Anatomy of new SUSY-breaking holographic RG-flows

Riccardo Argurio

Université Libre de Bruxelles

String Theory Universe 2014 @ Mainz

Riccardo Argurio (ULB)

Based on:

Collaboration with Bertolini, Di Pietro, Musso, Porri and Redigolo

- ► to appear AMR
- work in progress ABMPR
- see also arXiv:1205.4709 [hep-th], arXiv:1208.3615 [hep-th], arXiv:1310.6897 [hep-th] ABDPR

Motivation

Symmetry breaking by strongly coupled dynamics is often crucial in physical theories

Some examples:

- Chiral symmetry in QCD
- Dynamical SUSY breaking \leftrightarrow hierarchy problem
- ► High *T_c* superconductors
- ► Higher spin symmetry ↔ string theory

Here we will focus on SUSY breaking at strong coupling.

Our approach to strong coupling is through holography.

Models of SUSY breaking in holography:

- KPV: anti-D3 branes in Klebanov-Strassler
- ► $d \neq 4$ examples: Maldacena-Nastase, Massai et al.,...
- ... anyone?
- bottom-up: $\mathcal{N} = 2$ SUGRA in 5d

The complexity of the bottom-up model (and its reach towards top-down models) depends on the hyper- and vector-multiplet content.

We will consider as training ground models of $\mathcal{N} = 2$ SUGRA coupled to a universal hypermultiplet.

Given that we define the SUSY breaking strongly coupled theory through its holographic dual, how are we going to probe/characterize its SUSY breaking features?

Our aim will be to compute two-point correlators through holographic renormalization

This will give us information on several physical properties:

- Presence/absence of massless modes such as:
 - dilaton
 - R-axion
 - Goldstino
 - 't Hooft fermions
- Violation of SUSY Ward identities
- Spectrum of resonances
- Stability: no tachyonic resonances

Solutions

New RG-flow SUGRA solutions

We restrict to solutions with at most two backreacting scalars. We start form the action (choice of gauging!)

$$S = \int d^5 x \sqrt{G} \left[-\frac{1}{2}R + \partial_M \eta \partial^M \eta + \frac{1}{4} \cosh^2 \eta \partial_M \phi \partial^M \phi + \frac{3}{4} \left(\cosh^2 2\eta - 4 \cosh 2\eta - 5 \right) \right]$$

together with the ansatz

$$ds^{2} = \frac{1}{z^{2}} \left(dz^{2} + F(z)\eta_{\mu\nu}dx^{\mu}dx^{\nu} \right) \qquad \eta = \eta(z) \qquad \phi = \phi(z)$$

3-parameter worth of solutions, including dilaton DW and GPPZ:

$$\phi = \tilde{\phi}_4 z^4 + \dots \qquad \eta = \eta_0 z + \tilde{\eta}_2 z^3 + \dots$$

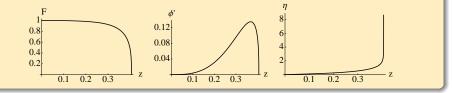
All solutions are singular in the IR.

Riccardo Argurio (ULB)

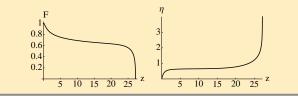
Solutions

Some examples:

F(z), $\phi'(z)$ and $\eta(z)$ field profiles in the generic explicit R-symmetry breaking background:



F(z) and $\eta(z)$ field profiles in a walking solution (here $\phi(z) = 0$):



Massless modes

As a warm up, we consider a toy model for the holographic realization of Goldstone bosons: 5d model with a vector and an axion-like scalar

[See also Bianchi, Freedman, Skenderis 01]

$$S = \int d^5 x \sqrt{G} \left[\frac{1}{4} F^{MN} F_{MN} + \frac{1}{2} m(z)^2 (\partial_M \alpha - A_M) (\partial^M \alpha - A^M) \right]$$

The bulk vector's U(1) symmetry is broken by the profile

 $m(z) = m_0 z + \tilde{m}_2 z^3$

From the boundary FT point of view:

- m_0 explicit breaking of global U(1)
- \tilde{m}_2 spontaneous breaking of global U(1)

The correlator we will be probing is

$$\langle J_{\mu}(k)J_{\nu}(-k)\rangle = -(k^{2}\delta_{\mu\nu} - k_{\mu}k_{\nu})C(k^{2}) - m_{0}^{2}\frac{k_{\mu}k_{\nu}}{k^{2}}F(k^{2})$$

In holographic renormalization, the transverse and longitudinal parts of A_{μ} are related to the transverse and longitudinal parts of J_{μ} , respectively.

The longitudinal part of A_{μ} however mixes with α , which is related to Im O_m , i.e. the imaginary part of the operator that breaks the symmetry.

Expectations:

- ► spontaneous breaking: $F(k^2) = 0$, massless pole in $C(k^2)$, Schwinger term in $\langle J_{\mu} \text{ Im} O_m \rangle$
- ► explicit breaking: no massless poles, $F(k^2) \neq 0$, Ward identity $\partial_{\mu}J^{\mu} = m_0 \operatorname{Im}O_m$

Holographic renormalization:

Spontaneous:
$$S_{\text{ren}} = -\int d^4k \left\{ a^t_{0\mu} \tilde{a}^t_{2\mu} + \tilde{m}^2_2 \alpha_0 (\tilde{\alpha}_2 + a^l_0) + \text{local} \right\}$$

- ► a^t_{0µ}ã^t_{2µ} term leads to C(k²). Massless pole appears because of bulk boundary conditions.
- $\tilde{m}_2^2 \alpha_0 a_0^l$ term leads to the Schwinger term $\langle \partial_\mu J^\mu \operatorname{Im} O_m \rangle = \tilde{m}_2$.

