensional Minkowski
spacetime. If the background is supersymmetric, then in the absence of
fluxes the 6d internal manifold must satisfy

(Candelas, Horowitz, Strominger, Witten ’85)

∇ε = 0

↓
Calabi-Yau 3-fold

This is an example of a compact manifold with special holonomy, i.e. a
manifold in which there exist spinor fields parallel with respect to the
Levi–Civita connection.



Geometry of Supersymmetric Backgrounds
Consider a compactification of string theory to four-dimensional Minkowski
spacetime. If the background is supersymmetric, then in the absence of
fluxes the 6d internal manifold must satisfy

[∇+ (Flux) ] · ε = 0

If fluxes are turned on, the compatible connection is not torsion-free, so it is
not a special holonomy manifold. So what is the geometry of the internal
manifold?

• G-structures
• Generalised Complex Geometry
• Exceptional Generalised Geometry



Field Ansatz for Eleven-Dimensional Supergravity

Focus on eleven-dimensional supergravity reduced to four dimensions (but
results also hold for IIA and IIB).

We keep only the components of the eleven-dimensional fields which are
scalars in the external space.

Therefore we take the metric to be

ds2
11 = e2∆ηµνdyµdyν + gmndxmdxn,

and keep the components of the 4-flux F

Fm1...m4 = Fm1...m4 , F̃m1...m7 = (∗11F)m1...m7
.

These field strengths are globally defined closed forms, which means that
we have “gerbe”-like gauge fields, the 3-form Amnp and the 6-form Ãmnpqrs.

The fermionic content is given by two components of the gravitino ΨM , the
internal gravitino ψm and the trace of the external component ρ.



The Killing Spinor Equations

For supersymmetric vacua we set the fermions to zero and require the
existence of at least one spinor ε globally defined on M such that the
supersymmetric variations of all the fields with respect to ε vanish.

This implies that

δρ =
[
/∇− 1

4
/F − 1

4
/̃F + (/∂∆)

]
ε = 0

δψm =
[
∇m + 1

288
Fn1...n4 (Γm

n1...n4 − 8δm
n1Γn2n3n4)

− 1
12

1
6!
F̃mn1...n6Γn1...n6

]
ε = 0

These are the Killing Spinor Equations and we call ε the Killing spinor.

More independent Killing spinors imply that more supersymmetry is
preserved.



E7(7) × R+ Generalised Geometry

Generalised Geometries, in analogy to the relation between Riemannian
geometry and general relativity, are a new attempt at “geometrising” the
bosonic symmetries of supergravity.

It introduces an extended notion of tangent space, where generalised
vectors are patched together precisely according to the supergravity
symmetries. By studying structures on these generalised tangent spaces, we
can gain new insights into supergravity.

In previous work we showed that Ed(d)×R+ generalised geometry can be
used to fully reformulate eleven-dimensional supergravity restricted on a
d ≤ 7-dimensional compact manifold, making its larger local symmetries
manifest.

Since we are looking at reductions down to four dimensions, we will use
E7(7) × R+ generalised geometry



The Generalised Tangent Space
Let M be a 7-dimensional spin manifold.
The generalised tangent space E of M is given by

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M)

Globally, E is actually defined as a series of extensions, twisted by gerbes
which encode the topology of the gauge fields.

On an open subset U(i) ⊂M we can write

V(i) ∈ Γ(TUi ⊕ Λ2T ∗Ui ⊕ Λ5T ∗Ui ⊕ (T ∗Ui ⊗ Λ7T ∗Ui))

Then the patching on the overlap U(i) ∩ U(j) is given by

V(i) = v(i) + ω(i) + σ(i) + τ(i)

= v(j) + ω(j) + iv(j)dΛ(ij) + σ(j) + iv(j)dΛ̃(ij) + ω(j) ∧ dΛ(ij) + . . .

where Λ(ij) and Λ̃(ij) are locally 2- and 5-forms which satisfy certain
consistency conditions on higher order overlaps. This matches precisely the
gauge transformations of supergravity.

Crucially, the symmetry transformations GL(7,R) n “Gauge” ⊂ E7(7) × R+.

P. Pacheco, D. Waldram ’08
A.C., C. Strickland-Constable, D. Waldram ’11, ’12



The Generalised Tangent Space

In fact, the fiber Ex at x ∈M forms the 561 representation space of
E7(7) × R+.

Frames for E form an E7(7) × R+ principal bundle, the generalised frame
bundle F̃ . Generalised tensors will then be associated to different
representations of E7(7) × R+.

Several familiar notions from Riemannian geometry can be defined for the
E7(7) × R+ generalised tangent bundle.



Dorfman Derivative

The differential structure of E is given by the Dorfman bracket, a
generalisation of the Lie derivative which combines the action of
infinitesimal diffeomorphisms and gauge transformations

LVW
M = V N∂NW

M − (∂ ×ad V )MNW
N

where

∂M =

{
∂m for M = m

0 else
∈ E∗

The Dorfman bracket is not antisymmetric, but it does satisfy the Leibniz
property, i.e. E is a Leibniz algebroid.