Explicit:
$$S_{\text{ren}} = -\int d^4k \left\{ a_{0\mu}^t \tilde{a}_{2\mu}^t + m_0^2 (\alpha_0 - a_0^l) \tilde{\alpha}_2 + \text{local} \right\}$$

- ► massless pole in $C(k^2)$ can be cancelled by local terms $\propto m_0^2$ (cancels anyhow from full $\langle J_\mu J_\nu \rangle$)
- ► Ward identity consequence of S_{ren} depending only on α₀ a^l₀ (bulk gauge symmetry)

In full $\mathcal{N} = 2$ SUGRA models, these considerations apply to the R-axion and the dilaton.

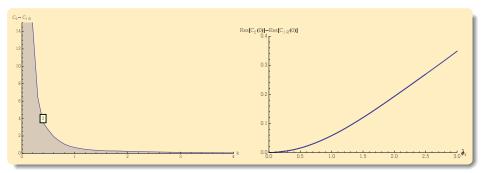
The correlators are

$$\langle T_{\mu\nu}(k) T_{\rho\sigma}(-k) \rangle = -\frac{1}{8} X_{\mu\nu\rho\sigma} C_2(k^2) - \frac{1}{12} \frac{m^2}{k^2} P_{\mu\nu} P_{\rho\sigma} F_2(k^2) \langle j^R_{\mu}(k) j^R_{\nu}(-k) \rangle = -P_{\mu\nu} C_{1R}(k^2) - \frac{1}{3} m^2 \frac{k_{\mu}k_{\nu}}{k^2} F_1(k^2)$$

*F*₂ = 0 = *F*₁ if conformal and R-symmetry are not explicitly broken.
SUSY Ward identities require *C*₂ = *C*_{1*R*} and *F*₂ = *F*₁ for a SUSY preserving RG-flow.

Both C_2 and C_{1R} have a massless pole when $\eta_0 = 0$.

SUSY is recovered when also $\tilde{\phi}_4 = 0$. In this case we expect $C_2 = C_{1R}$.

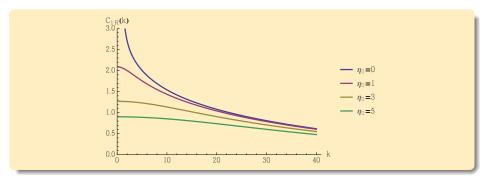


The pole in C_2 corresponds to the dilaton of broken conformal symmetry, and the pole in C_{1R} to the R-axion of broken R-symmetry. In the SUSY limit, the R-axion and dilaton become superpartners.

Riccardo Argurio (ULB)

SUSY-breaking RG-flows

The massless poles disappear when η_0 is turned on:



The R-axion acquires a mass proportional to η_0 .

Riccardo Argurio (ULB)

SUSY-breaking RG-flows

EuroStrings 2014 13 / 17

Goldstino

When SUSY is spontaneously broken, a massless fermion, the Goldstino is expected.

Problem: spontaneous SUSY breaking is allowed only when conformal symmetry is explicitly broken.

This is because spontaneous SUSY breaking is heralded by

 $\langle T_{\mu\nu}\rangle = -F^2\eta_{\mu\nu}$

This relation is impossible in a conformal theory in which we have the operator constraint $T^{\mu}_{\mu} = 0$.

 $\Rightarrow \mbox{We need a solution where conformal symmetry is broken} \\ \mbox{by a SUSY source.} \qquad [This requires a different gauged SUGRA-no details here] \\ \label{eq:source}$

Q: Where should the Goldstino massless pole appear? A: in the correlator of the supercurrent!

More precisely, in a Schwinger term in this correlator.

$$\langle (\partial^{\mu} S_{\mu\alpha})(k) \bar{S}_{\nu\dot{\beta}}(-k) \rangle = -\langle \delta_{\alpha} \bar{S}_{\nu\dot{\beta}} \rangle = 2i\sigma^{\nu}{}_{\alpha\dot{\beta}} \langle T_{\mu\nu} \rangle \neq 0$$

implies

$$\langle S_{\mu\alpha}(k)\,\bar{S}_{\nu\dot{\beta}}(-k)\rangle = \dots + F^2 (\sigma_\mu \bar{\sigma}^\rho \sigma_\nu)_{\alpha\dot{\beta}} \frac{2k_\rho}{k^2}$$

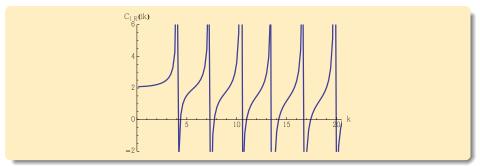
 \Rightarrow

boundary analysis in holographic renormalization is enough to find the Goldstino. [In progress!]

Spectrum of resonances

The poles appearing in the correlators give the spectrum in the corresponding channel.

If all the poles lie on the $k^2 < 0$ axis, then no tachyonic resonance is present and the solution represents an RG-flow to a stable vacuum.



In the generic case the first pole corresponds to a mass of the order of the mass gap.

Riccardo Argurio (ULB)

Outlook

- Holographic realization of massless particles related to dynamical symmetry breaking.
- These particles arise as part of the spectrum of resonances, and also from Schwinger terms.
- New classes of SUGRA solutions representing SUSY-breaking RG-flows.
- ► More general and more realistic classes of solutions → more hypermultiplets in the N = 2 SUGRA.
- ► Embedding in string theory/consistent truncations → top down models.
- Finding the Goldstino can be a useful discriminant to determine whether we have the gravity dual of a SUSY breaking field theory.