Generalised Connections

A generalized connection is a first-order linear differential operator which
acts on generalised vectors as

DMW
N = ∂MW

N + ΩM
N
PW

P

where ΩV = VMΩM
N
P ∈ ad F̃ .

The generalised torsion of a generalised connection is defined as usual by

T (V,W ) = LDVW − LVW

now with the Dorfman derivative instead of the Lie derivative.

We find that the generalised torsion constraints some components of the
connection

T ∈W ⊂ E∗ ⊗ ad F̃

with W in the 912−1 + 56−1 representation of E7(7) × R+.



Generalised Metric and Spinors

We now introduce extra structure, in analogy with Riemannian geometry.
Consider the maximal compact subgroups SU (8)/Z2 ⊂ E7(7).

An SU (8)/Z2 structure on E is defined by a generalised metric H which at
each point parametrises the coset

H ∈
E7(7) × R+

SU (8)/Z2

This precisely corresponds to the degrees of freedom of the bosonic
supergravity fields, which are thus unified in a single object

{g,A, Ã,∆} ∈ H

Spin(7) spinors can be identified as transforming under the double cover
SU(8). The fermion fields ψm and ρ are thus thought of as SU(8) objects.



Torsion Free, SU (8) Connections
Given an SU (8) structure PSU(8), we have that generalised spin connections
are of the form

DMW
N = ∂MW

N + ΩM
N
PW

P

where now ΩV ∈ adPSU (8).
Take two such SU (8) connections and define

Σ = D −D′

Then we have that Σ spans a space

Σ ∈ K = E∗ ⊗ adPSU(8)

Now define the torsion map

τ(Σ) = T (D)− T (D′) ∈W

It is easy to check that

τ(K) ⊂W ker(τ) 6= 0

Thus there always exists a generalised connection which is both metric
compatible and torsion free, but it is not unique.
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Killing Spinor Equations Revisited

However, it turns out that all the supergravity equations can be written in
SU (8) invariant language which is independent of the choice of connection,
as all undetermined elements project out. In particular, given any D such
that T (D) = 0, the supersymmetry transformations of the fermions are just

δψαβγ = D[αβεγ]

δρ̄α = −D̄αβεβ
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Killing Spinor Equations Revisited

However, it turns out that all the supergravity equations can be written in
SU (8) invariant language which is independent of the choice of connection,
as all undetermined elements project out. In particular, given any D such
that T (D) = 0, the supersymmetry transformations of the fermions are just

δψαβγ = D[αβεγ]

δρ̄α = −D̄αβεβ

So the Killing Spinor Equations are now simply

D̄αβε
β = 0, D[αβεγ] = 0

Already looks very close to the special holonomy equations.
Clearly if we have a torsion-free connection with

Dε = 0⇒ D̄αβε
β = 0, D[αβεγ] = 0

so the background is supersymmetric.
Does the converse hold? Given a supersymmetric background can we find a
torsion-free D′ such that D′ε = 0?



Generalised SU(7)-structures

A nowhere vanishing spinor ε defines an SU (7) ⊂ SU (8) structure.

So the question is, given a supersymmetric background, can we find an
SU(7)-connection which is torsion-free?

Start with a generic torsion-free SU(8) connection D and let D̂ = D + Σ̂
with τ(Σ̂) = 0 so that D̂ is also torsion-free and SU(8) compatible
(remember there are several such connections!).

Can we choose Σ̂ such that

D̂ε = Dε+ Σ̂ · ε = 0 ?

If so D̂ is compatible with the reduced structure group SU(7).

So we must prove that we can solve

Dε = −Σ̂ · ε

for Σ̂, given that ε satisfies the Killing Spinor Equations.



Torsion-free SU(7)-structures
The strategy is then

Dε Σ̂ · ε
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Torsion-free SU(7)-structures
The strategy is then

Dε Σ̂ · ε
↓ ↓

decompose under SU(7) decompose under SU(7)
↓ ↓

impose impose
Killing Spinor Eqs torsion-free conditions

↓ ↓
remaining components ⊂ remaining components

We conclude there is enough freedom to set

Σ̂ · ε = −Dε ⇒ D̂ε = 0

as we wanted.



SU(7) Generalised Special Holonomy Manifolds

Thus setting the Killing Spinor Equations to zero is equivalent to
demanding the vanishing of the generalised intrinsic torsion.

δρ = 0, δψ = 0

m
∃D′ : D′ε = 0, T (D′) = 0

in which case we have the generalised analogue of special holonomy.

Manifolds with a generalised torsion-free SU(7)-structure are
N = 1 supersymmetric backgrounds of M theory and vice-versa.

(can think of these manifolds as “exceptional generalised Calabi-Yau”)
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Conclusion

E7(7) × R+ generalised geometry allows us to “geometrise” the full bosonic
sector of four-dimensional backgrounds of eleven-dimensional supergravity.

This enabled us to re-interpret N = 1 flux backgrounds as manifolds with
SU (7) generalised special holonomy → “integrability” condition that works
for all possible fluxes.

What about higher N ? Work in progress: result almost certainly holds,
proof a bit more subtle.

Would be interesting to know if similar results also hold for other types of
generalised geometry, which are used to describe other supergravities. Easy
to show it holds for O(d, d) generalised geometry. Is it a general feature?

Thank you very much.
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